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Abstract

In this paper we introduce an example of an inference benchmark client designed for stressing the
OpenVINOTM Model Server. It is written in Python 3 and is based on the TensorFlow API. The
benchmark client is part of the HAProxy docker container which includes the Prometheus moni-
toring service. This is the �rst public version that supports transmission over the gRPC protocol,
and it includes many advanced features like stateful models, binary input, workload data generation
based on service metadata and reporting of comprehensive metrics. We present 2 di�erent mea-
surement methods in which the client plays an important role: (�rst � throughput vs. latency and
second � quality of service), as well as a number of interesting measurement cases that demonstrate
OpenVINOTM Model Server performance tuning, backend service con�guration, batching, demulti-
plexing, and binary input over a relatively slow network. The benchmark client is distributed under
the Apache License 2.0.

1 Introduction

1.1 OpenVINOTM Model Server

OpenVINOTM Model Server (OVMS) is a scalable, high-performance inference service designed to serve
machine learning models based on convolutional neural networks (CNN). OVMS is optimized for Intel®

architectures. The server provides inference-as-a-service over wired and wireless networks supporting
the 2 popular communication protocols gRPC and REST. The Application Programming Interface
(API) of the proposed solution is modeled after TensorFlow Serving (TFS) but contrary to TFS it
uses OpenVINOTM (OV) as the inference execution provider (backend). Both OV and OVMS are imple-
mented in C++ and this contributes to better scalability and higher performance when compared to the
previous OVMS version which was implemented mainly in Python [blog/OVMS]. The OVMS is a part
of the cross-platform OpenVINOTM toolkit which consists of libraries, inference engine plugins, model
downloader and optimizer as well as C, C++, and Python application examples.

Let's brie�y review the most important features available in the current release. Repositories of
models served may reside on the following media:

� local and network mounted �le systems,

� Google Cloud Storage (GCS),

� Azure Blob Storage,

� Amazon S3 / Minio.

OVMS Supports multiple frameworks including the folowing popular framework formats:

� TensorFlow,

� Ca�e,

� MXNet,

� ONNX.

In addition to CPU devices, both Intel® CoreTM and Intel® Xeon® lines, there are many compatible
arti�cial intelligence (AI) accelerators including Intel® interated GPU and vision processing units (VPU),
which include the Intel® Movidius Myriad and the High Density Deep Learning (HDDL) plugins. The
OVMS has implemented many interesting features such as:

� Serving models that are commonly referred to as stateful, these operate on sequences of input
data and maintain an internal state between inference requests. This allows recognition of depen-
dencies between consecutive portions of input data which can be especially useful in processing
multimedia streams.
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� Interconnection of multiple models and operators in order to deploy complex processing solutions
and reduce overhead of sending data back and forth � brie�y referred to as pipelines.

� Inference model or data transformations can be implemented by a custom node in C/C++ loaded
as an external dynamic linked library.

� Input data can be sent in binary format to reduce tra�c and o�oad the client applications. At the
moment, we support 2 common graphical data types: JPEG and PNG, but other formats can be
covered by user custom nodes.

OVMS also supports con�guration changes at runtime, including:

� deployment of new models, versions, pipelines, and custom nodes,

� removing these elements,

� performance tuning through parameter updates,

� model updating such as reshaping.

For additional information on OpenVINOTM Model Server please refer to the o�cial documentation
published on the GitHub home page [GitHub/OVMS] where you will also �nd many practical real-life
examples including how to create and use custom nodes and other advanced features.

1.2 Benchmark Client

The benchmark client introduced in this paper is written in Python 3 and it is a part of OpenVINOTM

Model Server repository [GitHub/OVMS]. The source code is located in demos/benchmark/python
directory1. It is recommended to use the benchmark client as a docker container � please see Section
1.2.1 to learn more about the architecture details and how to build the docker image from the repository.
Prior to transmission, the client downloads metadata from the server, which contains a list of available
models, their versions as well as accepted input and output shapes. Then it generates tensors containing
random data with shapes matched to the models served by the service. Both the length of the dataset
and the workload duration can be speci�ed independently. The synthetic data created is then served in
a loop iterating over the dataset until the workload length is satis�ed. As the main role of the client is
performance measurement all aspects unrelated to throughput and/or latency are ignored. This means
the client does not validate the received responses nor does it estimate accuracy as these activities would
negatively a�ect the measured performance metrics on the client side.

In addition to the standard data format, the client also supports stateful models (recognizing de-
pendencies between consecutive inference requests) as well as binary input for select �le formats (PNG
and JPEG)2. Both channel types, insecure and certi�cate secured, are supported. Secrets/certi�cates
have to be mounted on a separated volume as well as their path has to be speci�ed by command line
[doc/GRPC]. The secure connection can be used, for example, to benchmark the Nginx OVMS plugin
whith the built-in Nginx reverse proxy load balancer. It can be built as a docker image using the public
source code in the OVMS repository [GitHub/OVMS/nginx].

A single docker container can run many parallel clients in separate processes. Measured metrics
(especially throughput, latency, and counters) are collected from all client processes and then combined
upon which they can be printed in JSON format/syntax for the entire parallel workload. If the docker
container is run in the deamon mode the �nal logs can be shown using the docker logs command. Results
can also be exported to a Mongo database. In order to do this the appropriate identi�cation metadata
has to be speci�ed in the command line � see examples in Section 1.2.2.

1.2.1 Building & Architecture

We present the usage of the client as a docker container. It can be built using the Docker�le located in the
root client directory � demos/benchmark/python. You can rename the container image as desired but in
this paper it will be referred to as benchmark_client. Let's build the image with the following commands:

1 cd demos/benchmark/python
2 docker build . -t benchmark_client

1Please note, that demos/benchmark/python path can be changed in future OVMS releases.
2The client supports both the OVMS and the Nvidia Triton Server. However, full functionality is only available for

OVMS. Only the basic operations were implemented for Nvidia Triton, this means certi�cate secured channel, stateful

model, and binary input are not supported.
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The client docker image is built based on the HAProxy o�cial public image [dockerhub/HAProxy].
It allows the use of the Prometheus monitoring system, which is build into this image. To use this
functionality, the workload has to be redirected to the internal load balancer. You can easily do this by
adding the −−proxy switch in the command line and mapping to our default Prometheus metric port
which is 11888. Also, the HAProxy con�guration can be changed by modi�cation of the haproxy.cfg �le
which is also located in the repository. The Prometheus service is an open-source system monitoring
and alerting toolkit, which allows capturing various network communication metrics during workload
execution [www/Prometheus]. The client also generates its own metrics as a plain text and/or JSON
report after �nishing all inferences and stopping all processes.

The client architecture is designed as multiple independent processes launched at the beginning of
the workload. The implementation is based on the multiprocessing Python module. After a required
duration or an executed iteration number, each process generates a dictionary with recorded metrics.
The �nal step in a benchmark run is to combine metrics from all the processes and then export them by
pushing them to a Mongo database and/or printing to the stdout. The metrics include counters, latency,
timestamps, and basic statistics. The metrics are reported for 3 di�erent time windows:

� warmup (U) � an initial time interval (preceded by _warmup pre�x),

� internal window (W ) � which should be the most stationary (preceded by _window pre�x),

� total workload duration (T ) � (without _warmup and _window pre�xes),

where the following requirement has to be ful�lled: U +W ≤ T , however, we recommend to assume this
relation: T = W + 2U . Then, after the window, the workload will be realized U more seconds. Instead
of expressing the total workload duration in seconds, the number of iterations can be speci�ed. As these
options are mutually exclusive the benchmark−client will terminate with an error message if both these
are speci�ed at the command line. The warmup interval and the internal window length only support
time speci�ed in seconds. All mentioned window ranges can be de�ned by using command line switches
(see −t, −−duration, −u, −−warmup, −w, −−window, and −n, −−steps_number). Some examplary
JSON report for the 3 mentioned windows is presented in Appendix A.

The client source code and associated con�guration �les are distributed under the Apache License,
Version 2.0 and the base HAProxy docker image is published under the GPL with the additional exemp-
tion that compiling, linking, and/or using OpenSSL is allowed [dockerhub/HAProxy]. As stated earlier
the client generates requests compatible with TensorFlow API in gRPC protocol but there are also plans
to add support for REST and KServ API.

1.2.2 Selected Command Examples

For more usage details and to check other available options, please see further examples in this paper,
where the most important selected options are discussed. You can also display the help menu by using
the −−help or −h switch. The command should print all available options with a brief clari�cation �
here only a synopsis is listed:

1 docker run benchmark_client --help
2

3 [-h] [-i ID] [-c CONCURRENCY] [-a SERVER_ADDRESS]
4 [-p GRPC_PORT] [-r REST_PORT] [-l] [-b [BS [BS ...]]]
5 [-s [SHAPE [SHAPE ...]]] [-d [DATA [DATA ...]]] [-j]
6 [-m MODEL_NAME] [-k DATASET_LENGTH] [-v MODEL_VERSION]
7 [-n STEPS_NUMBER] [-t DURATION] [-u WARMUP] [-w WINDOW]
8 [-e ERROR_LIMIT] [-x ERROR_EXPOSITION] [--max_value MAX_VALUE]
9 [--min_value MIN_VALUE] [--step_timeout STEP_TIMEOUT]

10 [--metadata_timeout METADATA_TIMEOUT] [-y DB_CONFIG]
11 [--print_all] [--certs_dir CERTS_DIR] [-q STATEFUL_LENGTH]
12 [--stateful_id STATEFUL_ID] [--stateful_hop STATEFUL_HOP]
13 [--nv_triton] [--sync_interval SYNC_INTERVAL]
14 [--quantile_list [QUANTILE_LIST [QUANTILE_LIST ...]]]
15 [--hist_factor HIST_FACTOR] [--hist_base HIST_BASE]
16 [--internal_version]

The versioning of the client uses 2 digits (major and minor): the �rst digit relates to OV and OVMS
releases (1 corresponds to 2022.1) and the second digit is used for internal purposes. It indicates the
number of GIT commits pushed to the OVMS repository that include changes to the client. As of writing
this paper it was at 17, however upon publication of this paper it should be expected to be higher. The
version can be checked by using −−internal_version switch as follows:
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1 docker run benchmark_client --internal_version
2

3 1.17

The client is able to download the metadata of the served models. If you are unsure which models and ver-
sions are served and what status they have, you can list this information by specifying the −−list_models
switch (also a short form −l is available):

1 docker run benchmark_client -a 10.91.242.153 -r 30002 --list_models
2

3 XI worker: try to send request to endpoint: http://10.91.242.153:30002/ v1/config
4 XI worker: received status code is 200.
5 XI worker: found models and their status:
6 XI worker: model: resnet50 -tf-fp32, version: 1 - AVAILABLE
7 XI worker: model: resnet50 -tf-int8, version: 1 - AVAILABLE

As can be seen from the example above an IP address (−a) and a REST port number (−r) have to
be speci�ed. In the presented example only 2 Resnet 50 models are availabe. The IP address in the
above example is private and non-routing. Users must set their own IP address on the host running
the OVMS. In general, the model status can be as well checked by commonly known applications � for
instance, WGET.

Names, model shape, as well as information about data types of both inputs and outputs can also be
downloaded for all available models using the same listing switches and adding -m <model-name> and
-v <model-version> to the command line. The option −i is only to add a pre�x to the standard output
with a name of an application instance. For example:

1 docker run benchmark_client -a 10.91.242.153 -r 30002 -l -m resnet50 -tf-fp32 -p 30001 -i id
2

3 XI id: try to send request to endpoint: http://10.91.242.153:30002/ v1/config
4 XI id: received status code is 200.
5 XI id: found models and their status:
6 XI id: model: resnet50 -tf-fp32, version: 1 - AVAILABLE
7 XI id: request for metadata of model resnet50 -tf-fp32 ...
8 XI id: Metadata for model resnet50 -tf-fp32 is downloaded ...
9 XI id: set version of model resnet50 -tf -fp32: 1

10 XI id: inputs:
11 XI id: input_name_1:
12 XI id: name: input_name_1
13 XI id: dtype: DT_FLOAT
14 XI id: tensorShape: {'dim ': [{'size ': '1'}, {'size ': '3'}, {'size ': '224'}, {'size ': '224'}]}
15 XI id: outputs:
16 XI id: output_name_1:
17 XI id: name: output_name_1
18 XI id: dtype: DT_FLOAT
19 XI id: tensorShape: {'dim ': [{'size ': '1'}, {'size ': '1001'}]}

Be sure the model name speci�ed is identical to the model name shown when using the �list_models
parameter. A model version is not required but it can be added when multiple versions are available for a
speci�c model name. Port numbers are required both for REST and gRPC APIs. In the above example,
the model has a single input named input_name_1 with the size (1, 3, 224, 224) and a single output
referred to as output_name_1 with the size (1, 1001) � see Section 2.2.1 for clari�cation of Resnet 50
input and output meaning.

2 Material & Methods

2.1 Measurement Methodology

The measurements presented in this paper are focused on end-to-end and black-box approach which,
from a customer's perspetive, would be the most important. A generic benchmark setup would be a
single OpenVINOTM Model Server instance on a multicore processor as the hardware backend which
is stressed by multiple clients over the network. The client number is referred to as concurrency. We
assume that requests are generated asynchronously and that clients are independent. Each client waits
for the response from the OVMS returning the inference results. Both the server and clients are run in
docker containers on separate hardware platforms. The collected metrics are measured and reported by
the individual clients and then combined into more comprehensive statistics. Using this architecture (see
Figure 1), we analyze 2 types of characteristics:

� throughput vs. mean latency for increasing concurrency,

� quality of service by latency nonlinear statistics.
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Let's dive deeper into their details in the next 2 sections. Both mentioned characteristics or pro�les are
estimated for a windowed part of the workload. In each measurement some warmup and closing margins
are ignored in order to eliminate intervals which are potentially non-stationary since some clients may
not yet be fully operational. The ranges of these non-stationary intervals should be determined prior to
actual measurements for each workload individually.

Client Platform Network Server Platform

Docker Container Docker Container

Controller

gRPC Client

gRPC Client

gRPC Client

Model Server

OpenVINOTM

AI Model

Metrics
Database

(MongoDB)

Figure 1: Setup schema.

2.1.1 Throughput vs. Mean Latency

The throughput vs. latency pro�le is the system characteristic best suited for estimating its capacity and
investigating throughput as a function of latency in a multicore and/or multiprocessor system serving
concurrent clients. This can be particularly useful when determining an optimal trade-o� between both
these metrics for any system by deploying an appropriate concurrency. We exploit such an approach
in order to compare overall performance of di�erent OVMS con�gurations for certain AI models and
hardware setups.

The �nal curve denoted by f is estimated by ordering independent measurement points (Lc,i, Tc,i)

according to increasing client number c. The approximation of the pro�le: T̂c = f(L̂c) is based on
many measurement realizations i = 1, 2, 3, ..., where T̂c and L̂c are estimates of, respectively, throughput
and mean latency. In special cases, latency can locally clearly decrease when concurrency increases,
therefore distribution f is not the function in the strict mathematical sense. It is a kind of trajectory
over latency-throughput plane.

The concurrency can be explicitly speci�ed by calling the benchmark client image with −c or
−−concurrency switches together with a workload duration, for example, as follows:

1 docker run benchmark_client -c C -n N (...)
2 docker run benchmark_client -c C -t T (...)

where C parallel clients will, respectively, send N requests each or work over T interval.
The measurement procedure is started from a single client. For the folowing iterations, the concur-

rency is increased as can be seen in Figure 2. The maximum number of considered clients depends on
the system capacity. In each investigated point (for each concurrency), mean latency and throughput
are measured for an internal windowed part of the workload, the internal windowed being the most sta-
tionary period of a workload. Finally, the collected metrics are graphed in a common coordinate system.
Both throughput and mean latency are linear estimates, therefore, an additional investigation should be
conducted for workloads with outliers (outliers can be lost by averaging). In the next Section 2.1.2, we
propose another method to analyze performance outliers in the workload.

throughput

latency

hypothetical
system capacity perfect measurement model

reality (example)

real system capacity

increasing
concurrency

optimal
points

Figure 2: Interpretation of throughput vs. latency pro�le.
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2.1.2 Latency-based Quality of Service

Quality of service (QoS) is a commonly used characteristic in telecommunication to asses the reliability
of the network and services. In general, it can be applied to analyze errors, packet loss, delay, etc.
However, in this paper, we consider latency-based QoS to present a statistical probability distribution of
inference latency. The resulting pro�le is a kind of cumulative distribution function. We graph it in a
coordinate system with swapped axes - the abscissa axis represents probability (on a logarithmic scale)
and the ordinate refers to the response latency. In other words, this metric is a set of latency quantiles
drawn in the logarithmic perspective (see interpretation in Figure 3).

The QoS pro�le is a nonlinear and highly sensitive indicator especially in the high quantiles range.
Therefore, its measurement should be repeated many times over before drawing any conclusions. It is
a very useful tool for analyzing value and probability of latency outliers in the workload. For example,
measuring time-to-�rst-inference which can include the model reloading time, which is usually the longest
among all infer-requests. As QoS in the current release of benchmark_client is estimated only for the
internal window of the workload, the warmup duration command line parameter has to be set to 0 in
order to measure the �rst request.

In order to estimate a speci�c quantile q ∈< 0, 1 >, we have to collect a su�cient number of
samples greater than 1/(1 − q). A common rule of thumb used for achieving stable results, is that
the number of analyzed samples should be at least 10/(1 − q) or even 100/(1 − q) � depending on
workload stability and the latency probability distribution. Any speci�c quantiles can be requested by
using −−quantile_list switch. The quantile values are estimated based on a histogram. To improve the
histogram's resolution the following 2 switches can be adjusted, however their default values should be
optimal for most workloads:

� linear coe�cient −−hist_factor,
� logarithmic mapper −−hist_base.

Some examplary usage of the benchmark clients for the quality of service could look like that:

1 docker run benchmark_client --quantile_list 0.9 0.99 0.999 -t 120 -u 30 -w 60 (...)

which means that the whole workload should last 2 minutes. The QoS, which includs 3 quantiles (mainly:
90%, 99%, and 99.9%), will be estimated only for window which length is equal to 1 minute. The window
will be preceded by the 30-second warmup.

latency

probability (log-scaled)

example of a non-
stationary event

deviation to
longer latency

expected statistical distribution:
Gaussian-like/Poisson

X

Y
X% responses have latency lower than Y

Figure 3: Interpretation of latency-based quality of service.

2.2 Arti�cial Neural Networks

Arti�cial neural networks, commonly referred to as models, are one of the most important aspects of
machine learning. During the inference, decisions are made in a manner de�ned by the model. The
main idea of machine learning is that models contain information derived from the input data applied
during their training. Model complexity, input/output size, the numerical precision, and composition of
layers have substantial impact on the �nal performance of inference as well as training. Therefore, each
performance comparison of di�erent hardware and software stack/setup conducted on di�erent models
(even if their names are the same) are not reasonable.
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2.2.1 Model Resnet 50

Resnet 50 is a convolutional neural network consisting of 50 layers [arXiv/Resnet50]. Its purpose is
classi�cation of images into 1000 categories. The categories include among others: individual animals,
vehicles, commonly used items, etc. Its output has a length equal to 1001 which corresponds to the
categories (plus one extra category). Input images have a height × width resolution of 224 × 224. The
model used for our benchmarking is generated using TensorFlow and can be obtained from the Open
Model Zoo github repo [GitHub/OMZoo] directory public/resnet-50-tf. The intermediate representation
(IR) of the model has a size of approx. 98 MB for �oating point 32 and 25 MB for integer 8 precision.
Resnet 50 is one of a few models widely used in machine learning benchmarking.

2.3 Hardware Con�gurations

In this section we introduce the hardware con�gurations of both client and server platforms used for
benchmarking. In Table 1 we also list con�guration details like operating system and other important
software elements installed. We have focused on Intel® scalable architecture dedicated to server so-
lutions � Intel® Xeon®. Technical details of Intel products are also published on the o�cial website
[spec/Intel/HW]. OVMS con�guration, especially threading con�guration and streams numbers should
correspond with the CPU parameters to optimally utilize it in order to achieve the greatest possible
performance or the lowest latency.

Table 1: Platforms for server solution benchmarking

OVMS Platform Remote Client Platform

CPU Name Intel® Xeon® Platinum 8260M Intel® Xeon® Gold 6252
CPU Microarchitecture Cascade Lake Cascade Lake
CPU Power (TDP) 150 W 162 W

CPU Speed 2.40 GHz 2.10 GHz
CPU Cores 2 × 24 2 × 24

Motherboard Vendor Intel® Corporation Inspur Group
Motherboard Model Server Board S2600WF H48104-872 YZMB-00882-104 NF5280M5

BIOS Vendor Intel® Corporation American Megatrends Inc.
BIOS Version SE5C620.86B.02.01 4.1.16
BIOS Release 03/26/2020 06/23/2020

Memory Name Hynix® DDR4 Samsung® DDR4
Memory Speed 2666 MT/s 2666 MT/s
Memory Size 16 × 16GB 16 × 16GB

Operating System Ubuntu 20.04.3 LTS Ubuntu 20.04.3 LTS
Linux Kernel 5.4.0-81-generic 5.4.0-81-generic

Docker Version 20.10.8 20.10.8

Network Speed 40 Gb/s (1 Gb /s)

3 Performance Tuning & Measurements

OVMS performance can be managed by parameters passed by con�guration �le or/and by command
line especially if single-model mode is used. Summarizing, we can list the following parameters for CPU
backend which can have an impact on end-to-end performance without any accuracy degradation:

� grpc_workers � gRPC workers (speci�ed only in command line),

� rest_workers � REST workers (speci�ed only in command line),

� CPU_THROUGHPUT_STREAMS - the number of CPU streams,

� CPU_BIND_THREAD - binding option allows to map threads to cores,

� CPU_THREADS_NUM - the number of threads used for inference,

� PERFORMANCE_HINT - auto-con�g (a new 2022.1 feature),

� nireq - inference request queue size,

� batch size � a workload parameter.
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The last parameter � batch size is dependent on a request content, but it can be considered in the
context of the demultiplication, which is one of the OVMS features and it can be applied through an
appropriate pipeline de�nition (see Section 3.3). Let's review some of the parameters in following sec-
tions, where we will try to investigate their impact. However, determining the best values for parameters
for optimal end-to-end performance should be done for each speci�c workload and hardware con�gura-
tion. Additional information regarding performance tuning can be found in the o�cial documentation �
[GitHub/OVMS/perf] and [doc/OV/CPU].

The newest 2022.1 OV release o�ers a new intersting con�guration option to easy tune the perfor-
mance, which is PERFORMANCE_HINT. It can be set as "THROUGHPUT" or "LATENCY" in order
to optimize, respectively, throughput and latency. You shall consider this approach, if you did not re-
serch the OV backend con�guration before or your Best Known Con�guration (BKC) seems to not meet
expectations. This is especially recommended for the "THROUGHPUT" value when the target device
is set as CPU or AUTO. Please note that this option is novel and still validated on a limited number of
con�gurations. Therefore, we wait for your feedback in case of any issues.

3.1 CPU Throughput Streams & Nireq

Let's review a small OpenVINOTMModel Server con�guration �le for Resnet 50 model, where X denotes
a number of CPU throughput streams. Nireq is set as double the value of the CPU streams number
(2X).Threads number has the constant value equal to 48 (which is equal to the number of Intel® Xeon®

physical cores in 2 sockets). The thread binding �ag is set as "yes". The number of gRPC workers are
equal to 16. Many conducted experiments con�rmed that such values are appropriate for a parallel sys-
tem. The whole con�guration includs a directory path with the served model (/models/resnet50-tf-fp32
� it has to exist and it must be avalable at least to read for the service) and it looks as follows:

1 "model_config_list": [
2 {
3 "config": {
4 "name": "resnet50 -tf-fp32",
5 "base_path": "/ models/resnet50 -tf -fp32",
6 "target_device": "CPU",
7 "batch_size": "auto",
8 "nireq": 2X,
9 "plugin_config": {

10 "CPU_THROUGHPUT_STREAMS": "X",
11 "CPU_BIND_THREAD": "YES",
12 "CPU_THREADS_NUM": "48"
13 }
14 }
15 }
16 ]

In this experiment, the throughput vs. mean latency pro�le is measured for di�erent X = 1, 2, 4, 8, 12,
16, 24, 25, 28, 32, 36, 48, 56, 60, 64, ... However, not all of the CPU stream values are presented in the graph.
We display only the most relevant results. The batch size on server site is set to auto, which means that
OpenVINOTM Model Server will accept all positive batch sizes and process them without any additional
reshaping. In general, any model reloding connected with reshaping can result in decreasing performance
when batches have many di�erent sizes in a single workload. However, in this experiment all batch sizes
are constant and they are set to 1. Throughput is simply de�ned as the ratio of the number of samples
processed divided by the sample processing time.

The total workload duration is equal to 3 minutes for each measurement point. The �rst and last
minutes are rejected. The �nal metrics are estimated based on a time window of approximately 1 minute
at the mid point of the workload duration. The concurrency is adjusted from 1 to as much as 120.
However, not all the results are presented in the corresponding Figures 4 and 5. We see that if the CPU
throughput streams parameter is lower than 25, it allows the management throughput vs. latency. For
the Resnet 50 models, it is worthwhile lowering the streams number when concurrency is low, this allows
a reduction of the mean latency without sacri�cing throughput. The maximal throughput for integer
8 precision is observed for 48 streams, which corresponds to the number of physical CPU cores. For
�oating-point 32 precision, the throughput optimal streams number is lower � around 16.

Finally in this experiment, we considered how concurrency a�ects the quality of service (QoS) ex-
pressed as the latency cumulative probability distribution for Resnet 50 model in integer 8 precision. We
analyzed system behavior for concurrencies from 1 to 8. In Figure 6, we clearly see, that incresing the
clients number causes increased latency for quantiles lower than 99.9% which is as expected. Moreover,
it seems that we have collected too little data to evaluate these characterisics with a high con�dence
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above the 99.9% quantile. Each measurement point was estimated over a 5 minute period and it was
repeated at least 3 times for each concurrency. In the �gure, measurement points are represented by
dotted lines. At the end the median values are estimated and plotted using dashed lines individually for
each considered concurrency.
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Figure 6: Quality of service estimated for Resnet 50 model in integer 8 precision collected for selected
concurrency (form 1 to 8) on server platform with Intel® Xeon® Platinum 8260M processor (see Table 1).
Common parameters are number of threads, thread binding �ag, CPU streams, and nireq equal to,
respectively, 48, "yes", 48, and 96.

3.2 Binary Input & Slow Network

OpenVINOTM Model Server supports compressed binary input data (including JPEG and PNG formats)
for models, which process images. This feature can improve overall performance especially in slow net-
works where the lower bandwidth constitutes a system bottleneck. A good example of such use could be
wireless communication. On the other hand, for systems with high speed links additional decompression
can result in a reduction in performance. For some speci�c models, you have to set an appropriate
layout mapping in OVMS con�guration �le to support this variant. For instant, the resnet 50 model
considering in this paper requires adding the following layout value:

1 "model_config_list": [
2 {
3 "config": {
4 "name": "resnet50 -tf-int8",
5 "layout": "NHWC:NCHW",
6 (...)

In order to test this feature, we have added the option to generate Portable Network Graphics (PNG)
images in the benchmark client. There is also an example implemented using an embedded JPEG �le.
However, let's focus on PNG testing data. In order to send it to the input named Y , you have to specify
an appropriate value of the switch −d, −−data as follows:

1 docker run benchmark_client --data Y :png (...)
2 docker run benchmark_client --data Y :png4 (...)
3 docker run benchmark_client --data Y :png8 (...)
4 docker run benchmark_client --data Y :png16 (...)

If a single input is available, there is no needed to specify the input name:

1 docker run benchmark_client --data png (...)
2 docker run benchmark_client --data png4 (...)
3 docker run benchmark_client --data png8 (...)
4 docker run benchmark_client --data png16 (...)
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At the moment, 4 di�erent options are available: png, png4, png8, and png16 (there are plans to
extend this set). They are distinguished by the radius of the lowpass �lter used to smooth uniform noise,
which is the foundation of the data. Each of them has a di�erent ability to be compressed, and what
follows this, is that each of them has a di�erent duration of compression. All these aspects can a�ect
the �nal values of the estimated metrics. In Figure 7, examples of generated images are presented for all
4 options and in Table 2 their mean sizes are listed.

Figure 7: Examples of random PNG �les generated with uniform probability distribution, smoothed by
a lowpass �lter, and used as binary input for options, respectively, png, png4, png8, and png16.

Table 2: Mean size of images (224×224) corresponding to Figure 7
Option Name not compressed png png4 png8 png16

Mean Request Size 602 KB 148 KB 117 KB 108 KB 99 KB

In this section, we analyze the AI inferencing performance of 2 communication networks: a 1 Gb/s
(slow) and a 40 Gb/s (fast). We focus on the Resnet 50 model in integer 8 precision. We use a sequence
of PNG �les as the testing workload since this model expects images as its input. OpenVINOTM Model
Server decompresses the images on-the-�y and then forwards them to the OpenVINOTMexecution engine
in a decompressed format as plain tensors. The PNG format has been choosen (although JPEG could
be compressed more) because of its lossless information compression. The results for binary input and
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Figure 8: Througput vs. mean latency with changed concurrency for Resnet 50 model in integer 8
precision collected on server platform with Intel® Xeon® Platinum 8260M processor (see Table 1).
Common parameters are number of threads, thread binding �ag, CPU streams, and nireq equal to,
respectively, 48, "yes", 16, and 32. 2 di�erent network links � 1 and 40 Gb/s, and various input types
including binary PNG format were investigated.
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those without compressed tensors are compared in Figure 8. As expected the binary input mode has
considerably better performance in comparison to the uncompressed input for slow networks. However,
in general, the bene�t depends on how much the data can be compressed. On the other hand, for fast
networks the opposite situation is observed, where binary input causes a performance degradation. This
is because, the decompression requires additional computing power. Therefore, it is recommended to
analyze the bene�ts of using binary input application in each particular situation.

3.3 Batching & (De)multiplexing

Batching is the mechanism of joining single requests in some greater groups. Further, these data struc-
tures can be processed more e�ectively with relatively higher throughput by parallel approach and to
minimize communication overload. On the other hand, the cost that has to be paid is usually a longer
response (greater latency) and increases complexity of the whole system. The throughput improvement
may vary depending on di�erent models as well as backend con�gurations. Basically, OpenVINOTM

Model Server requires to declare accepted batch sizes or shapes. However, a few suggestions have been
proposed to address the problem of a priori unknown request shape (or even changable/dynamic shape
accross a single workload), mainly:

� the automatic mode (auto),

� a pipeline with demultiplexing,

� dynamic shape (experimental feature, avaliable starting from version 2022.1).

The �rst option, referred to as the automatic mode (or shorter auto) is used, for example, in the
experiment presented in Section 3.1. This option causes the model to reload in the memory each time the
shape of request is changed. Therefore, the �nal performance is expected to be very poor for workloads

1 {

2 "model_config_list": [

3 {

4 "config": {

5 "batch_size": 1,

6 "name": "resnet50_model_name",

7 "base_path": "/ models/resnet50_model_name",

8 "target_device": "CPU",

9 "nireq": 16,

10 "plugin_config": {

11 "CPU_THREADS_NUM": "48",

12 "CPU_THROUGHPUT_STREAMS": "8",

13 "CPU_BIND_THREAD": "YES"

14 }

15 }

16 }

17 ],

18 "pipeline_config_list": [

19 {

20 "name": "demux_pipeline_name",

21 "demultiply_count": -1,

22 "inputs": ["input_name_1"],

23 "nodes": [

24 {

25 "type": "DL model",

26 "name": "internal_label",

27 "model_name": "resnet50_model_name",

28 "inputs": [

29 {

30 "original_model_input_1": {

31 "node_name": "request",

32 "data_item": "input_name_1"

33 }

34 }

35 ],

36 "outputs": [

37 {

38 "data_item": "original_model_output_1",

39 "alias": "output_alias"

40 }

41 ]

42 }

43 ],

44 "outputs": [

45 {

46 "output_name_1": {

47 "node_name": "internal_label",

48 "data_item": "output_alias"

49 }

50 }

51 ]

52 }

53 ]

54 }

Figure 9: Examplary of OpenVINOTM Model Server con�guration �le which consists of the Resnet 50
model and a pipeline with demultiplexing of input requests. The model con�guration includs performance
tuning parameters and the batchsize which has to be equal to 1.
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in which batch size is frequently changed. Such situation can occur when in a system, many parallel
clients generate requests with di�erent shapes at the same time.

The second option, which is a pipeline with demultiplexing, is to create your own algorithm for the
Directed Acyclic Graph scheduler. For this purpose, you have to use the demultiply_count parameter,
which adds ability to any node to slice outputs into separate sub outputs. The following nodes will
be executed many times by an event loop, independently, and results will be gathered and packed into
one output just before sending a response. A demultiply_count parameter value has to match the �rst
dimension of all node outputs or it should be −1, which means that it will be automatically set to be
matched [GitHub/OVMS/demux]. At the moment, the pipeline with demultiplexing is recommended3

to address the issue with dynamic bash size becaue:

� the performance of such solution is the best amongst all investigated variants,

� the method was introduced in previous releses therefore it is validated most accurately,

� all existing models should support such approach,

� it is well documented (see [GitHub/OVMS/demux]).

Finally, the dynamic batch size issue is also addressed in the newest OpenVINOTM release (2022.1) by
the feature referred to as dynamic shape. This allows to set an expected range of each shape dimension
including the batch size. For example, "2:4" means that OVMS will accept three size values: 2, 3,
and 4. Moreover, if we do not know what range will be appropriate, it is possible to set universal −1,
which means that each value will be accepted. The dynamic shape is implemented in OpenVINOTM,
however not all models support it yet. Unfortunately, the performance of this solution estimated on
selected models is relatively poor for low concurrency and not stable for high concurrency. Which is
also presented on Figure 10. We proactively and continuously work on these issues and we expect
improvement of them in the future.
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Figure 10: Througput vs. mean latency with changed concurrency for Resnet 50 model in �oatingpoint
32 precision collected on server platform with Intel® Xeon® Platinum 8260M processor (see Table 1).
Common parameters are number of threads, thread binding �ag, CPU streams, and nireq equal to,
respectively, 48, "yes", 6, and 12. Characteristics of systems with 3 static batch sizes, 2 dynamic shapes
and the pipeline with demultiplexer are presented.

3Please note that this recommendation can be changed in future releases
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The introduced benchmark client supports generation of requests with multiple and di�erent batch
sizes in a single workload. The switches −b, −−bs can be used to specify this parameter. For example,
in order to set multiple batch sizes � let's say 1, 2, 4, 2 � the following command can be called:

1 docker run benchmark_client -a 10.91.242.153 -p 30001 -m resnet50 -tf-fp32 -b 1-2-4-2 -n 8

This phrase means that 4 batches with random data will be generated. They will include respectively 1,
2, 4, and 2 images � 9 in total. The client will send each batch 2 times (in the following order: 1, 2, 4,
2, 1, 2, 4, 2) because 8 iterations are required.

4 Conclusions

In this paper we introduced a client dedicated to benchmarking the OpenVINOTMModel Server. The
client's objective is generating a workload in order to stress the service, and then measure �nal metrics
such as counters, latency, throughput, etc. We described the main features of the benchmark application
and we presented several interesting use cases covering OVMS con�guration, parallel processing, batching,
demultiplexing, and binary data processing. Additionally, we presented 2 examples of measurement
methods demonstrating comprehensive system characterisation by the benchmark client.

There are plans to continue the development of the benchmarking client. We are going to sup-
port REST and KServ APIs. We will implement dataset loading form external resources, increasing
the number of generated patterns, as well as support future and improve current OpenVINOTM and
OpenVINOTM Model Server features. Furthermore, our intention is to extend this paper by presen-
tation of more performance measurement scenarios, especially, related to practical use cases with new
OpenVINOTMModel Server features.
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A Appendix: Examplary metrics printed in JSON format

1 {

2 "submetrics": 14,

3 "warmup_total_batches": 2694,

4 "warmup_total_frames": 2694,

5 "warmup_pass_batches": 2694,

6 "warmup_fail_batches": 0,

7 "warmup_pass_frames": 2694,

8 "warmup_fail_frames": 0,

9 "warmup_netto_batch_rate": 1356.0306425275078,

10 "warmup_netto_frame_rate": 1356.0306425275078,

11 "warmup_mean_latency": 0.010318353062477128,

12 "warmup_pass_max_latency": 0.01539468765258789,

13 "warmup_fail_max_latency": 0,

14 "warmup_first_latency": 0.014332771301269531,

15 "warmup_start_timestamp": 1643120764.8586872,

16 "warmup_stop_timestamp": 1643120766.906712,

17 "warmup_total_duration": 2.048024892807007,

18 "warmup_brutto_batch_rate": 1315.4136990530544,

19 "warmup_brutto_frame_rate": 1315.4136990530544,

20 "warmup_batch_passrate": 1,

21 "warmup_frame_passrate": 1,

22 "warmup_pass_mean_latency": 0.010318353062477128,

23 "warmup_fail_mean_latency": 0,

24 "warmup_mean_latency2": 0.000106906188530634,

25 "warmup_stdev_latency": 0.0006616484026300306,

26 "warmup_cv_latency": 0.06412345057624812,

27 "warmup_pass_mean_latency2": 0.000106906188530634,

28 "warmup_pass_stdev_latency": 0.0006616484026300306,

29 "warmup_pass_cv_latency": 0.06412345057624812,

30 "warmup_fail_mean_latency2": 0,

31 "warmup_fail_stdev_latency": 0,

32 "warmup_fail_cv_latency": 0,

33 "window_total_batches": 7907,

34 "window_total_frames": 7907,

35 "window_pass_batches": 7907,

36 "window_fail_batches": 0,

37 "window_pass_frames": 7907,

38 "window_fail_frames": 0,

39 "window_netto_batch_rate": 1323.5655405366879,

40 "window_netto_frame_rate": 1323.5655405366879,

41 "window_mean_latency": 0.010577998565358708,

42 "window_pass_max_latency": 0.013636589050292969,

43 "window_fail_max_latency": 0,

44 "window_first_latency": 0.013448953628540039,

45 "window_start_timestamp": 1643120766.8596165,

46 "window_stop_timestamp": 1643120772.9084067,

47 "window_total_duration": 6.048790216445923,

48 "window_brutto_batch_rate": 1307.2035427021144,

49 "window_brutto_frame_rate": 1307.2035427021144,

50 "window_batch_passrate": 1,

51 "window_frame_passrate": 1,

52 "window_pass_mean_latency": 0.010577998565358708,

53 "window_fail_mean_latency": 0,

54 "window_mean_latency2": 0.00011206056858306057,

55 "window_stdev_latency": 0.0004080624147476522,

56 "window_cv_latency": 0.03857652392617946,

57 "window_pass_mean_latency2": 0.00011206056858306057,

58 "window_pass_stdev_latency": 0.0004080624147476522,

59 "window_pass_cv_latency": 0.03857652392617946,

60 "window_fail_mean_latency2": 0,

61 "window_fail_stdev_latency": 0,

62 "window_fail_cv_latency": 0,

63 "total_batches": 13259,

64 "total_frames": 13259,

65 "pass_batches": 13259,

66 "fail_batches": 0,

67 "pass_frames": 13259,

68 "fail_frames": 0,

69 "netto_batch_rate": 1330.8045962184033,

70 "netto_frame_rate": 1330.8045962184033,

71 "mean_latency": 0.010518890567313092,

72 "pass_max_latency": 0.01539468765258789,

73 "fail_max_latency": 0,

74 "first_latency": 0.014332771301269531,

75 "start_timestamp": 1643120764.8586895,

76 "stop_timestamp": 1643120774.9077034,

77 "total_duration": 10.04901385307312,

78 "brutto_batch_rate": 1319.432950721351,

79 "brutto_frame_rate": 1319.432950721351,

80 "batch_passrate": 1,

81 "frame_passrate": 1,

82 "pass_mean_latency": 0.010518890567313092,

83 "fail_mean_latency": 0,

84 "mean_latency2": 0.00011087626771836501,

85 "stdev_latency": 0.00047875771665496417,

86 "cv_latency": 0.04551408854301413,

87 "pass_mean_latency2": 0.00011087626771836501,

88 "pass_stdev_latency": 0.00047875771665496417,

89 "pass_cv_latency": 0.04551408854301413,

90 "fail_mean_latency2": 0,

91 "fail_stdev_latency": 0,

92 "fail_cv_latency": 0,

93 "qos_quantile_0": "0.5",

94 "qos_latency_0": 0.01058034825378806,

95 "qos_error_0": 1.3339214689263995e-06,

96 "qos_quantile_1": "0.66",

97 "qos_latency_1": 0.010761586482980283,

98 "qos_error_1": 1.31589304699746e-06,

99 "qos_quantile_2": "0.75",

100 "qos_latency_2": 0.010874164102808802,

101 "qos_error_2": 1.304972121796838e-06,

102 "qos_quantile_3": "0.82",

103 "qos_latency_3": 0.010963328537935064,

104 "qos_error_3": 1.2965423302011697e-06,

105 "window_hist_factor": 10000,

106 "window_hist_base": 1.8

107 }
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