Chapter 1. Introduction to ModeShape

1.1. Use cases for ModeShape
1.2. What is metadata?
1.3. What is JCR?
1.4. Project roadmap
1.5. ModeShape modules
1.6. Compiling and building
1.7. What's new?
ModeShape is a JCR implementation that provides access to content stored in many different kinds of systems. A ModeShape repository isn't yet another silo of isolated information, but rather it's a JCR view of the information you already have in your environment: files systems, databases, other repositories, services, applications, etc.

To your applications, ModeShape looks and behaves like a regular JCR repository. Using the standard JCR 2.0 API (a.k.a. JSR-283), applications can search, navigate, version, and listen for changes in the content. But under the covers, ModeShape gets its content by federating multiple back-end systems (like databases, services, other repositories, etc.), allowing those systems to continue "owning" the information while ensuring the unified repository stays up-to-date and in sync.

Of course when you start providing a unified view of all this information, you start recognizing the need to store more information, including metadata about and relationships between the existing content. ModeShape lets you do this, too. And ModeShape even tries to help you discover more about the information you already have, especially the information wrapped up in the kinds of files often found in enterprise systems: service definitions, policy files, images, media, documents, presentations, application components, reusable libraries, configuration files, application installations, databases schemas, management scripts, and so on. As files are loaded into the repository, you can make ModeShape automatically sequence these files to extract from their content meaningful information that can be stored in the repository, where it can then be searched, accessed, and analyzed using the JCR API.

This document goes into detail about how ModeShape works to provide these capabilities. It also talks in detail about many of the parts within ModeShape - what they do, how they work, and how you can extend or customize the behavior. In particular, you'll learn about ModeShape connectors and sequencers, how you can use the implementations included in ModeShape, and how you can write your own to tailor ModeShape for your needs.

So whether you are a developer on the project, or you're trying to learn the intricate details of how ModeShape works, this document hopefully serves a good reference for developers on the project.

1.1. Use cases for ModeShape

ModeShape repositories can be used in a variety of applications. One of the more obvious use cases for a metadata repository is in provisioning and management, where it's critical to understand and keep track of the metadata for models, database, services, components, applications, clusters, machines, and other systems used in an enterprise. Governance takes that a step farther, by also tracking the policies and expectations against which performance of the systems described by the repository can be verified. In these cases, a repository is an excellent mechanism for managing this complex and highly-varied information.

But these large and complex use cases aren't the only way to use a ModeShape repository. You could use an embedded ModeShape repository to manage configuration information for an application, or you could use ModeShape just to provide a JCR interface on top of a few non-JCR systems.

The point is that ModeShape can be used in many different ways, ranging from the very tiny embedded repository to a large and distributed enterprise-grade repository. The choice is yours.

1.2. What is metadata?

Before we dive into more detail about ModeShape and metadata repositories, it's probably useful to explain what we mean by the term "metadata." Simply put, metadata is the information you need to manage something. For example, it's the information needed to configure an operating system, or the description of the information in an LDAP tree, or the topology of your network. It's the configuration of an application server or enterprise service bus. It's the steps involved in validating an application before it can go into production. It's the description of your database schemas, or of your services, or of the messages going in and coming out of a service. ModeShape is designed to be a repository for all this (and more).

There are a couple of important things to understand about metadata. First, many systems manage (and frequently change) their own metadata and information. Databases, applications, file systems, source code management systems, services, content management systems, and even other repositories are just a few types of systems that do this. We can't pull the information out and duplicate it, because then we risk having multiple copies that are out-of-sync. Ideally, we could access all of this information through a homogenous API that also provides navigation, caching, versioning, search, and notification of changes. That would make our lives significantly easier.

What we want is federation. We can connect to these back-end systems to dynamically access the content and project it into a single, unified repository. We can cache it for faster access, as long as the cache can be invalidated based upon time or event. But we also need to maintain a clear picture of where all the bits come from, so users can be sure they're looking at the right information. And we need to make it as easy as possible to write new connectors, since there are a lot of systems out there that have information we want to federate.

The second important characteristic of the metadata is that a lot of it is represented as files, and there are a lot of different file formats. These include source code, configuration files, web pages, database schemas, XML schemas, service definitions, policies, documents, spreadsheets, presentations, images, audio files, workflow definitions, business rules, and on and on. And logically if files contain metadata, we want to add those files to our metadata repository. The problem is, all that metadata is tied up as blobs in the repository. Ideally, our repository would automatically extract from those files the content that's most useful to us, and place that content inside the repository where it can be much more easily used, searched, related, and analyzed. ModeShape does exactly this via a process we call sequencing, and it's an important part of a metadata repository.

The third important characteristic of metadata is that it rarely stays the same. Different consumers of the information need to see different views of it. Metadata about two similar systems is not always the same. The metadata often needs to be tagged or annotated with additional information. And the things being described often change over time, meaning the metadata has to change, too. As a result, the way in which we store and manage the metadata has to be flexible and able to adapt to our ever-changing needs, and the object model we use to interact with the repository must accommodate these needs. The graph-based nature of the JCR API provides this flexibility while also giving us the ability to constrain information when it needs to be constrained.

1.3. What is JCR?

There are a lot of choices for how applications can store information persistently so that it can be accessed at a later time and by other processes. The challenge developers face is how to use an approach that most closely matches the needs of their application. This choice becomes more important as developers choose to focus their efforts on application-specific logic, delegating much of the responsibilities for persistence to libraries and frameworks.

Perhaps one of the easiest techniques is to simply store information in files . The Java language makes working with files relatively easy, but Java really doesn't provide many bells and whistles. So using files is an easy choice when the information is either not complicated (for example property files), or when users may need to read or change the information outside of the application (for example log files or configuration files). But using files to persist information becomes more difficult as the information becomes more complex, as the volume of it increases, or if it needs to be accessed by multiple processes. For these situations, other techniques often have more benefits.

Another technique built into the Java language is Java serialization , which is capable of persisting the state of an object graph so that it can be read back in at a later time. However, Java serialization can quickly become tricky if the classes are changed, and so it's beneficial usually when the information is persisted for a very short period of time. For example, serialization is sometimes used to send an object graph from one process to another. Using serialization for longer-term storage of information is far less useful.

One of the more popular and widely-used persistence technologies is the relational database. Relational database management systems have been around for decades and are very capable. The Java Database Connectivity (JDBC) API provides a standard interface for connecting to and interacting with relational databases. However, it is a low-level API that requires a lot of code to use correctly, and it still doesn't abstract away the DBMS-specific SQL grammar. Also, working with relational data in an object-oriented language can feel somewhat unnatural, so many developers map this data to classes that fit much more cleanly into their application. The problem is that manually creating this mapping layer requires a lot of repetitive and non-trivial JDBC code.

Object-relational mapping libraries automate the creation of this mapping layer and result in far less code that is much more maintainable with performance that is often as good as (if not better than) handwritten JDBC code. The Java Persistence API (JPA) provide a standard mechanism for defining the mappings (through annotations) and working with these entity objects. Several commercial and open-source libraries implement JPA, and some even offer additional capabilities and features that go beyond JPA. For example, Hibernate is one of the most feature-rich JPA implementations and offers object caching, statement caching, extra association mappings, and other features that help to improve performance and usefulness. Plus, Hibernate is open-source (with support offered by JBoss).

While relational databases and JPA are solutions that work well for many applications, they are more limited in cases when the information structure is highly flexible, the structure is not known a priori, or that structure is subject to frequent change and customization. In these situations, content repositories may offer a better choice for persistence. Content repositories offer the storage capabilities of relational databases with the flexibility offered by other systems, such as using files. Content repositories also typically provide other capabilities as well, including hierarchical organization, versioning, indexing, search, access control, transactions, and observation. Content repositories are often used by content management systems (CMS), document management systems (DMS), and other applications that manage electronic files (e.g., documents, images, multi-media, web content, etc.) and metadata associated with them (e.g., author, date, status, security information, etc.). The Content Repository for Java technology API provides a standard Java API for working with content repositories. Abbreviated "JCR", this API was developed through the Java Community Process originally under JSR-170 (as "JCR 1.0"), but has since been revised and improved as "JCR 2.0" under JSR-283.

The JCR 2.0 API provides a number of information services that are needed by many applications, including: read and write access to information; the ability to structure information in a hierarchical and flexible manner that can adapt and evolve over time; ability to work with structured, semi-structured, and unstructured content; ability to (transparently) handle large strings; notifications of changes in the information; search and query; versioning of information; access control; integrity constraints; participation within distributed transactions; explicit locking of content; and of course persistence.

ModeShape implements the JCR 2.0 API, including many of the optional features.

Figure 1.1. JCR API features
1.4. Project roadmap

The ModeShape open source project uses its JIRA instance to track issues for tasks, requirements, bugs, and other activities. The roadmap report shows how each of these issues are targeted to the upcoming releases, while the change log report shows all of the issues that were fixed in each of the past releases.

By convention, the ModeShape project team periodically review JIRA issues that aren't targeted to a release, and then schedule them based upon current workload, severity, and the roadmap. And if we review an issue and don't know how to target it, we target it to the Future Releases bucket.

At the start of a release, the project team reviews the roadmap, identifies the goals for the release, and targets (or retargets) the issues appropriately.

1.5. ModeShape modules

ModeShape consists of quite a few separate modules. Just a few of these make up the essential core components of the system:

· modeshape-jcr contains ModeShape's implementation of the JCR 2.0 API. If you're using ModeShape as a JCR repository, this is the top-level dependency that you'll want to use. The module defines all required dependencies, except for the repository connector(s) and any sequencer implementations needed by your configuration. As we'll see later on, using ModeShape as a JCR repository is as easy as defining a configuration, obtaining the JCR Repository object for your repository using the RepositoryFactory, and then using the standard JCR API. This module also uses the JCR unit tests from the reference implementation to verify the behavior of the ModeShape implementation.

· modeshape-jcr-api defines a number of interfaces that extend several of the JCR API interfaces. For example, this module defines a Repositories interface that defines a way to look up javax.jcr.Repository instances by name, and that is implemented by the ModeShape JcrEngine. It also defines several new interfaces that extend the JCR 2.0 API's Query Object Model with additional behavior, including more criteria options (such as BETWEEN, the mode:depth and jcr:path pseudo-columns, and the REFERENCE function), formal LIMIT and OFFSET clauses, and a set query operators for unions, intersects, and difference queries. This module is very small, only depends upon the JCR API, and was designed so that client applications can depend only upon this module without having to depend on the modeshape-jcr interfaces or its dependencies. For example, this module defines a Repositories interface that defines a way to look up javax.jcr.Repository instances by name, and that is implemented by the ModeShape JcrEngine, allowing client applications to dependency on this module to look up repositories by name without having to depend on the

Several other modules are also essential, but for the most part are hidden to client applications as they provide components used within the JCR implementation:

· modeshape-repository provides the core ModeShape graph engine and services for managing repository connections, sequencers, MIME type detectors, and observation. If you're using ModeShape repositories via our graph API rather than JCR, then this is where you'd start.

· modeshape-cnd provides a self-contained utility for parsing CND (Compact Node Definition) files and transforming the node definitions into a graph notation compatible with ModeShape's JCR implementation.

· modeshape-graph defines the Application Programming Interface (API) for ModeShape's low-level graph model, including a fluent-style API for working with graph content. This module also defines the APIs necessary to implement custom connectors, sequencers, and MIME type detectors.

· modeshape-common is a small low-level library of common utilities and frameworks, including logging, progress monitoring, internationalization/localization, text translators, component management, and class loader factories.

Most of the ModeShape modules, however, are optional extensions. Many of these depend on third party libraries, so you will probably want to include only those modules that provide functionality you'll use in your repository. These modules are located in the source under the extensions/ directory.

· modeshape-clustering contains ModeShape's clustering components and are needed only when two or more ModeShape engines are to be clustered together (so listeners in one session get notifications made from within any of the engines). ModeShape clustering uses the powerful, flexible and mature JGroups reliable multicast communication library. Simply enable clustering in ModeShape's configuration, include this library, and start your cluster. Engines can be dynamically added and removed from the cluster.

· modeshape-connector-infinispan is the preferred ModeShape repository connector for persistently storing content. Infinispan is an extremely scalable, highly available data grid platform that distributes the data across the nodes in the grid. This connector makes it possible for repository content to be stored in a very efficient, fast, highly-concurrent (essentially lock- and synchronization-free), and reliable manner, even when the content size grows to massive sizes. This connector is capable of storing any kind of content, and dictates how the content is stored on the data grid. Therefore, this connector cannot be used to access the content of existing data grids created by/for other applications.

· modeshape-connector-jbosscache is a ModeShape repository connector that stores content within a JBoss Cache instance. JBoss Cache is a powerful cache implementation that can serve as a distributed cache and that can persist information. The cache instance can be found via JNDI or created and managed by the connector. This connector is capable of storing any kind of content, and dictates how the content is stored in the cache. Therefore, this connector cannot be used to access the content of existing cache instances created by/for other applications.

· modeshape-connector-jdbc-metadata is a ModeShape repository connector that provides read-only access to metadata and schema information from relational databases through a JDBC connection. This connector provides an optional and configurable caching facility to prevent frequent requests to the database.

· modeshape-connector-store-jpa is a ModeShape repository connector that stores content in a JDBC database, using the Java Persistence API (JPA) and the very highly-regarded and widely-used Hibernate implementation. This connector is capable of storing any kind of content, and dictates the schema in which it stores the content. Therefore, this connector cannot be used to access the data in existing created by/for other applications.

· modeshape-connector-jcr is a ModeShape repository connector that accesses and stores content in an external JCR 2.0 repository. This allows ModeShape to integrate with other JCR implementations and even federate multiple JCR repositories into a single unified repository. Any differences in namespaces are automatically handled, although node types used by the content in the external JCR repository must also be registered into the ModeShape repository using the connector. Note that this connector is currently a technical preview, and we're seeking feedback and assistance in identifying the required functionality.

· modeshape-connector-filesystem is a ModeShape repository connector that accesses the files and folders on (a part of) the local file system, providing that content in the form of nt:file and nt:folder nodes. This connector does support updating the file system when changes are made to the nt:file and nt:folder nodes. However, this connector does not support storing other kinds of nodes.

· modeshape-connector-svn is a ModeShape repository connector that accesses the content of an existing Subversion repository, providing that content in the form of nt:file and nt:folder nodes. This connector does support updating the SVN repository when changes are made to the nt:file and nt:folder nodes. However, this connector does not support storing other kinds of nodes.

· modeshape-sequencer-cnd is a ModeShape sequencer that extracts JCR node definitions from JCR Compact Node Definition (CND) files.

· modeshape-sequencer-ddl is a ModeShape sequencer that extracts the structure and content from DDL files. This is still under development and includes support for the basic DDL statements in in the Oracle, PostgreSQL, Derby, and standard DDL dialects.

· modeshape-sequencer-zip is a ModeShape sequencer that extracts the files (with content) and directories from ZIP archives.

· modeshape-sequencer-xml is a ModeShape sequencer that extracts the structure and content from XML files.

· modeshape-sequencer-xsd is a ModeShape sequencer that extracts the structure and content from XML Schema Definition (XSD) files.

· modeshape-sequencer-wsdl is a ModeShape sequencer that extracts the structure and content from Web Service Definition Language (WSDL) 1.1 files.

· modeshape-sequencer-sramp is a library with reusable node types patterned after the core model of S-RAMP, and used by other ModeShape sequencers.

· modeshape-sequencer-classfile is a ModeShape sequencer that extracts the package, class/type, member, documentation, annotations, and other information from Java class files.

· modeshape-sequencer-java is a ModeShape sequencer that extracts the package, class/type, member, documentation, annotations, and other information from Java source files.

· modeshape-sequencer-jbpm-jpdl is a prototype ModeShape sequencer that extracts process definition metadata from jBPM process definition language (jPDL) files. This is still under development.

· modeshape-sequencer-msoffice is a ModeShape sequencer that extracts metadata and summary information from Microsoft Office documents. For example, the sequencer extracts from a PowerPoint presentation the outline as well as thumbnails of each slide. Microsoft Word and Excel files are also supported.

· modeshape-sequencer-images is a ModeShape sequencer that extracts the image metadata (e.g., size, date, etc.) from PNG, JPEG, GIF, BMP, PCS, IFF, RAS, PBM, PGM, and PPM image files.

· modeshape-sequencer-mp3 is a ModeShape sequencer that extracts metadata (e.g., author, album name, etc.) from MP3 audio files.

· modeshape-sequencer-teiid contains two sequencers. ModelSequencer extracts the structured data model contained with a Teiid relational XMI model, including the catalogs, schemas, tables, views, columns, primary keys, foreign keys, indexes, procedures, procedure parameters, procedure results, logical relationships, and the JDBC source from which the model was imported. Teiid VDB files contain several models, so the VdbSequencer extracts the virtual database metadata and the structured data model from each of the models contained within the VDB.

· modeshape-sequencer-text is a ModeShape sequencer that extracts data from text streams. There are separate sequencers for character-delimited sequencing and fixed width sequencing, but both treat the incoming text stream as a series of rows separated by line-terminators with each row consisting of one or more columns.

· modeshape-search-lucene is an implementation of the SearchEngine interface that uses the Lucene library. This module is one of the few extensions that is used directly by the modeshape-jcr module.

· modeshape-mimetype-detector-aperture is a MimeTypeDetector implementation that uses the Aperture library to determine the best MIME type given the name and contents of a file.

· modeshape-extractor-tika is a TextExtractor implementation that uses the Apache Tika parsing library to extract from binary content text that can be used for indexing the content.

· modeshape-classloader-maven is a small library that provides a ClassLoaderFactory implementation that can create ClassLoader instances capable of loading classes given a Maven Repository and a list of Maven coordinates. The Maven Repository can be managed within a JCR repository.

The following modules make up the various web application projects (and are located in the source under the web/ directory). You may be able to use these artifacts "out of the box", but more likely the configuration defined in the WAR files will not be exactly what you want for your environment. In this case, you can replicate one of our "-war" modules and customize the configuration settings to easily assembly a custom WAR.

· modeshape-web-jcr-webdav provides a WebDAV server for Java Content Repositories. This project provides integration with ModeShape's JCR implementation (of course) but also contains a service provider interface (SPI) that can be used to integrate other JCR implementations with these WebDAV services in the future. For ease of packaging, these classes are provided as a JAR that can be placed in the WEB-INF/lib of a deployed WebDAV server WAR.

· modeshape-web-jcr-webdav-war wraps the WebDAV services from the modeshape-web-jcr-webdav JAR into a WAR and provides in-container integration tests. This project can be consulted as a template for how to deploy the WebDAV services in a custom implementation.

· modeshape-web-jcr-rest provides a set of JSR-311 (JAX-RS) objects that form the basis of a RESTful server for Java Content Repositories. This project provides integration with ModeShape's JCR implementation (of course) but also contains a service provider interface (SPI) that can be used to integrate other JCR implementations with these RESTful services in the future. For ease of packaging, these classes are provided as a JAR that can be placed in the WEB-INF/lib of a deployed RESTful server WAR.

· modeshape-web-jcr-rest-war wraps the RESTful services from the modeshape-web-jcr-rest JAR into a WAR and provides in-container integration tests. This project can be consulted as a template for how to deploy the RESTful services in a custom implementation.

· modeshape-web-jcr-rest-client is a library that uses POJOs to access the REST web service. This module eliminates the need for applications to know how to create HTTP request URLs and payloads, and how to parse the JSON responses. It can be used to publish (upload) and unpublish (delete) files from ModeShape repositories.

· modeshape-web-jcr provides a reusable library for web applications using JCR, and is used by the modeshape-web-jcr-rest and modeshape-web-jcr-webdav modules.

ModeShape recently added several modules that make it very easy to deploy ModeShape in JBoss AS or EAP as a full-fledged, central, shared service that can be monitored and administered using the embedded console and used directly by web applications deployed to the application server. Our Maven build produces a "kit" ZIP file that can be unzipped into a JBoss AS profile. When your server restarts, ModeShape will be running with a very simple configuration (although that can be easily changed).

The modules that make up the JBoss AS deployment kit are located in the source under the "deploy/jbossas directory":

· modeshape-jbossas-service provides several components that are deployed through the microcontainer in JBoss AS, registered in JNDI, and exposed through the Profile Service for monitoring and management. This service leverages the JAAS support within the application server.

· modeshape-jbossas-console defines the plugin for RHQ that enables administration, monitoring, alerting, operational control and configuration. All of the major components within a ModeShape engine are exposed as RHQ resources, and the plugin provides a number of metrics and administrative operations as well as exposing most configuration properties. (We plan to add more metrics and operations over the next few releases, as we gain more experience using the ModeShape RHQ plugin.)

· modeshape-jbossas-web-rest-war defines a variant of the more general modeshape-web-rest-war that is tailored for deployment on JBoss AS, since it reuses the same ModeShape service deployed into the application server.

· modeshape-jbossas-web-webdav-war defines a variant of the more general modeshape-web-webdav-war that is tailored for deployment on JBoss AS, since it reuses the same ModeShape service deployed into the application server.

There are also modules for ModeShape's documentation (located in the source under the docs/ directory):

· docs-getting-started is the project with the DocBook source for the ModeShape Getting Started document.

· docs-getting-started-examples is the project with the Java source for the example application used in the ModeShape Getting Started document.

· docs-reference-guide is the project with the DocBook source for this document, the ModeShape Reference Guide document.

There are several utility modules:

· modeshape-jpa-ddl-gen provides a standalone utility that can generate the DDL for the database schema used by the JPA connector. Because it uses Hibernate, it can generate DDL for any of the databases that the connector can use. This is also useful for users who prefer not to give DDL privileges to the ModeShape database user.

· modeshape-jdbc-local provides a JDBC driver implementation that allows JDBC clients to query the contents of a local JCR repository using JCR-SQL2. The driver even supports JDBC metadata, making it possible to dynamically discover the tables and columns available for querying (which are determined from the node types). It can be configured as a data source in JBoss AS, and can even leverage the ModeShape service, allowing JDBC-based access by clients deployed to that JBoss AS instance to query the repository content. This library is very lightweight and fast, since it directly accesses the repository using the JCR API.

· modeshape-jdbc provides a JDBC driver implementation that allows JDBC clients to query the contents of a local or remote JCR repository using JCR-SQL2. The driver even supports JDBC metadata, making it possible to dynamically discover the tables and columns available for querying (which are determined from the node types). It can be configured as a data source in JBoss AS, and can even leverage the ModeShape service, allowing JDBC-based access to the same repository content available via the JCR API, RESTful service, or WebDAV.

There is another module that runs the full suite of JCR TCK tests, and which at the moment still contains a few failures. This module is never needed in client applications.

· modeshape-jcr-tck provides a separate testing project that executes all reference implementation's JCR TCK tests on a nightly basis to track implementation progress against the JCR 1.0 specification. This module will likely be retired when the ModeShape JCR implementation is complete, since modeshape-jcr and modeshape-integration-tests will be running the full suite of JCR TCK unit tests.

Another module provides system- and integration-level tests and is never needed in client applications:

· modeshape-integration-tests provides a home for all of the integration tests that involve more components that just unit tests. Integration tests are often more complicated, take longer, and involve testing the integration and functionality of multiple components (whereas unit tests focus on testing a single class or component and may use stubs or mock objects to isolate the code being tested from other related components).

Finally, there is a Maven parent pom.xml file that aggregates all of the other projects, provides common defaults for Maven plugins and dependency versions used throughout the modules, and definition of various asset files to help build the necessary Maven artifacts during a build.

Each of these modules is a Maven project with a group ID of org.modeshape . All of these projects correspond to artifacts in the JBoss Maven 2 Repository, the settings for which are described on the JBoss.org wiki.

1.6. Compiling and building

The ModeShape source code is freely available and easy to build. For more information about this, please see our documentation that describes the tools, build commands, and even how to contribute using Git.

1.7. What's new?

ModeShape 2.6.0.Beta2 includes several improvements and minor features, and numerous fixes for issues reported against the earlier 2.x releases. For details, see the release notes.

ModeShape implements all of the required JCR 2.0 features: repository acquisition, authentication, reading/navigating, query, export, node type discovery, and permissions and capability checking. ModeShape also implements most of the optional JCR 2.0 features: writing, import, observation, workspace management, versioning, locking, node type management, same-name siblings, orderable child nodes, and shareable nodes. The remaining optional features (access control management, lifecycle management, retention and hold, and transactions) may be introduced in future versions.

Note

ModeShape 2.6.0.Beta2 currently passes 1372 of the 1391 JCR TCK tests, where 17 of these 19 failures appear to be bugs in the TCK tests (see JCR-2648, JCR-2661, JCR-2662, and JCR-2663). The remaining 2 failures are due to a known issue (see MODE-760).

Part I. ModeShape Core

The ModeShape project organizes the codebase into a number of subprojects. The most fundamental are those core libraries, including the graph API, connector framework, sequencing framework, as well as the configuration and engine in which all the components run. These are all topics covered in this part of the document.

The ModeShape implementation of the JCR API as well as some other JCR-related components are covered in the next part.

Table of Contents
2. Execution Context
2.1. Security
2.1.1. JAAS
2.1.2. Web application security
2.2. Namespace Registry
2.3. Class Loaders
2.4. MIME Type Detectors
2.5. Text Extractors
2.6. Property factory and value factories
2.7. Summary
3. Graph Model
3.1. Names
3.2. Paths
3.3. Properties
3.4. Values and Value Factories
3.5. Readable, TextEncoder, and TextDecoder
3.6. Locations
3.7. Graph API
3.7.1. Using Workspaces
3.7.2. Working with Nodes
3.8. Requests
3.8.1. Basic Requests
3.8.2. Change Requests
3.8.3. Workspace Read Requests
3.8.4. Workspace Change Requests
3.8.5. Search Requests
3.8.6. Function Requests
3.9. Request processors
3.10. Observation
3.10.1. Observable
3.10.2. Observers
3.10.3. Changes
3.11. Summary
4. Connector Framework
4.1. Connectors
4.2. Out-of-the-box connectors
4.3. Writing custom connectors
4.3.1. Creating the Maven 3 project
4.3.2. Implementing a RepositorySource
4.3.3. Implementing a RepositoryConnection
4.3.4. Testing custom connectors
4.4. Summary
5. Sequencing framework
5.1. Sequencers
5.2. Stream Sequencers
5.3. Path Expressions
5.4. Out-of-the-box Sequencers
5.5. Creating Custom Sequencers
5.5.1. Creating the Maven 3 project
5.5.2. Testing custom sequencers
5.6. Summary
Chapter 2. Execution Context

2.1. Security
2.1.1. JAAS
2.1.2. Web application security
2.2. Namespace Registry
2.3. Class Loaders
2.4. MIME Type Detectors
2.5. Text Extractors
2.6. Property factory and value factories
2.7. Summary
The various components of ModeShape are designed as plain old Java objects, or POJOs (Plain Old Java Objects). And rather than making assumptions about their environment, each component instead requires that any external dependencies necessary for it to operate must be supplied to it. This pattern is known as Dependency Injection, and it allows the components to be simpler and allows for a great deal of flexibility and customization in how the components are configured.

The approach that ModeShape takes is simple: a simple POJO that represents everything about the environment in which components operate. Called ExecutionContext, it contains references to most of the essential facilities, including: security (authentication and authorization); namespace registry; name factories; factories for properties and property values; logging; and access to class loaders (given a classpath). Most of the ModeShape components require an ExecutionContext and thus have access to all these facilities.

The ExecutionContext is a concrete class that is instantiated with the no-argument constructor:

public class ExecutionContext implements ClassLoaderFactory {

 /**

 * Create an instance of an execution context, with default implementations for all components.

 */

 public ExecutionContext() { ... }

 /**

 * Get the factories that should be used to create values for {@link Property properties}.

 * @return the property value factory; never null

 */

 public ValueFactories getValueFactories() {...}

 /**

 * Get the namespace registry for this context.

 * @return the namespace registry; never null

 */

 public NamespaceRegistry getNamespaceRegistry() {...}

 /**

 * Get the factory for creating {@link Property} objects.

 * @return the property factory; never null

 */

 public PropertyFactory getPropertyFactory() {...}

 /**

 * Get the security context for this environment.

 * @return the security context; never null
 */

 public SecurityContext getSecurityContext() {...}

 /**

 * Return a logger associated with this context. This logger records only those activities within the

 * context and provide a way to capture the context-specific activities. All log messages are also

 * sent to the system logger, so classes that log via this mechanism should <i>not</i> also

 * {@link Logger#getLogger(Class) obtain a system logger}.

 * @param clazz the class that is doing the logging

 * @return the logger, named after clazz; never null

 */

 public Logger getLogger(Class<?> clazz) {...}

 /**

 * Return a logger associated with this context. This logger records only those activities within the

 * context and provide a way to capture the context-specific activities. All log messages are also

 * sent to the system logger, so classes that log via this mechanism should <i>not</i> also

 * {@link Logger#getLogger(Class) obtain a system logger}.

 * @param name the name for the logger

 * @return the logger, named after clazz; never null

 */

 public Logger getLogger(String name) {...}

...

}

The fact that so many of the ModeShape components take ExecutionContext instances gives us some interesting possibilities. For example, one execution context instance can be used as the highest-level (or "application-level") context for all of the services (e.g., RepositoryService, SequencingService, etc.). Then, an execution context could be created for each user that will be performing operations, and that user's context can be passed around to not only provide security information about the user but also to allow the activities being performed to be recorded for user feedback, monitoring and/or auditing purposes.

As mentioned above, the starting point is to create a default execution context, which will have all the default components:

ExecutionContext context = new ExecutionContext();

Once you have this top-level context, you can start creating subcontexts with different components, and different security contexts. (Of course, you can create a subcontext from any instance.) To create a subcontext, simply use one of the with(...) methods on the parent context. We'll show examples later on in this chapter.

2.1. Security

ModeShape uses a simple abstraction layer to isolate it from the security infrastructure used within an application. A SecurityContext represents the context of an authenticated user, and is defined as an interface:

public interface SecurityContext {

 /**

 * Get the name of the authenticated user.

 * @return the authenticated user's name

 */

 String getUserName();

 /**

 * Determine whether the authenticated user has the given role.

 * @param roleName the name of the role to check

 * @return true if the user has the role and is logged in; false otherwise

 */

 boolean hasRole(String roleName);

 /**

 * Logs the user out of the authentication mechanism.

 * For some authentication mechanisms, this will be implemented as a no-op.

 */

 void logout();

}

Every ExecutionContext has a SecurityContext instance, though the top-level (default) execution context does not represent an authenticated user. But you can create a subcontext for a user authenticated via JAAS:

ExecutionContext context = ...

String username = ...

char[] password = ...

String jaasRealm = ...

SecurityContext securityContext = new JaasSecurityContext(jaasRealm, username, password);

ExecutionContext userContext = context.with(securityContext);

In the case of JAAS, you might not have the password but would rather prompt the user. In that case, simply create a subcontext with a different security context:

ExecutionContext context = ...

String jaasRealm = ...

CallbackHandler callbackHandler = ...

ExecutionContext userContext = context.with(new JaasSecurityContext(jaasRealm, callbackHandler);

Of course if your application has a non-JAAS authentication and authorization system, you can simply provide your own implementation of SecurityContext:

ExecutionContext context = ...

SecurityContext mySecurityContext = ...

ExecutionContext myAppContext = context.with(mySecurityContext);

These ExecutionContexts then represent the authenticated user in any component that uses the context.

2.1.1. JAAS

One of the SecurityContext implementations provided by ModeShape is the JaasSecurityContext, which delegates any authentication or authorization requests to a Java Authentication and Authorization Service (JAAS) provider. This is the standard approach for authenticating and authorizing in Java.

There are quite a few JAAS providers available, but one of the best and most powerful providers is JBoss Security, the open source security framework used by JBoss. JBoss Security offers a number of JAAS login modules, including:

· User-Roles Login Module is a simple javax.security.auth.login.LoginContext implementation that uses usernames and passwords stored in a properties file.

· Client Login Module prompts the user for their username and password.

· Database Server Login Module uses a JDBC database to authenticate principals and associate them with roles.

· LDAP Login Module uses an LDAP directory to authenticate principals. Two implementations are available.

· Certificate Login Module authenticates using X509 certificates, obtaining roles from either property files or a JDBC database.

· Operating System Login Module authenticates using the operating system's mechanism.

and many others. Plus, JBoss Security also provides other capabilities, such as using XACML policies or using federated single sign-on. For more detail, see the JBoss Security project.

2.1.2. Web application security

If ModeShape is being used within a web application, then it is probably desirable to reuse the security infrastructure of the application server. This can be accomplished by implementing the SecurityContext interface with an implementation that delegates to the HttpServletRequest. Then, for each request, create a SecurityContextCredentials instance around your SecurityContext, and use that credentials to obtain a JCR Session.

Here is an example of the SecurityContext implementation that uses the servlet request:

@Immutable

public class ServletSecurityContext implements SecurityContext {

 private final String userName;

 private final HttpServletRequest request;

 /**

 * Create a {@link ServletSecurityContext} with the supplied

 * {@link HttpServletRequest servlet information}.

 *

 * @param request the servlet request; may not be null

 */

 public ServletSecurityContext(HttpServletRequest request) {

 this.request = request;

 this.userName = request.getUserPrincipal() != null ? request.getUserPrincipal().getName() : null;

 }

 /**

 * Get the name of the authenticated user.

 * @return the authenticated user's name

 */

 public String getUserName() {

 return userName;

 }

 /**

 * Determine whether the authenticated user has the given role.

 * @param roleName the name of the role to check

 * @return true if the user has the role and is logged in; false otherwise

 */

 boolean hasRole(String roleName) {

 request.isUserInRole(roleName);

 }

 /**

 * Logs the user out of the authentication mechanism.

 * For some authentication mechanisms, this will be implemented as a no-op.

 */

 public void logout() {

 }

}

Then use this to create a Session:

HttpServletRequest request = ...

Repository repository = engine.getRepository("my repository");

SecurityContext securityContext = new ServletSecurityContext(httpServletRequest);

ExecutionContext servletContext = context.with(securityContext);

We'll see later in the JCR chapter how this can be used to obtain a JCR Session for the authenticated user.

2.2. Namespace Registry

As we saw earlier, every ExecutionContext has a registry of namespaces. Namespaces are used throughout the graph API (as we'll see soon), and the prefix associated with each namespace makes for more readable string representations. The namespace registry tracks all of these namespaces and prefixes, and allows registrations to be added, modified, or removed. The interface for the NamespaceRegistry shows how these operations are done:

public interface NamespaceRegistry {

 /**

 * Return the namespace URI that is currently mapped to the empty prefix.

 * @return the namespace URI that represents the default namespace,

 * or null if there is no default namespace

 */

 String getDefaultNamespaceUri();

 /**

 * Get the namespace URI for the supplied prefix.

 * @param prefix the namespace prefix

 * @return the namespace URI for the supplied prefix, or null if there is no

 * namespace currently registered to use that prefix

 * @throws IllegalArgumentException if the prefix is null

 */

 String getNamespaceForPrefix(String prefix);

 /**

 * Return the prefix used for the supplied namespace URI.

 * @param namespaceUri the namespace URI

 * @param generateIfMissing true if the namespace URI has not already been registered and the

 * method should auto-register the namespace with a generated prefix, or false if the

 * method should never auto-register the namespace

 * @return the prefix currently being used for the namespace, or "null" if the namespace has

 * not been registered and "generateIfMissing" is "false"

 * @throws IllegalArgumentException if the namespace URI is null

 * @see #isRegisteredNamespaceUri(String)

 */

 String getPrefixForNamespaceUri(String namespaceUri, boolean generateIfMissing);

 /**

 * Return whether there is a registered prefix for the supplied namespace URI.

 * @param namespaceUri the namespace URI

 * @return true if the supplied namespace has been registered with a prefix, or false otherwise

 * @throws IllegalArgumentException if the namespace URI is null

 */

 boolean isRegisteredNamespaceUri(String namespaceUri);

 /**

 * Register a new namespace using the supplied prefix, returning the namespace URI previously

 * registered under that prefix.

 * @param prefix the prefix for the namespace, or null if a namesapce prefix should be generated

 * automatically

 * @param namespaceUri the namespace URI

 * @return the namespace URI that was previously registered with the supplied prefix, or null if the

 * prefix was not previously bound to a namespace URI

 * @throws IllegalArgumentException if the namespace URI is null

 */

 String register(String prefix, String namespaceUri);

 /**

 * Unregister the namespace with the supplied URI.

 * @param namespaceUri the namespace URI

 * @return true if the namespace was removed, or false if the namespace was not registered

 * @throws IllegalArgumentException if the namespace URI is null

 * @throws NamespaceException if there is a problem unregistering the namespace

 */

 boolean unregister(String namespaceUri);

 /**

 * Obtain the set of namespaces that are registered.

 * @return the set of namespace URIs; never null

 */

 Set<String> getRegisteredNamespaceUris();

 /**

 * Obtain a snapshot of all of the {@link Namespace namespaces} registered at the time this method

 * is called. The resulting set is immutable, and will not reflect changes made to the registry.

 * @return an immutable set of Namespace objects reflecting a snapshot of the registry; never null

 */

 Set<Namespace> getNamespaces();

}

This interfaces exposes Namespace objects that are immutable:

@Immutable

interface Namespace extends Comparable<Namespace> {

 /**

 * Get the prefix for the namespace

 * @return the prefix; never null but possibly the empty string

 */

 String getPrefix();

 /**

 * Get the URI for the namespace

 * @return the namespace URI; never null but possibly the empty string

 */

 String getNamespaceUri();

}

ModeShape actually uses several implementations of NamespaceRegistry, but you can even implement your own and create ExecutionContexts that use it:

NamespaceRegistry myRegistry = ...

ExecutionContext contextWithMyRegistry = context.with(myRegistry);

2.3. Class Loaders

ModeShape is designed around extensions: sequencers, connectors, MIME type detectors, and class loader factories. The core part of ModeShape is relatively small and has few dependencies, while many of the "interesting" components are extensions that plug into and are used by different parts of the core or by layers above (such as the JCR implementation). The core doesn't really care what the extensions do or what external libraries they require, as long as the extension fulfills its end of the extension contract.

This means that you only need the core modules of ModeShape on the application classpath, while the extensions do not have to be on the application classpath. And because the core modules of ModeShape have few dependencies, the risk of ModeShape libraries conflicting with the application's are lower. Extensions, on the other hand, will likely have a lot of unique dependencies. By separating the core of ModeShape from the class loaders used to load the extensions, your application is isolated from the extensions and their dependencies.

Note

Of course, you can put all the JARs on the application classpath, too. This is what the examples in the Getting Started document do.

But in this case, how does ModeShape load all the extension classes? You may have noticed earlier that ExecutionContext implements the ClassLoaderFactory interface with a single method:

public interface ClassLoaderFactory {

 /**

 * Get a class loader given the supplied classpath. The meaning of the classpath

 * is implementation-dependent.

 * @param classpath the classpath to use

 * @return the class loader; may not be null

 */

 ClassLoader getClassLoader(String... classpath);

}

This means that any component that has a reference to an ExecutionContext has the ability to create a class loader with a supplied class path. As we'll see later, the connectors and sequencers are all defined with a class and optional class path. This is where that class path comes in.

The actual meaning of the class path, however, is a function of the implementation. ModeShape uses a StandardClassLoaderFactory that just loads the classes using the Thread's current context class loader (or, if there is none, delegates to the class loader that loaded the StandardClassLoaderFactory class). Of course, it's possible to implement other ClassLoaderFactory with other implementations. Then, just create a subcontext with your implementation:

ClassLoaderFactory myClassLoaderFactory = ...

ExecutionContext contextWithMyClassLoaderFactories = context.with(myClassLoaderFactory);

Note

The modeshape-classloader-maven project has a class loader factory implementation that parses the names into Maven coordinates, then uses those coordinates to look up artifacts in a Maven 2 repository. The artifact's POM file is used to determine the dependencies, which is done transitively to obtain the complete dependency graph. The resulting class loader has access to these artifacts in dependency order.

This class loader is not ready for use, however, since there is no tooling to help populate the repository.

2.4. MIME Type Detectors

ModeShape often needs the ability to determine the MIME type for some binary content. When uploading content into a repository, we may want to add the MIME type as metadata. Or, we may want to make some processing decisions based upon the MIME type. So, ModeShape has a small pluggable framework for determining the MIME type by using the name of the file (e.g., extensions) and/or by reading the actual content.

ModeShape defines a MimeTypeDetector interface that abstracts the implementation that actually determines the MIME type given the name and content. If the detector is able to determine the MIME type, it simply returns it as a string. If not, it merely returns null. Note, however, that a detector must be thread-safe. Here is the interface:

@ThreadSafe

public interface MimeTypeDetector {

 /**

 * Returns the MIME-type of a data source, using its supplied content and/or its supplied name,

 * depending upon the implementation. If the MIME-type cannot be determined, either a "default"

 * MIME-type or null may be returned, where the former will prevent earlier

 * registered MIME-type detectors from being consulted.

 *

 * @param name The name of the data source; may be null.

 * @param content The content of the data source; may be null.

 * @return The MIME-type of the data source, or optionally null

 * if the MIME-type could not be determined.

 * @throws IOException If an error occurs reading the supplied content.

 */

 String mimeTypeOf(String name, InputStream content) throws IOException;

}

To use a detector, simply invoke the method and supply the name of the content (e.g., the name of the file, with the extension) and the InputStream to the actual binary content. The result is a String containing the MIME type (e.g., "text/plain") or null if the MIME type cannot be determined. Note that the name or InputStream may be null, making this a very versatile utility.

Once again, you can obtain a MimeTypeDetector from the ExecutionContext. ModeShape provides and uses by default an implementation that uses only the name (the content is ignored), looking at the name's extension and looking for a match in a small listing (loaded from the org/modeshape/graph/mime.types loaded from the classpath). You can add extensions by copying this file, adding or correcting the entries, and then placing your updated file in the expected location on the classpath.

Of course, you can always use a different MimeTypeDetector by creating a subcontext and supplying your implementation:

MimeTypeDetector myDetector = ...

ExecutionContext contextWithMyDetector = context.with(myDetector);

2.5. Text Extractors

ModeShape can store all kinds of content, and ModeShape makes it easy to perform full-text searches on that content. To support searching, ModeShape extracts the text from the various properties on each node. They way it does this for most property types (e.g., STRING, LONG, DATE, PATH, NAME, etc.) is simply to read and use the literal values. But BINARY properties are another story: there's no way to indexes the binary content directly. Instead, ModeShape has a small pluggable framework for extracting useful text from the binary content, based upon the MIME type of the content itself.

The process works like this: when a BINARY property needs to be indexed for search, ModeShape determines the MIME type of the content, determines if there is a text extractor capable of handling that MIME type, and if so it passes the content to the text extractor and gets back a string of text, and it indexes that text.

ModeShape provides two text extractors out-of-the-box. The Teiid VDB text extractor operates only upon Teiid virtual database (i.e., ".vdb") files and extracts the virtual database's logical name, description, and version, plus the logical name, description, source name, source translator name, and JNDI name for each of the virtual database's models.

The second out-of-the-box extractor is capable of extracting text from wider variety of file types, including Microsoft Office, PDF, HTML, plain text, and XML. This extractor uses the Tika toolkit from Apache, so a number of other file formats are supported. However, these other file formats require additional libraries that are not included out of the box. This is discussed in more detail in a later chapter.

Text extraction can be an intensive process, so it is not enabled by default. But enabling the text extractors in ModeShape's configuration is actually pretty easy. When using a configuration file, simply add a "<mode:textExtractors>" fragment under the "<configuration>" root element. Within the "<mode:textExtractors>" element place one or more "<mode:textExtractor>" fragments specifying at least the extractor's name and fully-qualified Java class.

For example, here is the fragment that defines the Teiid text extractor and the Tika text extractor. Note that the Teiid text extractor has no options and is pretty simple, while the Tika extractor allows much more control over the MIME types that should be processed:
<mode:textExtractors>
 <mode:textExtractor jcr:name="VDB Text Extractors">
 <mode:description>Extract text from Teiid VDB files</mode:description>
 <mode:classname>org.modeshape.extractor.teiid.TeiidVdbTextExtractor</mode:classname>
 </mode:textExtractor>
 <mode:textExtractor jcr:name="Tika Text Extractors">
 <mode:description>Text extractors using Tika parsers</mode:description>
 <mode:classname>org.modeshape.extractor.tika.TikaTextExtractor</mode:classname>
 <!--
 A comma- or whitespace-delimited list of MIME types that are to be excluded.
 The following are excluded by default, but the default is completely overridden
 when this property is set. In other words, if you explicitly exclude any MIME types,
 be sure to list all of the MIME types you want to exclude. Exclusions always
 have a higher precedence than inclusions.
 -->
 <mode:excludedMimeTypes>
 application/x-archive,application/x-bzip,application/x-bzip2,
 application/x-cpio,application/x-gtar,application/x-gzip,
 application/x-ta,application/zip,application/vnd.teiid.vdb
 </mode:excludedMimeTypes>
 <!--
 A comma- or whitespace-delimited list of MIME types that are to be included.
 If this is used, then the extractor will include only those MIME types found
 in this list for which there is an available parser (unless the MIME type
 is also excluded). Including explicit MIME types is often easier if text is
 to be extracted for are only a few MIME types.
 -->
 <mode:includedMimeTypes>
 application/msword,application/vnd.oasis.opendocument.text
 </mode:includedMimeTypes>
 </mode:textExtractor>
 ... <!-- other extractors -->
 </mode:textExtractors>
It's also possible to define your own text extractors by implementing the TextExtractor interface:

@ThreadSafe

public interface TextExtractor {

 /**

 * Determine if this extractor is capable of processing content with the supplied MIME type.

 *

 * @param mimeType the MIME type; never null

 * @return true if this extractor can process content with the supplied MIME type, or false otherwise.

 */

 boolean supportsMimeType(String mimeType);

 /**

 * Sequence the data found in the supplied stream, placing the output information into the supplied map.

 * <p>

 * ModeShape's SequencingService determines the sequencers that should be executed by monitoring the changes to one or more

 * workspaces that it is monitoring. Changes in those workspaces are aggregated and used to determine which sequencers should

 * be called. If the sequencer implements this interface, then this method is called with the property that is to be sequenced

 * along with the interface used to register the output. The framework takes care of all the rest.

 * </p>
 *

 * @param stream the stream with the data to be sequenced; never null
 * @param output the output from the sequencing operation; never null
 * @param context the context for the sequencing operation; never null
 * @throws IOException if there is a problem reading the stream

 */

 void extractFrom(InputStream stream,

 TextExtractorOutput output,

 TextExtractorContext context) throws IOException;

}

As mentioned above, the "supportsMimeType" method will be called first, and only if your implementation returns true for a given MIME type will the "extractFrom" method be called. The supplied TextExtractorContext object provides information about the text being processed, while the TextExtractorOutput is a simple interface that your extractor uses to record one or more strings containing the extracted text.

If you need text extraction in sequencers or connectors, you can always get a TextExtractor instance from the ExecutionContext. That TextExtractor implementation is actually a composite of all of the text extractors defined in the configuration.

Of course, you can always use a different TextExtractor by creating a subcontext and supplying your implementation:

TextExtractor myExtractor = ...

ExecutionContext contextWithMyExtractor = context.with(myExtractor);

2.6. Property factory and value factories

Two other components are made available by the ExecutionContext. The PropertyFactory is an interface that can be used to create Property instances, which are used throughout the graph API. The ValueFactories interface provides access to a number of different factories for different kinds of property values. These will be discussed in much more detail in the next chapter. But like the other components that are in an ExecutionContext, you can create subcontexts with different implementations:

PropertyFactory myPropertyFactory = ...

ExecutionContext contextWithMyPropertyFactory = context.with(myPropertyFactory);

and

ValueFactories myValueFactories = ...

ExecutionContext contextWithMyValueFactories = context.with(myValueFactories);

Of course, implementing your own factories is a pretty advanced topic, and it will likely be something you do not need to do in your application.

2.7. Summary

In this chapter, we introduced the ExecutionContext as a representation of the environment in which many of the ModeShape components operate. ExecutionContext provides a very simple but powerful way to inject commonly-needed facilities throughout the system.

In the next chapter, we'll dive into Graph API and will introduce the notion of nodes, paths, names, and properties, that are so essential and used throughout ModeShape.

Chapter 3. Graph Model

3.1. Names
3.2. Paths
3.3. Properties
3.4. Values and Value Factories
3.5. Readable, TextEncoder, and TextDecoder
3.6. Locations
3.7. Graph API
3.7.1. Using Workspaces
3.7.2. Working with Nodes
3.8. Requests
3.8.1. Basic Requests
3.8.2. Change Requests
3.8.3. Workspace Read Requests
3.8.4. Workspace Change Requests
3.8.5. Search Requests
3.8.6. Function Requests
3.9. Request processors
3.10. Observation
3.10.1. Observable
3.10.2. Observers
3.10.3. Changes
3.11. Summary
One of the central concepts within ModeShape is that of its graph model. Information is structured into a hierarchy of nodes with properties, where nodes in the hierarchy are identified by their path (and/or identifier properties). Properties are identified by a name that incorporates a namespace and local name, and contain one or more property values consisting of normal Java strings, names, paths, URIs, booleans, longs, doubles, decimals, binary content, dates, UUIDs, references to other nodes, or any other serializable object.

This graph model is used throughout ModeShape: it forms the basis for the connector framework, it is used by the sequencing framework for the generated output, and it is what the JCR implementation uses internally to access and operate on the repository content.

Therefore, this chapter provides essential information that will be essential to really understanding how the connectors, sequencers, and other ModeShape features work.

3.1. Names

ModeShape uses names to identify quite a few different types of objects. As we'll soon see, each property of a node is given by a name, and each segment in a path is comprised of a name. Therefore, names are a very important concept.

ModeShape names consist of a local part that is qualified with a namespace. The local part can consist of any character, and the namespace is identified by a URI. Namespaces were introduced in the previous chapter and are managed by the ExecutionContext's namespace registry. Namespaces help reduce the risk of clashes in names that have an equivalent same local part.

All names are immutable, which means that once a Name object is created, it will never change. This characteristic makes it much easier to write thread-safe code - the objects never change and therefore require no locks or synchronization to guarantee atomic reads. This is a technique that is more and more often found in newer languages and frameworks that simplify concurrent operations.

Name is also a interface rather than a concrete class:

@Immutable

public interface Name extends Comparable<Name>, Serializable, Readable {

 /**

 * Get the local name part of this qualified name.

 * @return the local name; never null

 */

 String getLocalName();

 /**

 * Get the URI for the namespace used in this qualified name.

 * @return the URI; never null but possibly empty

 */

 String getNamespaceUri();

}

This means that you need to use a factory to create Name instances.

The use of a factory may seem like a disadvantage and unnecessary complexity, but there actually are several benefits. First, it hides the concrete implementations, which is very appealing if an optimized implementation can be chosen for particular situations. It also simplifies the usage, since Name only has a few methods. Third, it allows the factory to cache or pool instances where appropriate to help conserve memory. Finally, the very same factory actually serves as a conversion mechanism from other forms. We'll actually see more of this later in this chapter, when we talk about other kinds of property values.

The factory for creating Name objects is called NameFactory and is available within the ExecutionContext, via the getValueFactories() method.

We'll see how names are used later on, but one more point to make: Name is both serializable and comparable, and all implementations should support equals(...) and hashCode() so that Name can be used as a key in a hash-based map. Name also extends the Readable interface, which we'll learn more about later in this chapter.

3.2. Paths

Another important concept in ModeShape's graph model is that of a path, which provides a way of locating a node within a hierarchy. ModeShape's Path object is an immutable ordered sequence of Path.Segment objects. A small portion of the interface is shown here:

@Immutable

public interface Path extends Comparable<Path>, Iterable<Path.Segment>, Serializable, Readable {

 /**

 * Return the number of segments in this path.

 * @return the number of path segments

 */

 public int size();

 /**

 * Return whether this path represents the root path.

 * @return true if this path is the root path, or false otherwise

 */

 public boolean isRoot();

 /**

 * {@inheritDoc}

 */

 public Iterator<Path.Segment> iterator();

 /**

 * Obtain a copy of the segments in this path. None of the segments are encoded.

 * @return the array of segments as a copy

 */

 public Path.Segment[] getSegmentsArray();

 /**

 * Get an unmodifiable list of the path segments.

 * @return the unmodifiable list of path segments; never null

 */

 public List<Path.Segment> getSegmentsList();

 /**

 * Get the last segment in this path.

 * @return the last segment, or null if the path is empty

 */

 public Path.Segment getLastSegment();

 /**

 * Get the segment at the supplied index.

 * @param index the index

 * @return the segment

 * @throws IndexOutOfBoundsException if the index is out of bounds

 */

 public Path.Segment getSegment(int index);

 /**

 * Return an iterator that walks the paths from the root path down to this path. This method

 * always returns at least one path (the root returns an iterator containing itself).

 * @return the path iterator; never null

 */

 public Iterator<Path> pathsFromRoot();

 /**

 * Return a new path consisting of the segments starting at beginIndex index (inclusive).

 * This is equivalent to calling path.subpath(beginIndex,path.size()-1).

 * @param beginIndex the beginning index, inclusive.

 * @return the specified subpath

 * @exception IndexOutOfBoundsException if the beginIndex is negative or larger

 * than the length of this Path object

 */

 public Path subpath(int beginIndex);

 /**

 * Return a new path consisting of the segments between the beginIndex index (inclusive)

 * and the endIndex index (exclusive).

 * @param beginIndex the beginning index, inclusive.

 * @param endIndex the ending index, exclusive.

 * @return the specified subpath

 * @exception IndexOutOfBoundsException if the beginIndex is negative, or

 * endIndex is larger than the length of this Path

 * object, or beginIndex is larger than endIndex.

 */

 public Path subpath(int beginIndex, int endIndex);

 ...

}

There are actually quite a few methods (not shown above) for obtaining related paths: the path of the parent, the path of an ancestor, resolving a path relative to this path, normalizing a path (by removing "." and ".." segments), finding the lowest common ancestor shared with another path, etc. There are also a number of methods that compare the path with others, including determining whether a path is above, equal to, or below this path.

Each Path.Segment is an immutable pair of a Name and same-name-sibling (SNS) index. When two sibling nodes have the same name, then the first sibling will have SNS index of "1" and the second will be given a SNS index of "2". (This mirrors the same-name-sibling index behavior of JCR paths.)

@Immutable

public static interface Path.Segment extends Cloneable, Comparable<Path.Segment>, Serializable, Readable

{

 /**

 * Get the name component of this segment.

 * @return the segment's name

 */

 public Name getName();

 /**

 * Get the index for this segment, which will be 1 by default.

 * @return the index

 */

 public int getIndex();

 /**

 * Return whether this segment has an index that is not "1"

 * @return true if this segment has an index, or false otherwise.

 */

 public boolean hasIndex();

 /**

 * Return whether this segment is a self-reference (or ".").

 * @return true if the segment is a self-reference, or false otherwise.

 */

 public boolean isSelfReference();

 /**

 * Return whether this segment is a reference to a parent (or "..")

 * @return true if the segment is a parent-reference, or false otherwise.

 */

 public boolean isParentReference();

}

Like Name, the only way to create a Path or a Path.Segment is to use the PathFactory, which is available within the ExecutionContext via the getValueFactories() method.

3.3. Properties

The ModeShape graph model allows nodes to hold multiple properties, where each property is identified by a unique Name and may have one or more values. Like many of the other classes used in the graph model, Property is an immutable object that, once constructed, can never be changed and therefore provides a consistent snapshot of the state of a property as it existed at the time it was read.

ModeShape properties can hold a wide range of value objects, including normal Java strings, names, paths, URIs, booleans, longs, doubles, decimals, binary content, dates, UUIDs, references to other nodes, or any other serializable object. All but three of these are the standard Java classes: dates are represented by an immutable DateTime class; binary content is represented by an immutable Binary interface patterned after the interface of the same name in JSR-283; and Reference is an immutable interface patterned after the corresponding interface is JSR-170 and JSR-283.

The Property interface defines methods for obtaining the name and property values:

@Immutable

public interface Property extends Iterable<Object>, Comparable<Property>, Readable {

 /**

 * Get the name of the property.

 *

 * @return the property name; never null

 */

 Name getName();

 /**

 * Get the number of actual values in this property.

 * @return the number of actual values in this property; always non-negative

 */

 int size();

 /**

 * Determine whether the property currently has multiple values.

 * @return true if the property has multiple values, or false otherwise.

 */

 boolean isMultiple();

 /**

 * Determine whether the property currently has a single value.

 * @return true if the property has a single value, or false otherwise.

 */

 boolean isSingle();

 /**

 * Determine whether this property has no actual values. This method may return true

 * regardless of whether the property has a single value or multiple values.

 * This method is a convenience method that is equivalent to size() == 0.

 * @return true if this property has no values, or false otherwise

 */

 boolean isEmpty();

 /**

 * Obtain the property's first value in its natural form. This is equivalent to calling

 * isEmpty() ? null : iterator().next()
 * @return the first value, or null if the property is {@link #isEmpty() empty}

 */

 Object getFirstValue();

 /**

 * Obtain the property's values in their natural form. This is equivalent to calling iterator().

 * A valid iterator is returned if the property has single valued or multi-valued.

 * The resulting iterator is immutable, and all property values are immutable.

 * @return an iterator over the values; never null

 */

 Iterator<?> getValues();

 /**

 * Obtain the property's values as an array of objects in their natural form.

 * A valid iterator is returned if the property has single valued or multi-valued, or a

 * null value is returned if the property is {@link #isEmpty() empty}.

 * The resulting array is a copy, guaranteeing immutability for the property.

 * @return the array of values

 */

 Object[] getValuesAsArray();

}

Creating Property instances is done by using the PropertyFactory object owned by the ExecutionContext. This factory defines methods for creating properties with a Name and various representation of values, including variable-length arguments, arrays, Iterator, and Iterable.

When it comes to using the property values, ModeShape takes a non-traditional approach. Many other graph models (including JCR) mark each property with a data type and then require all property values adhere to this data type. When the property values are obtained, they are guaranteed to be of the correct type. However, many times the property's data type may not match the data type expected by the caller, and so a conversion may be required and thus has to be coded.

The ModeShape graph model uses a different tact. Because callers almost always have to convert the values to the types they can handle, ModeShape skips the steps of associating the Property with a data type and ensuring the values match. Instead, ModeShape simply provides a very easy mechanism to convert the property values to the type desired by the caller. In fact, the conversion mechanism is exactly the same as the factories that create the values in the first place.

3.4. Values and Value Factories

ModeShape properties can hold a variety of value object types: strings, names, paths, URIs, booleans, longs, doubles, decimals, binary content, dates, UUIDs, references to other nodes, or any other serializable object. To assist in the creation of these values and conversion into other types, ModeShape defines a ValueFactory interface. This interface is parameterized with the type of value that is being created, but defines methods for creating those values from all of the other known value types:

public interface ValueFactory<T> {

 /**

 * Get the PropertyType of values created by this factory.

 * @return the value type; never null

 */

 PropertyType getPropertyType();

/*

 * Methods to create a value by converting from another value type.

 * If the supplied value is the same type as returned by this factory,

 * these methods simply return the supplied value.

 * All of these methods throw a ValueFormatException if the supplied value

 * could not be converted to this type.

 */

 T create(String value) throws ValueFormatException;

 T create(String value, TextDecoder decoder) throws ValueFormatException;

 T create(int value) throws ValueFormatException;

 T create(long value) throws ValueFormatException;

 T create(boolean value) throws ValueFormatException;

 T create(float value) throws ValueFormatException;

 T create(double value) throws ValueFormatException;

 T create(BigDecimal value) throws ValueFormatException;

 T create(Calendar value) throws ValueFormatException;

 T create(Date value) throws ValueFormatException;

 T create(DateTime value) throws ValueFormatException;

 T create(Name value) throws ValueFormatException;

 T create(Path value) throws ValueFormatException;

 T create(Reference value) throws ValueFormatException;

 T create(URI value) throws ValueFormatException;

 T create(UUID value) throws ValueFormatException;

 T create(byte[] value) throws ValueFormatException;

 T create(Binary value) throws ValueFormatException, IoException;

 T create(InputStream stream, long approximateLength) throws ValueFormatException, IoException;

 T create(Reader reader, long approximateLength) throws ValueFormatException, IoException;

 T create(Object value) throws ValueFormatException, IoException;

 /*

 * Methods to create an array of values by converting from another array of values.

 * If the supplied values are the same type as returned by this factory,

 * these methods simply return the supplied array.

 * All of these methods throw a ValueFormatException if the supplied values

 * could not be converted to this type.

 */

 T[] create(String[] values) throws ValueFormatException;

 T[] create(String[] values, TextDecoder decoder) throws ValueFormatException;

 T[] create(int[] values) throws ValueFormatException;

 T[] create(long[] values) throws ValueFormatException;

 T[] create(boolean[] values) throws ValueFormatException;

 T[] create(float[] values) throws ValueFormatException;

 T[] create(double[] values) throws ValueFormatException;

 T[] create(BigDecimal[] values) throws ValueFormatException;

 T[] create(Calendar[] values) throws ValueFormatException;

 T[] create(Date[] values) throws ValueFormatException;

 T[] create(DateTime[] values) throws ValueFormatException;

 T[] create(Name[] values) throws ValueFormatException;

 T[] create(Path[] values) throws ValueFormatException;

 T[] create(Reference[] values) throws ValueFormatException;

 T[] create(URI[] values) throws ValueFormatException;

 T[] create(UUID[] values) throws ValueFormatException;

 T[] create(byte[][] values) throws ValueFormatException;

 T[] create(Binary[] values) throws ValueFormatException, IoException;

 T[] create(Object[] values) throws ValueFormatException, IoException;

 /**

 * Create an iterator over the values (of an unknown type). The factory converts any

 * values as required. This is useful when wanting to iterate over the values of a property,

 * where the resulting iterator exposes the desired type.

 * @param values the values

 * @return the iterator of type T over the values, or null if the supplied parameter is null

 * @throws ValueFormatException if the conversion from an iterator of objects could not be performed

 * @throws IoException If an unexpected problem occurs during the conversion.

 */

 Iterator<T> create(Iterator<?> values) throws ValueFormatException, IoException;

 Iterable<T> create(Iterable<?> valueIterable) throws ValueFormatException, IoException;

}

This makes it very easy to convert one or more values (of any type, including mixtures) into corresponding value(s) that are of the desired type. For example, converting the first value of a property (regardless of type) to a String is simple:

ValueFactory<String> stringFactory = ...

Property property = ...

String value = stringFactory.create(property.getFirstValue());

Likewise, iterating over the values in a property and converting them is just as easy:

ValueFactory<String> stringFactory = ...

Property property = ...

for (String value : stringFactory.create(property)) {

 // do something with the values

}

What we've glossed over so far, however, is how to obtain the correct ValueFactory for the desired type. If you remember back in the previous chapter, ExecutionContext has a getValueFactories() method that return a ValueFactories interface:

This interface exposes a ValueFactory for each of the types, and even has methods to obtain a ValueFactory given the PropertyType enumeration. So, the previous examples could be expanded a bit:

ValueFactory<String> stringFactory = context.getValueFactories().getStringFactory();

Property property = ...

String value = stringFactory.create(property.getFirstValue());

and

ValueFactory<String> stringFactory = context.getValueFactories().getStringFactory();

Property property = ...

for (String value : stringFactory.create(property)) {

 // do something with the values

}

You might have noticed that several of the ValueFactories methods return subinterfaces of ValueFactory. These add type-specific methods that are more commonly needed in certain cases. For example, here is the NameFactory interface:

public interface NameFactory extends ValueFactory<Name> {

 Name create(String namespaceUri, String localName);

 Name create(String namespaceUri, String localName, TextDecoder decoder);

 NamespaceRegistry getNamespaceRegistry();

}

and here is the DateTimeFactory interface, which adds methods for creating DateTime values for the current time as well as for specific instants in time:

public interface DateTimeFactory extends ValueFactory<DateTime> {

 /**

 * Create a date-time instance for the current time in the local time zone.

 */

 DateTime create();

 /**

 * Create a date-time instance for the current time in UTC.

 */

 DateTime createUtc();

 DateTime create(DateTime original, long offsetInMillis);

 DateTime create(int year, int monthOfYear, int dayOfMonth,

 int hourOfDay, int minuteOfHour, int secondOfMinute, int millisecondsOfSecond);

 DateTime create(int year, int monthOfYear, int dayOfMonth,

 int hourOfDay, int minuteOfHour, int secondOfMinute, int millisecondsOfSecond,

 int timeZoneOffsetHours);

 DateTime create(
int year, int monthOfYear, int dayOfMonth,

 int hourOfDay, int minuteOfHour, int secondOfMinute, int millisecondsOfSecond,

 int timeZoneOffsetHours, String timeZoneId);

}

The PathFactory interface defines methods for creating relative and absolute Path objects using combinations of other Path objects and Names and Path.Segments, and introduces methods for creating Path.Segment objects:

public interface PathFactory extends ValueFactory<Path> {

 Path createRootPath();

 Path createAbsolutePath(Name... segmentNames);

 Path createAbsolutePath(Path.Segment... segments);

 Path createAbsolutePath(Iterable<Path.Segment> segments);

 Path createRelativePath();

 Path createRelativePath(Name... segmentNames);

 Path createRelativePath(Path.Segment... segments);

 Path createRelativePath(Iterable<Path.Segment> segments);

 Path create(Path parentPath, Path childPath);

 Path create(Path parentPath, Name segmentName, int index);

 Path create(Path parentPath, String segmentName, int index);

 Path create(Path parentPath, Name... segmentNames);

 Path create(Path parentPath, Path.Segment... segments);

 Path create(Path parentPath, Iterable<Path.Segment> segments);

 Path create(Path parentPath, String subpath);

 Path.Segment createSegment(String segmentName);

 Path.Segment createSegment(String segmentName, TextDecoder decoder);

 Path.Segment createSegment(String segmentName, int index);

 Path.Segment createSegment(Name segmentName);

 Path.Segment createSegment(Name segmentName, int index);

}

And finally, the BinaryFactory defines methods for creating Binary objects from a variety of binary formats, as well as a method that looks for a cached Binary instance given the supplied secure hash:

public interface BinaryFactory extends ValueFactory<Binary> {

 /**

 * Create a value from the binary content given by the supplied input, the approximate length,

 * and the SHA-1 secure hash of the content. If the secure hash is null, then a secure hash is

 * computed from the content. If the secure hash is not null, it is assumed to be the hash for

 * the content and may not be checked.

 */

 Binary create(InputStream stream, long approximateLength, byte[] secureHash)

 throws ValueFormatException, IoException;

 Binary create(Reader reader, long approximateLength, byte[] secureHash)

 throws ValueFormatException, IoException;

 /**

 * Create a binary value from the given file.

 */

 Binary create(File file) throws ValueFormatException, IoException;

 /**

 * Find an existing binary value given the supplied secure hash. If no such binary value exists,

 * null is returned. This method can be used when the caller knows the secure hash (e.g., from

 * a previously-held Binary object), and would like to reuse an existing binary value

 * (if possible) rather than recreate the binary value by processing the stream contents. This is

 * especially true when the size of the binary is quite large.

 *

 * @param secureHash the secure hash of the binary content, which was probably obtained from a

 * previously-held Binary object; a null or empty value is allowed, but will always

 * result in returning null

 * @return the existing Binary value that has the same secure hash, or null if there is no

 * such value available at this time

 */

 Binary find(byte[] secureHash);

}

ModeShape provides efficient implementations of all of these interfaces: the ValueFactory interfaces and subinterfaces; the Path, Path.Segment, Name, Binary, DateTime, and Reference interfaces; and the ValueFactories interface returned by the ExecutionContext. In fact, some of these interfaces have multiple implementations that are optimized for specific but frequently-occurring conditions.

3.5. Readable, TextEncoder, and TextDecoder

As shown above, the Name, Path.Segment, Path, and Property interfaces all extend the Readable interface, which defines a number of getString(...) methods that can produce a (readable) string representation of of that object. Recall that all of these objects contain names with namespace URIs and local names (consisting of any characters), and so obtaining a readable string representation will require converting the URIs to prefixes, escaping certain characters in the local names, and formatting the prefix and escaped local name appropriately. The different getString(...) methods of the Readable interface accept various combinations of NamespaceRegistry and TextEncoder parameters:

@Immutable

public interface Readable {

 /**

 * Get the string form of the object. A default encoder is used to encode characters.

 * @return the encoded string

 */

 public String getString();

 /**

 * Get the encoded string form of the object, using the supplied encoder to encode characters.

 * @param encoder the encoder to use, or null if the default encoder should be used

 * @return the encoded string

 */

 public String getString(TextEncoder encoder);

 /**

 * Get the string form of the object, using the supplied namespace registry to convert any

 * namespace URIs to prefixes. A default encoder is used to encode characters.

 * @param namespaceRegistry the namespace registry that should be used to obtain the prefix

 * for any namespace URIs

 * @return the encoded string

 * @throws IllegalArgumentException if the namespace registry is null

 */

 public String getString(NamespaceRegistry namespaceRegistry);

 /**

 * Get the encoded string form of the object, using the supplied namespace registry to convert

 * the any namespace URIs to prefixes.

 * @param namespaceRegistry the namespace registry that should be used to obtain the prefix for

 * the namespace URIs

 * @param encoder the encoder to use, or null if the default encoder should be used

 * @return the encoded string

 * @throws IllegalArgumentException if the namespace registry is null

 */

 public String getString(NamespaceRegistry namespaceRegistry,

 TextEncoder encoder);

 /**

 * Get the encoded string form of the object, using the supplied namespace registry to convert

 * the names' namespace URIs to prefixes and the supplied encoder to encode characters, and using

 * the second delimiter to encode (or convert) the delimiter used between the namespace prefix

 * and the local part of any names.

 * @param namespaceRegistry the namespace registry that should be used to obtain the prefix

 * for the namespace URIs in the names

 * @param encoder the encoder to use for encoding the local part and namespace prefix of any names,

 * or null if the default encoder should be used

 * @param delimiterEncoder the encoder to use for encoding the delimiter between the local part

 * and namespace prefix of any names, or null if the standard delimiter should be used

 * @return the encoded string

 */

 public String getString(NamespaceRegistry namespaceRegistry,

 TextEncoder encoder, TextEncoder delimiterEncoder);

}

We've seen the NamespaceRegistry in the previous chapter, but we've haven't yet talked about the TextEncoder interface. A TextEncoder merely does what you'd expect: it encodes the characters in a string using some implementation-specific algorithm. ModeShape provides a number of TextEncoder implementations, including:

· The Jsr283Encoder escapes characters that are not allowed in JCR names, per the JSR-283 specification. Specifically, these are the '*', '/', ':', '[', ']', and '|' characters, which are escaped by replacing them with the Unicode characters U+F02A, U+F02F, U+F03A, U+F05B, U+F05D, and U+F07C, respectively.

· The NoOpEncoder does no conversion.

· The UrlEncoder converts text to be used within the different parts of a URL, as defined by Section 2.3 of RFC 2396. Note that this class does not encode a complete URL (since java.net.URLEncoder and java.net.URLDecoder should be used for such purposes).

· The XmlNameEncoder converts any UTF-16 unicode character that is not a valid XML name character according to the World Wide Web Consortium (W3C) Extensible Markup Language (XML) 1.0 (Fourth Edition) Recommendation, escaping such characters as _xHHHH_, where HHHH stands for the four-digit hexadecimal UTF-16 unicode value for the character in the most significant bit first order. For example, the name "Customer_ID" is encoded as "Customer_x0020_ID".

· The XmlValueEncoder escapes characters that are not allowed in XML values. Specifically, these are the '&', '<', '>', '"', and ''', which are all escaped to "&", '<', '>', '"', and '''.

· The FileNameEncoder escapes characters that are not allowed in file names on Linux, OS X, or Windows XP. Unsafe characters are escaped as described in the UrlEncoder.

· The SecureHashTextEncoder performs a secure hash of the input text and returns that hash as the encoded text. This encoder can be configured to use different secure hash algorithms and to return a fixed number of characters from the hash.

All of these classes also implement the TextDecoder interface, which defines a method that decodes an encoded string using the opposite transformation.

Of course, you can provide alternative implementations, and supply them to the appropriate getString(...) methods as required.

3.6. Locations

In addition to Path objects, nodes can be identified by one or more identification properties. These really are just Property instances with names that have a special meaning (usually to connectors). ModeShape also defines a Location class that encapsulates:

· the Path to the node; or

· one or more identification properties that are likely source-specific and that are represented with Property objects; or

· a combination of both.

So, when a client knows the path and/or the identification properties, they can create a Location object and then use that to identify the node. Location is a class that can be instantiated through factory methods on the class:

public abstract class Location implements Iterable<Property>, Comparable<Location> {

 public static Location create(Path path) { ... }

 public static Location create(UUID uuid) { ... }

 public static Location create(Path path, UUID uuid) { ... }

 public static Location create(Path path, Property idProperty) { ... }

 public static Location create(Path path, Property firstIdProperty,

 Property... remainingIdProperties) { ... }

 public static Location create(Path path, Iterable<Property idProperties) { ... }

 public static Location create(Property idProperty) { ... }

 public static Location create(Property firstIdProperty,

 Property... remainingIdProperties) { ... }

 public static Location create(Iterable<Property> idProperties) { ... }

 public static Location create(List<Property> idProperties) { ... }

 ...

}

Like many of the other classes and interfaces, Location is immutable and cannot be changed once created. However, there are methods on the class to create a copy of the Location object with a different Path, a different UUID, or different identification properties:

public abstract class Location implements Iterable<Property>, Comparable<Location> {

 ...

 public Location with(Property newIdProperty);

 public Location with(Path newPath);

 public Location with(UUID uuid);

 ...

}

One more thing about locations: we'll see later in the next chapter how they are used to make requests to the connectors. When creating the requests, clients usually have an incomplete location (e.g., a path but no identification properties). When processing the requests, connectors provide an actual location that contains the path and all identification properties. If actual Location objects are then reused in subsequent requests by the client, the connectors will have the benefit of having both the path and identification properties and may be able to more efficiently locate the identified node.

3.7. Graph API

ModeShape's Graph API was designed as a lightweight public API for working with graph information. The Graph class is the primary class in API, and each instance represents a single, independent view of a single graph. Graph instances don't maintain state, so every request (or batch of requests) operates against the underlying graph and then returns immutable snapshots of the requested state at the time the request was made.

There are several ways to obtain a Graph instance, as we'll see in later chapters. For the time being, the important thing to understand is what a Graph instance represents and how it interacts with the underlying content to return representations of portions of that underlying graph content.

The Graph class basically represents an internal domain specific language (DSL), designed to be easy to use in an application. The Graph API makes extensive use of interfaces and method chaining, so that methods return a concise interface that has only those methods that make sense at that point. In fact, this should be really easy if your IDE has code completion. Just remember that under the covers, a Graph is just building Request objects, submitting them to the connector, and then exposing the results.

The next few subsections describe how to use a Graph instance.

3.7.1. Using Workspaces

ModeShape graphs have the notion of workspaces that provide different views of the content. Some graphs may have one workspace, while others may have multiple workspaces. Some graphs will allow a client to create new workspaces or destroy existing workspaces, while other graphs will not allow adding or removing workspaces. Some graphs may have workspaces that may show the same (or very similar) content, while other graphs may have workspaces that contain completely independent content.

The Graph object is always bound to a workspace, which initially is the default workspace. To find out what the name of the default workspace is, simply ask for the current workspace after creating the Graph:

Workspace current = graph.getCurrentWorkspace();

To obtain the list of workspaces available in a graph, simply ask for them:

Set<String> workspaceNames = graph.getWorkspaces();

Once you know the name of a particular workspace, you can specify that the graph should use it:

graph.useWorkspace("myWorkspace");

From this point forward, all requests will apply to the workspace named "myWorkspace". At any time, you can use a different workspace, which will affect all subsequent requests made using the graph. To go back to the default workspace, simply supply a null name:

graph.useWorkspace(null);

Of course, creating a new workspace is just as easy:

graph.createWorkspace().named("newWorkspace");

This will attempt to create a workspace named "newWorkspace", which will fail if that workspace already exists. You may want to create a new workspace with a name that should be altered if the name you supply is already used. The following code shows how you can do this:

graph.createWorkspace().namedSomethingLike("newWorkspace");

If there is no existing workspace named "newWorkspace", a new one will be created with this name. However, if "newWorkspace" already exists, this call will create a workspace with a name that is some alteration of the supplied name.

You can also clone workspaces, too:

graph.createWorkspace().clonedFrom("original").named("something");

or

graph.createWorkspace().clonedFrom("original").namedSomethingLike("something");

As you can see, it's very easy to specify which workspace you want to use or to create new workspaces. You can also find out which workspace the graph is currently using:

String current = graph.getCurrentWorkspaceName();

or, if you want, you can get more information about the workspace:

Workspace current = graph.getCurrentWorkspace();

String name = current.getName();

Location rootLocation = current.getRoot();

3.7.2. Working with Nodes

Now let's switch to working with nodes. This first example returns a map of properties (keyed by property name) for a node at a specific Path:

Path path = ...

Map<Name,Property> propertiesByName = graph.getPropertiesByName().on(path);

This next example shows how the graph can be used to obtain and loop over the properties of a node:

Path path = ...

for (Property property : graph.getProperties().on(path)) {

 ...

}

Likewise, the next example shows how the graph can be used to obtain and loop over the children of a node:

Path path = ...

for (Location child : graph.getChildren().of(path)) {

 Path childPath = child.getPath();

 ...

}

Notice that the examples pass a Path instance to the on(...) and of(...) methods. Many of the Graph API methods take a variety of parameter types, including String, Paths, Locations, UUID, or Property parameters. This should make it easy to use in many different situations.

Of course, changing content is more interesting and offers more interesting possibilities. Here are a few examples:

Path path = ...

Location location = ...

Property idProp1 = ...

Property idProp2 = ...

UUID uuid = ...

graph.move(path).into(idProp1, idProp2);

graph.copy(path).into(location);

graph.delete(uuid);

graph.delete(idProp1,idProp2);

The methods shown above work immediately, as soon as each request is built. However, there is another way to use the Graph object, and that is in a batch mode. Simply create a Graph.Batch object using the batch() method, create the requests on that batch object, and then execute all of the commands on the batch by calling its execute() method. That execute() method returns a Results interface that can be used to read the node information retrieved by the batched requests.

Method chaining works really well with the batch mode, since multiple commands can be assembled together very easily:

Path path = ...

String path2 = ...

Location location = ...

Property idProp1 = ...

Property idProp2 = ...

UUID uuid = ...

graph.batch().move(path).into(idProp1, idProp2)

 .and().copy(path2).into(location)

 .and().delete(uuid)

 .execute();

Results results = graph.batch().read(path2)

 .and().readChildren().of(idProp1,idProp2)

 .and().readSugraphOfDepth(3).at(uuid2)

 .execute();

for (Location child : results.getNode(path2)) {

 ...

}

Of course, this section provided just a hint of the Graph API. The Graph interface is actually quite complete and offers a full-featured approach for reading and updating a graph. For more information, see the Graph JavaDocs.

3.8. Requests

ModeShape Graph objects operate upon the underlying graph content, but we haven't really talked about how that works. Recall that the Graph objects don't maintain any stateful representation of the content, but instead submit requests to the underlying graph and return representations of the requested portions of the content. This section focuses on what those requests look like, since they'll actually become very important when working with connectors in the next chapter.

A graph Request is an encapsulation of a command that is to be executed by the underlying graph owner (typically a connector). Request objects can take many different forms, as there are different classes for each kind of request. Each request contains the information needed to complete the processing, and it also is the place where the results (or error) are recorded.

The Graph object creates the Request objects using Location objects to identify the node (or nodes) that are the subject of the request. The Graph can either submit the request immediately, or it can batch multiple requests together into "units of work". The submitted requests are then processed by the underlying system (e.g., connector) and returned back to the Graph object, which then extracts and returns the results.

3.8.1. Basic Requests

There are actually quite a few different types of Request classes:

ReadNodeRequest

A request to read a node's properties and children from the named workspace in the source. The node may be specified by path and/or by identification properties. The connector returns all properties and the locations for all children, or sets a PathNotFoundException error on the request if the node did not exist in the workspace. If the node is found, the connector sets on the request the actual location of the node (including the path and identification properties). The connector sets a InvalidWorkspaceException error on the request if the named workspace does not exist.

VerifyNodeExistsRequest

A request to verify the existence of a node at the specified location in the named workspace of the source. The connector returns all the actual location for the node if it exists, or sets a PathNotFoundException error on the request if the node does not exist in the workspace. The connector sets a InvalidWorkspaceException error on the request if the named workspace does not exist.

ReadAllPropertiesRequest

A request to read all of the properties of a node from the named workspace in the source. The node may be specified by path and/or by identification properties. The connector returns all properties that were found on the node, or sets a PathNotFoundException error on the request if the node did not exist in the workspace. If the node is found, the connector sets on the request the actual location of the node (including the path and identification properties). The connector sets a InvalidWorkspaceException error on the request if the named workspace does not exist.

ReadPropertyRequest

A request to read a single property of a node from the named workspace in the source. The node may be specified by path and/or by identification properties, and the property is specified by name. The connector returns the property if found on the node, or sets a PathNotFoundException error on the request if the node or property did not exist in the workspace. If the node is found, the connector sets on the request the actual location of the node (including the path and identification properties). The connector sets a InvalidWorkspaceException error on the request if the named workspace does not exist.

ReadAllChildrenRequest

A request to read all of the children of a node from the named workspace in the source. The node may be specified by path and/or by identification properties. The connector returns an ordered list of locations for each child found on the node, an empty list if the node had no children, or sets a PathNotFoundException error on the request if the node did not exist in the workspace. If the node is found, the connector sets on the request the actual location of the parent node (including the path and identification properties). The connector sets a InvalidWorkspaceException error on the request if the named workspace does not exist.

ReadBlockOfChildrenRequest

A request to read a block of children of a node, starting with the nth child from the named workspace in the source. This is designed to allow paging through the children, which is much more efficient for large numbers of children. The node may be specified by path and/or by identification properties, and the block is defined by a starting index and a count (i.e., the block size). The connector returns an ordered list of locations for each of the node's children found in the block, or an empty list if there are no children in that range. The connector also sets on the request the actual location of the parent node (including the path and identification properties) or sets a PathNotFoundException error on the request if the parent node did not exist in the workspace. The connector sets a InvalidWorkspaceException error on the request if the named workspace does not exist.

ReadNextBlockOfChildrenRequest

A request to read a block of children of a node, starting with the children that immediately follow a previously-returned child from the named workspace in the source. This is designed to allow paging through the children, which is much more efficient for large numbers of children. The node may be specified by path and/or by identification properties, and the block is defined by the location of the node immediately preceding the block and a count (i.e., the block size). The connector returns an ordered list of locations for each of the node's children found in the block, or an empty list if there are no children in that range. The connector also sets on the request the actual location of the parent node (including the path and identification properties) or sets a PathNotFoundException error on the request if the parent node did not exist in the workspace. The connector sets a InvalidWorkspaceException error on the request if the named workspace does not exist.

ReadBranchRequest

A request to read a portion of a subgraph that has as its root a particular node, up to a maximum depth. This request is an efficient mechanism when a branch (or part of a branch) is to be navigated and processed, and replaces some non-trivial code to read the branch iteratively using multiple ReadNodeRequests. The connector reads the branch to the specified maximum depth, returning the properties and children for all nodes found in the branch. The connector also sets on the request the actual location of the branch's root node (including the path and identification properties). The connector sets a PathNotFoundException error on the request if the node at the top of the branch does not exist in the workspace. The connector sets a InvalidWorkspaceException error on the request if the named workspace does not exist.

CompositeRequest

A request that actually comprises multiple requests (none of which will be a composite). The connector simply processes all of the requests in the composite request, but should set on the composite request any error (usually the first error) that occurs during processing of the contained requests.

3.8.2. Change Requests

ChangeRequest is a subclass of Request that provides a base class for all the requests that request a change be made to the content. As we'll see later, these ChangeRequest objects also get reused by the observation system.

There specific subclasses of ChangeRequest are:

CreateNodeRequest

A request to create a node at the specified location and setting on the new node the properties included in the request. The connector creates the node at the desired location, adjusting any same-name-sibling indexes as required. (If an SNS index is provided in the new node's location, existing children with the same name after that SNS index will have their SNS indexes adjusted. However, if the requested location does not include a SNS index, the new node is added after all existing children, and it's SNS index is set accordingly.) The connector also sets on the request the actual location of the new node (including the path and identification properties).. The connector sets a PathNotFoundException error on the request if the parent node does not exist in the workspace. The connector sets a InvalidWorkspaceException error on the request if the named workspace does not exist.

RemovePropertiesRequest

A request to remove a set of properties on an existing node. The request contains the location of the node as well as the names of the properties to be removed. The connector performs these changes and sets on the request the actual location (including the path and identification properties) of the node. The connector sets a PathNotFoundException error on the request if the node does not exist in the workspace. The connector sets a InvalidWorkspaceException error on the request if the named workspace does not exist.

UpdatePropertiesRequest

A request to set or update properties on an existing node. The request contains the location of the node as well as the properties to be set and those to be deleted. The connector performs these changes and sets on the request the actual location (including the path and identification properties) of the node. The connector sets a PathNotFoundException error on the request if the node does not exist in the workspace. The connector sets a InvalidWorkspaceException error on the request if the named workspace does not exist.

RenameNodeRequest

A request to change the name of a node. The connector changes the node's name, adjusts all SNS indexes accordingly, and returns the actual locations (including the path and identification properties) of both the original location and the new location. The connector sets a PathNotFoundException error on the request if the node does not exist in the workspace. The connector sets a InvalidWorkspaceException error on the request if the named workspace does not exist.

CopyBranchRequest

A request to copy a portion of a subgraph that has as its root a particular node, up to a maximum depth. The request includes the name of the workspace where the original node is located as well as the name of the workspace where the copy is to be placed (these may be the same, but may be different). The connector copies the branch from the original location, up to the specified maximum depth, and places a copy of the node as a child of the new location. The connector also sets on the request the actual location (including the path and identification properties) of the original location as well as the location of the new copy. The connector sets a PathNotFoundException error on the request if the node at the top of the branch does not exist in the workspace. The connector sets a InvalidWorkspaceException error on the request if one of the named workspaces does not exist.

MoveBranchRequest

A request to move a subgraph that has a particular node as its root. The connector moves the branch from the original location and places it as child of the specified new location. The connector also sets on the request the actual location (including the path and identification properties) of the original and new locations. The connector will adjust SNS indexes accordingly. The connector sets a PathNotFoundException error on the request if the node that is to be moved or the new location do not exist in the workspace. The connector sets a InvalidWorkspaceException error on the request if the named workspace does not exist.

DeleteBranchRequest

A request to delete an entire branch specified by a single node's location. The connector deletes the specified node and all nodes below it, and sets the actual location, including the path and identification properties, of the node that was deleted. The connector sets a PathNotFoundException error on the request if the node being deleted does not exist in the workspace. The connector sets a InvalidWorkspaceException error on the request if the named workspace does not exist.

3.8.3. Workspace Read Requests

There are also requests that read information about workspaces:

GetWorkspacesRequest

A request to obtain the names of the existing workspaces that are accessible to the caller.

VerifyWorkspaceRequest

A request to verify that a workspace with a particular name exists. The connector returns the actual location for the root node if the workspace exists, as well as the actual name of the workspace (e.g., the default workspace name if a null name is supplied).

3.8.4. Workspace Change Requests

And there are also requests that deal with changing workspaces (and thus extend ChangeRequest):

CreateWorkspaceRequest

A request to create a workspace with a particular name. The connector returns the actual location for the root node if the workspace exists, as well as the actual name of the workspace (e.g., the default workspace name if a null name is supplied). The connector sets a InvalidWorkspaceException error on the request if the named workspace already exists.

DestroyWorkspaceRequest

A request to destroy a workspace with a particular name. The connector sets a InvalidWorkspaceException error on the request if the named workspace does not exist.

CloneWorkspaceRequest

A request to clone one named workspace as another new named workspace. The connector sets a InvalidWorkspaceException error on the request if the original workspace does not exist, or if the new workspace already exists.

3.8.5. Search Requests

Several requests are designed to push searches and queries down to the connector, if connectors support such operations:

SearchRequest

A request to query a named workspace using a supplied query. The connector returns tuples containing the columns and resulting values, plus statistics about the execution of the query.

FullTextSearchRequest

A request to search a named workspace using a supplied full-text search string and optional offset and limit values. The connector returns tuples containing the columns and resulting values, plus statistics about the execution of the query.

3.8.6. Function Requests

One type of request allows a function to be passed to the connector:

FunctionRequest

A request that executes a supplied function at a particular location within a named workspace. The inputs to the function can be set on the request (as a series of name-value pairs), and when executed the function will set the outputs as name-value pairs on the request. This request is extremely useful for (complex) operations that must first read information from the workspace and then perform other actions.

This section covered the different kinds of Request classes. The next section provides a easy way to encapsulate how a component should responds to these requests, and after that we'll see how these Request objects are also used in the observation framework.

3.9. Request processors

ModeShape connectors are typically the components that receive these Request objects. We'll dive deep into connectors in the next chapter, but before we do there is one more component related to Requests that should be discussed.

The RequestProcessor class is an abstract class that defines a process(...) method for each concrete Request subclass. In other words, there is a process(CompositeRequest) method, a process(ReadNodeRequest) method, and so on. This makes it easy to implement behavior that responds to the different kinds of Request classes: simply subclass the RequestProcessor, override all of the abstract methods, and optionally overriding any of the other methods that have a default implementation.

Note

The RequestProcessor abstract class contains default implementations for quite a few of the process(...) methods, and these will be sufficient but probably not efficient or optimum. If you can provide a more efficient implementation given your source, feel free to do so. However, if performance is not a big issue, all of the concrete methods will provide the correct behavior. Keep things simple to start out - you can always provide better implementations later.

3.10. Observation

The ModeShape graph model also incorporates an observation framework that allows components to register and be notified when changes occur within the content owned by a graph.

Many event frameworks define the listeners and sources as interfaces. While this is often useful, it requires that the implementations properly address the thread-safe semantics of managing and calling the listeners. The ModeShape observation framework uses abstract or concrete classes to minimize the effort required for implementing ChangeObserver or Observable. These abstract classes provide implementations for a number of utility methods (such as the unregister() method on ChangeObserver) that also save effort and code.

However, one of the more important reasons for providing classes is that ChangeObserver uses weak references to track the Observable instances, and the ChangeObservers class uses weak references for the listeners. This means that an observer does not prevent Observable instances from being garbage collected, nor do observers prevent Observable instances from being garbage collected. These abstract class provide all this functionality for free.

3.10.1. Observable

Any component that can have changes and be observed can implement the Observable interface. This interface allows Observers to register (or be registered) to receive notifications of the changes. However, a concrete and thread-safe implementation of this interface, called ChangeObservers, is available and should be used where possible, since it automatically manages the registered ChangeObserver instances and properly implements the register and unregister mechanisms.

3.10.2. Observers

Components that are to recieve notifications of changes are called observers. To create an observer, simply extend the ChangeObserver abstract class and provide an implementation of the notify(Changes) method. Then, register the observer with an Observable using its register(ChangeObserver) method. The observer's notify(Changes) method will then be called with the changes that have been made to the Observable.

When an observer is no longer needed, it should be unregistered from all Observable instances with which it was registered. The ChangeObserver class automatically tracks which Observable instances it is registered with, and calling the observer's unregister() will unregister the observer from all of these Observables. Alternatively, an observer can be unregistered from a single Observable using the Observable's unregister(ChangeObserver) method.

3.10.3. Changes

The Changes class represents the set of individual changes that have been made during a single, atomic operation. Each Changes instance has information about the source of the changes, the timestamp at which the changes occurred, and the individual changes that were made. These individual changes take the form of ChangeRequest objects, which we'll see more of in the next chapter. Each request is frozen, meaning it is immutable and will not change. Also none of the change requests will be marked as cancelled.

Using the actual ChangeRequest objects as the "events" has a number of advantages. First, the existing ChangeRequest subclasses already contain the information to accurately and completely describe the operation. Reusing these classes means we don't need a duplicate class structure or come up with a generic event class.

Second, the requests have all the state required for an event, plus they often will have more. For example, the DeleteBranchRequest has the actual location of the branch that was deleted (and in this way is not much different than a more generic event), but the CreateNodeRequest has the actual location of the created node along with the properties of that node. Additionally, the RemovePropertyRequest has the actual location of the node along with the name of the property that was removed. In many cases, these requests have all the information a more general event class might have but then hopefully enough information for many observers to use directly without having to read the graph to decide what actually changed.

Third, the requests that make up a Changes instance can actually be replayed. Consider the case of a cache that is backed by a RepositorySource, which might use an observer to keep the cache in sync. As the cache is notified of Changes, the cache can simply replay the changes against its source.

As we'll see in the next chapter, each connector is responsible for propagating the ChangeRequest objects to the connector's Observer. But that's not the only use of Observers. We'll also see later how the sequencing system uses Observers to monitor for changes in the graph content to determine which, if any, sequencers should be run. And, the JCR implementation also uses the observation framework to propagate those changes to JCR clients.

3.11. Summary

In this chapter, we introduced ModeShape's graph model and showed the different kinds of objects used to represent nodes, paths, names, and properties. We saw how all of these objects are actually immutable, and how the low-level Graph API uses this characteristic to provide a stateless and thread-safe interface for working with repository content using the request model used to read, update, and change content.

Next, we'll dive into the connector framework, which builds on top of the graph model and request model, allowing ModeShape to access the graph content stored in many different kinds of systems.
