Hibernate Annotations Reference Guide

JBoss Enterprise
Application Platform

4.3

‘ ‘ Red Hat

ISBN: N/A
Publication date: Sep, 2007

Hibernate Annotations Reference Guide

The JBoss Enterprise Application Platform Edition of the Hibernate Annotations Reference
Guide 3.2

Hibernate Annotations Reference Guide: JBoss Enterprise

Application Platform
Copyright © 2008 Red Hat, Inc

Copyright © 2008 Red Hat, Inc. This material may only be distributed subject to the terms and conditions set forth in the
Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License (which is presently available at
http://creativecommons.org/licenses/by-nc-sa/3.0/).

Red Hat and the Red Hat "Shadow Man" logo are registered trademarks of Red Hat, Inc. in the United States and other
countries.

All other trademarks referenced herein are the property of their respective owners.
The GPG fingerprint of the security@redhat.com key is:

CA 20 86 86 2B D6 9D FC 65 F6 EC C4 21 91 80 CD DB 42 A6 OE

1801 Varsity Drive

Raleigh, NC 27606-2072

USA

Phone: +1 919 754 3700

Phone: 888 733 4281

Fax: +1 919 754 3701

PO Box 13588

Research Triangle Park, NC 27709
USA

http://creativecommons.org/licenses/by-nc-sa/3.0/

Hibernate Annotations Reference Guide

L FEEADACK ..o e 1

L 1= = o R iii
2. Setting Up an anNOtatioNS PrOJECEuuiveunieiiieeie e e e e e e e e e e e e e eaen 5
I = To [T =T 0 1T o £ TP 5

2. CONFIQUIALION ..uiiieiii et 5

B ENTY BEANS ..ot 9
I 1011 (o PP PTPTN 9

2. Mapping with EJB3/JPA ANNOLAtIONScccvviieiiiiieeiiiii e 9

2.1. Declaring an entity beancoviiiiiiiiii i 9

2.2. Mapping SiMple Propertiesocoeuuiieiiiieeeei e 11

2.. Mapping identifier Propertiescouieviii i 16

2.4, Mapping iNNEMTANCEooeuiiiii e 19

2.5. Mapping entity bean associations/relationshipsccooociiiiiiiininne. 23

2.6. Mapping composite primary and foreign Keysccooceevveviiiiiiiiieninnenns 34

2.7. Mapping secondary tables ..o 36

Y = To] o1 g o I @ 10 1=] = PP 37
3.Mapping JPAQL/HQL queries. Mapping JPAQL/HQL queries 37

3.2. Mapping NALIVE QUETIESccuuuieiiiii ettt 38

4. Hibernate Annotation EXIENSIONSccoouuiiiiiiiiiecie e 42

I 1 o111 42

4. ldentifier. Identifier ... 44

T e (0 01T 1 Y PP 45

N g U]] 7= [U 49

4.5. Single Association related annotationsccooeviiviiin i, 50

4.6. Collection related annotatioNScoceuiiiiiiiiiiiii e 51

o G O Yo o = P 57

4.8, FILBIS o 58

4.9, QUEIIES ..iieiiii ettt 59

4.10. Custom SQL for CRUD 0PErationScc.uovieeiiuiiieeiiiineeeeiineeeeaiinn 59
Overriding metadata through XML. Overriding metadata through XML 63
I o 11 0T] [TP 63

1.1. Global level metadatacccuveviiiiiiiie e 63

1.2. Entity level metadatacooeeiiiiiiii 64

1.3. Property level metadataoveveiiiiiiiiiiiiei e 66

1.4. Association level metadataccooveviiiiiiiiiiin 67

5. Hibernate Validator ... 69
I @0 1S3 1 - V1] P 69

1.1. What IS @ CONSIIAINT? ..ceeeiiiiiiiiie e e s 69

1.2. BUIilt IN CONSIIAINTS ...oeeiiiiieie e 69

1.3, EFTON MESSAGES ...eeneetiieiei ettt et et e s 71

1.4. Writing your OWN CONSEIAINTSivviiiiiii e e e 71

1.5. Annotating your domain Modelcoouuiiiiiiiiiiiiiiii e 73

2. Using the Validator frameworkcccouioiiiiiiii e 75

2.1. Database schema-level validationccooviiiiiiiiiiiiii e 75

2.2. Hibernate event-based validationc..ccooviiiiiiiiiiiiiii e 75

2.3. Application-level validationcocoeiiiiiiiiiiiie e 75

Hibernate Annotations Reference Guide

2.4, Validation informationsccoiiiiiiiiiiiii e 76

6. Hibernate Search: Apache Lucene™ Integrationccoeveiiiiiiiinieii e e 77
L. AFCRITECIUIE oot et e e e e eans 77
2. CONFIQUIALION ..uuieeii ettt e e et e e b 77
2.1. Directory configurationc.oiiiiiiiiiii i 77

2.2. Enabling automatic iNdeXingoeeeuiiiiiiiiiiieiee e 79

3. Mapping entities to the iINdeX STIUCIUIEcocuviiiiiiiiiiei e 79
4, Property/Field Bridgec.uiiiiiiiiiiie e e e 81
4.1, BUIlt-IN DIAGES .oeeviiiiiiei e 81

A O U 1= (o] ¢ T = T [T 82

ST @ U 1=T 0/ o [o [PPSR 86
B. INAEXING ettt 87

vi

Chapter 1.

Feedback

If you spot a typo in this guide, or if you have thought of a way to make this manual better, we
would love to hear from you! Submit a report in JIRA? against the Product: JBoss Enterprise
Application Platform, Version: <ver si on>, Component: Doc. If you have a suggestion for
improving the documentation, try to be as specific as possible. If you have found an error,
include the section number and some of the surrounding text so we can find it easily.

1 http://jira.jposs.com/jira/browse/JBPAPP

http://jira.jboss.com/jira/browse/JBPAPP
http://jira.jboss.com/jira/browse/JBPAPP

Preface

Hibernate, like all other object/relational mapping tools, requires metadata that governs the
transformation of data from one representation to the other (and vice versa). In Hibernate 2.x,
mapping metadata is most of the time declared in XML text files. Another option is XDoclet,
utilizing Javadoc source code annotations and a preprocessor at compile time. The same kind
of annotation support is now available in the standard JDK, although more powerful and better
supported by tools. IntelliJ IDEA, and Eclipse for example, support auto-completion and syntax
highlighting of JDK 5.0 annotations. Annotations are compiled into the bytecode and read at
runtime (in Hibernate's case on startup) using reflection, so no external XML files are needed.

The EJB3 specification recognizes the interest and the success of the transparent
object/relational mapping paradigm. The EJB3 specification standardizes the basic APIs and
the metadata needed for any object/relational persistence mechanism. Hibernate EntityManager
implements the programming interfaces and lifecycle rules as defined by the EJB3 persistence
specification. Together with Hibernate Annotations, this wrapper implements a complete (and
standalone) EJB3 persistence solution on top of the mature Hibernate core. You may use a
combination of all three together, annotations without EJB3 programming interfaces and
lifecycle, or even pure native Hibernate, depending on the business and technical needs of your
project. You can at all times fall back to Hibernate native APls, or if required, even to native
JDBC and SQL.

This release is based on the final release of the EJB 3.0 / JPA specification (aka JSP-220) and
support all the specification features (including the optional ones). Most of the Hibernate
features and extensions are also available through Hibernate specific annotations compared to
the specification are also available. While the Hibernate feature coverage is now very high,
some are still missing. The eventual goal is to cover all of them. See the JIRA road map section
for more informations.

If you are moving from previous Hibernate Annotations versions, please have a look at
http://ww. hi bernate. org/ 371. ht i for a migration guide.

Chapter 2.

Setting up an annotations project
1. Requirements

« Download and unpack the Hibernate Annotations distribution from the Hibernate website.

« This release requires Hibernate 3.2.0.GA and above. Do not use this release of Hibernate
Annotations with an older version of Hibernate 3.x!

* This release is known to work on Hibernate core 3.2.0.CR5, 3.2.0.GA and 3.2.1.GA

» Make sure you have JDK 5.0 installed. You can of course continue using XDoclet and get
some of the benefits of annotation-based metadata with older JDK versions. Note that this
document only describes JDK 5.0 annotations and you have to refer to the XDoclet
documentation for more information.

2. Configuration

First, set up your classpath (after you have created a new project in your favorite IDE):

» Copy all Hibernate3 core and required 3rd party library files (see lib/README.txt in
Hibernate).

e Copy hi bernat e-annot ati ons. jar and | i b/ ej b3- persi st ence. j ar from the Hibernate
Annotations distribution to your classpath as well.

* To use the Chapter 6, Hibernate Search: Apache Lucene™ Integration, add the lucene jar
file.

We also recommend a small wrapper class to startup Hibernate in a static initializer block,
known as Hi ber nat eUt i | . You might have seen this class in various forms in other areas of the
Hibernate documentation. For Annotation support you have to enhance this helper class as
follows:

package hel | o;

i nport org. hi bernate. *;

i nport org. hi bernate.cfg.*;

i mport test.*;

i mport test.ani mals. Dog;
public class HibernateUtil {

private static final SessionFactory sessionFactory;

static {
try {

Chapter 2. Setting up an annotations project

sessi onFactory = new
Annot ati onConfi gurati on() . buil dSessi onFactory();
} catch (Throwabl e ex) {
/'l Log exception!
t hrow new ExceptionlnlnitializerError(ex);

}

public static Session get Session()
t hrows Hi ber nat eExcepti on {
return sessi onFact ory. openSessi on();

Interesting here is the use of Annot at i onConfi gur ati on. The packages and annotated classes
are declared in your regular XML configuration file (usually hi ber nat e. cf g. xnl). Here is the
equivalent of the above declaration:

<! DOCTYPE hi ber nat e-confi gurati on PUBLI C "-//Hi bernat e/ H bernate
Configuration DTD 3.0//EN'
"http://hibernate. sourceforge. net/ hi bernate-configuration-3.0.dtd">

<hi ber nat e- confi gurati on>
<sessi on-fact ory>
<mappi ng package="test. ani nal s"/>
<mappi ng cl ass="test.Flight"/>
<mappi ng cl ass="test. Sky"/>
<mappi ng cl ass="t est. Person"/>
<mappi ng cl ass="t est. ani mal s. Dog"/ >
<mappi ng resource="test/ani mal s/orm xm "/ >
</ sessi on-factory>
</ hi ber nat e- confi gurati on>

Note that you can mix the hbm.xml use and the new annotation one. The resource element can
be either an hbm file or an EJB3 XML deployment descriptor. The distinction is transparent for
your configuration process.

Alternatively, you can define the annotated classes and packages using the programmatic API

sessi onFactory = new Annot ati onConfi gurati on()
. addPackage("test. ani mal s")

//the fully qualified package nane

. addAnnot at edd ass(Fl i ght. cl ass)

. addAnnot at edCl ass(Sky. cl ass)

. addAnnot at edCl ass(Per son. cl ass)

. addAnnot at edd ass(Dog. cl ass)

. addResource("test/ani mal s/ orm xm ")
. bui | dSessi onFactory();

Configuration

You can also use the Hibernate EntityManager which has its own configuration mechanism.
Please refer to this project documentation for more details.

There is no other difference in the way you use Hibernate APIs with annotations, except for this
startup routine change or in the configuration file. You can use your favorite configuration
method for other properties (hi ber nat e. properti es, hi bernate. cf g. xm , programmatic
APIs, etc). You can even mix annotated persistent classes and classic hbm cf g. xni
declarations with the same Sessi onFact ory. You can however not declare a class several
times (whether annotated or through hbm.xml). You cannot mix configuration strategies (hbm vs
annotations) in a mapped entity hierarchy either.

To ease the migration process from hbm files to annotations, the configuration mechanism
detects the mapping duplication between annotations and hbm files. HBM files are then
prioritized over annotated metadata on a class to class basis. You can change the priority using
hi ber nat e. mappi ng. pr ecedence property. The default is hbm cl ass, changing it to cl ass,
hbmwill prioritize the annotated classes over hbm files when a conflict occurs.

Chapter 3.

Entity Beans

1. Intro

This section covers EJB 3.0 (aka JPA) entity annotations and Hibernate-specific extensions.

2. Mapping with EJB3/JPA Annotations

EJB3 entities are plain POJOs. Actually they represent the exact same concept as the
Hibernate persistent entities. Their mappings are defined through JDK 5.0 annotations (an XML
descriptor syntax for overriding is defined in the EJB3 specification). Annotations can be split in
two categories, the logical mapping annotations (allowing you to describe the object model, the
class associations, etc.) and the physical mapping annotations (describing the physical schema,
tables, columns, indexes, etc). We will mix annotations from both categories in the following
code examples.

EJB3 annotations are in the j avax. persi st ence. * package. Most JDK 5 compliant IDE (like
Eclipse, IntelliJ IDEA and Netbeans) can autocomplete annotation interfaces and attributes for
you (even without a specific "EJB3" module, since EJB3 annotations are plain JDK 5
annotations).

For more and runnable concrete examples read the JBoss EJB 3.0 tutorial or review the
Hibernate Annotations test suite. Most of the unit tests have been designed to represent a
concrete example and be a inspiration source.

2.1. Declaring an entity bean

Every bound persistent POJO class is an entity bean and is declared using the @ntity
annotation (at the class level):

@ntity

public class Flight inplenments Serializable {
Long i d;
@d

public Long getld() { return id; }

public void setld(Long id) { this.id =id; }

@nt ity declares the class as an entity bean (i.e. a persistent POJO class), @ d declares the
identifier property of this entity bean. The other mapping declarations are implicit. This
configuration by exception concept is central to the new EJB3 specification and a major
improvement. The class Flight is mapped to the Flight table, using the column id as its primary
key column.

Chapter 3. Entity Beans

Depending on whether you annotate fields or methods, the access type used by Hibernate will
be fiel d or property. The EJB3 spec requires that you declare annotations on the element
type that will be accessed, i.e. the getter method if you use property access, the field if you
use fi el d access. Mixing EJB3 annotations in both fields and methods should be avoided.
Hibernate will guess the access type from the position of @ d or @nbeddedI d.

2.1.1. Defining the table

@abl e is set at the class level; it allows you to define the table, catalog, and schema names for
your entity bean mapping. If no @rabl e is defined the default values are used: the unqualified
class name of the entity.

@ntity
@rabl e(name="t bl _sky")
public class Sky inplements Serializable {

The @rabl e element also contains a schenma and a cat al og attributes, if they need to be
defined. You can also define unique constraints to the table using the @i queConst r ai nt
annotation in conjunction with @ abl e (for a unique constraint bound to a single column, refer to
@col um).

@rabl e(name="t bl _sky",
uni queConstrai nts = { @i queConst r ai nt (col umNames={"nont h", "day"})}
)

A unigue constraint is applied to the tuple month, day. Note that the col unmNarnes array refers to
the logical column names.

2.1.2. Versioning for optimistic locking

You can add optimistic locking capability to an entity bean using the @/er si on annotation:

@ntity

public class Flight inplenments Serializable {
@/er si on
@col um(nane=" OPTLOCK")
public Integer getVersion() { ... }

The version property will be mapped to the OPTLOCK column, and the entity manager will use it
to detect conflicting updates (preventing lost updates you might otherwise see with the
last-commit-wins strategy).

10

Mapping simple properties

The version column may be a numeric (the recommended solution) or a timestamp as per the
EJB3 spec. Hibernate support any kind of type provided that you define and implement the
appropriate User Ver si onType.

2.2. Mapping simple properties
2.2.1. Declaring basic property mappings

Every non static non transient property (field or method) of an entity bean is considered
persistent, unless you annotate it as @r ansi ent . Not having an annotation for your property is
equivalent to the appropriate @asi ¢ annotation. The @asi c annotation allows you to declare
the fetching strategy for a property:

public transient int counter; //transient property
private String firstnanme; //persistent property

@r ansi ent
String getlLengthlnMeter() { ... } //transient property

String getNane() {... } // persistent property

@Basi c
int getLength() { ... } // persistent property

@Basi c(fetch = FetchType. LAZY)
String getDetail edComment() { ... } // persistent property

@enpor al (Tenpor al Type. Tl ME)
java.util.Date getDepartureTinme() { ... } // persistent property

@numer at ed(STRI NG
Starred getNote() { ... } //enumpersisted as String in database

count er, a transient field, and | engt hl nMet er, a method annotated as @r ansi ent, and will be
ignored by the entity manager. nang, | engt h, and fi r st name properties are mapped persistent
and eagerly fetched (the default for simple properties). The det ai | edComment property value
will be lazily fetched from the database once a lazy property of the entity is accessed for the first
time. Usually you don't need to lazy simple properties (not to be confused with lazy association
fetching).

Note

To enable property level lazy fetching, your classes have to be instrumented:

bytecode is added to the original one to enable such feature, please refer to the
Hibernate reference documentation. If your classes are not instrumented,
property level lazy loading is silently ignored.

11

Chapter 3. Entity Beans

The recommended alternative is to use the projection capability of EJB-QL or Criteria queries.

EJB3 support property mapping of all basic types supported by Hibernate (all basic Java types ,
their respective wrappers and serializable classes). Hibernate Annotations support out of the
box Enum type mapping either into a ordinal column (saving the enum ordinal) or a string based
column (saving the enum string representation): the persistence representation, defaulted to
ordinal, can be overriden through the @nuner at ed annotation as shown in the not e property
example.

In core Java APIs, the temporal precision is not defined. When dealing with temporal data you
might want to describe the expected precision in database. Temporal data can have DATE, TI ME,
or TI MESTAMP precision (ie the actual date, only the time, or both). Use the @renpor al
annotation to fine tune that.

@oob indicates that the property should be persisted in a Blob or a Clob depending on the
property type: j ava. sql . G ob, Character[], char[] and java.lang.St ri ng will be persisted in
a Clob. java. sql . Bl ob, Byte[], byt e[] and serializable type will be persisted in a Blob.

@.ob
public String getFull Text() {
return full Text;

}

@.ob
public byte[] getFull Code() ({
return full Code;

}

If the property type implements j ava. i o. Seri al i zabl e and is not a basic type, and if the
property is not annotated with @.ob, then the Hibernate seri al i zabl e type is used.

2.2.2. Declaring column attributes

The column(s) used for a property mapping can be defined using the @ol urm annotation. Use it
to override default values (see the EJB3 specification for more information on the defaults). You
can use this annotation at the property level for properties that are:

* not annotated at all

« annotated with @asi c

« annotated with @/er si on

* annotated with @.ob

» annotated with @enpor al

12

Mapping simple properties

e annotated with @r g. hi ber nat e. annot ati ons. Col | ecti onOf El enent s (for Hibernate only)

@ntity

public class Flight inplenments Serializable {

@ol um(updat abl e = fal se, name = "flight_nanme", nullable = fal se,
| engt h=50)

public String getName() { ... }

The nane property is mapped to the f 1 i ght _name column, which is not nullable, has a length of
50 and is not updatable (making the property immutable).

This annotation can be applied to regular properties as well as @ d or @/er si on properties.

@col um(
name="col utmNaneg" ;
bool ean uni que() default fal se;
bool ean nul | abl e() default true;
bool ean insertabl e() default true;
bool ean updat abl e() default true;
String columbDefinition() default
String table() default "";
int |ength() default 255;
int precision() default 0; // decimal precision
int scale() default 0; // decimal scale

name (optional): the column name (default to the property name)
uni que (optional): set a unique constraint on this column or not (default false)
nul | abl e (optional): set the column as nullable (default false).

o i nsertabl e (optional): whether or not the column will be part of the insert statement
(default true)

e updat abl e (optional): whether or not the column will be part of the update statement
(default true)

o col umDef i ni ti on (optional): override the sql DDL fragment for this particular column
(non portable)
t abl e (optional): define the targeted table (default primary table)
| engt h (optional): column length (default 255)
pr eci si on (optional): column decimal precision (default 0)

@ scal e (optional): column decimal scale if useful (default 0)

2.2.3. Embedded objects (aka components)

It is possible to declare an embedded component inside an entity and even override its column
mapping. Component classes have to be annotated at the class level with the @nbeddabl e
annotation. It is possible to override the column mapping of an embedded object for a particular
entity using the @nbedded and @\t tri but eOver ri de annotation in the associated property:

13

Chapter 3. Entity Beans

@ntity
public class Person inplenents Serializable {

/| Persistent conponent using defaults
Addr ess honeAddr ess;

@nbedded
@\ttributeOverrides({
@\ttributeOverride(nane="iso02", colum
@Col utm(nane="bor nl so2")),
@\t tri buteOverri de(nane="nane", colum =
@col utm(nane="bor nCount r yName"))

})
Country bornl n;

}
@nbeddabl e
public class Address inplements Serializable {
String city;
Country nationality; //no overriding here
}
@nbeddabl e

public class Country inplenments Serializable {
private String iso2;
@Col utm(nane="count ryName") private String nane;

public String getlso2() { return iso2; }
public void setlso2(String iso2) { this.iso2 = iso02; }

public String getName() { return nane; }
public void setName(String nane) { this.nane

nane; }

A embeddable object inherit the access type of its owning entity (note that you can override that
using the Hibernate specific @\ccessType annotations (see Hibernate Annotation Extensions).

The Per son entity bean has two component properties, homeAddr ess and bor nl n.

honeAddr ess property has not been annotated, but Hibernate will guess that it is a persistent
component by looking for the @nbeddabl e annotation in the Address class. We also override
the mapping of a column name (to bor nCount r yNane) with the @nbedded and

14

Mapping identifier properties

@t tributeOverride annotations for each mapped attribute of Count ry. As you can see,
Country is also a nested component of Addr ess, again using auto-detection by Hibernate and
EJB3 defaults. Overriding columns of embedded objects of embedded objects is currently not
supported in the EJB3 spec, however, Hibernate Annotations supports it through dotted
expressions.

@nbedded
@\ttributeOverrides({
@\ttributeOverride(nane="city", colum =
@Col um(nane="fld_city"))
@\t tributeOverride(nane="nationality.iso2", colum =
@col um(nane="nat _| so2")),
@\ttributeOverride(nane="nationality.nane",
col um = @Col um(nane="nat _Count ryNanme"))
//nationality colums in honeAddress are overri dden

1)

Addr ess honeAddr ess;

Hibernate Annotations supports one more feature that is not explicitly supported by the EJB3
specification. You can annotate a embedded object with the @appedSuper cl ass annotation to
make the superclass properties persistent (see @appedSuper cl ass for more informations).

While not supported by the EJB3 specification, Hibernate Annotations allows you to use
association annotations in an embeddable object (ie @ ToOne nor @ ToMany). To override the
association columns you can use @ssoci ati onOverri de.

If you want to have the same embeddable object type twice in the same entity, the column
name defaulting will not work: at least one of the columns will have to be explicit. Hibernate
goes beyond the EJB3 spec and allows you to enhance the defaulting mechanism through the
Nami ngSt r at egy. Def aul t Conponent Saf eNani ngSt r at egy is a small improvement over the
default EIJB3NamingStrategy that allows embedded objects to be defaulted even if used twice in
the same entity.

2.2.4. Non-annotated property defaults

If a property is not annotated, the following rules apply:

« If the property is of a single type, it is mapped as @Basic

« Otherwise, if the type of the property is annotated as @Embeddable, it is mapped as
@Embedded

« Otherwise, if the type of the property is Serializable, it is mapped as @Basic in a column
holding the object in its serialized version

» Otherwise, if the type of the property is java.sql.Clob or java.sql.Blob, it is mapped as @Lob
with the appropriate LobType

15

Chapter 3. Entity Beans

2.. Mapping identifier properties

The @ d annotation lets you define which property is the identifier of your entity bean. This
property can be set by the application itself or be generated by Hibernate (preferred). You can
define the identifier generation strategy thanks to the @sener at edval ue annotation:

AUTO - either identity column, sequence or table depending on the underlying DB

TABLE - table holding the id

IDENTITY - identity column

SEQUENCE - sequence

Hibernate provides more id generators than the basic EJB3 ones. Check Hibernate Annotation
Extensions for more informations.

The following example shows a sequence generator using the SEQ_STORE configuration (see
below)

@d @xnerat edVal ue(strat egy=CGener ati onType. SEQUENCE, gener at or =" SEQ STORE")
public Integer getld() { ... }

The next example uses the identity generator:

@d @xnerat edVal ue(strat egy=CGener ati onType. | DENTI TY)
public Long getld() { ... }

The AUTOgenerator is the preferred type for portable applications (across several DB vendors).
The identifier generation configuration can be shared for several @ d mappings with the
generator attribute. There are several configurations available through @equenceGener at or
and @rabl eGener at or . The scope of a generator can be the application or the class.
Class-defined generators are not visible outside the class and can override application level
generators. Application level generators are defined at XML level (see Chapter Overriding
metadata through XML, Overriding metadata through XML):

<t abl e- gener at or nanme="EMP_GEN'
t abl e=" GENERATOR_TABLE"
pk- col um- name="key"
val ue- col um- nane="hi "
pk- col um- val ue="EMP"
al | ocati on-si ze="20"/>

//and the annotation equival ent

16

Mapping identifier properties

@ avax. per si st ence. Tabl eGener at or (
nanme="EMP_CEN',
t abl e=" GENERATOR_TABLE",
pkCol umNane = "key",
val ueCol ummNanme = "hi"
pkCol umVal ue="EMP",
al | ocati onSi ze=20

)

<sequence- gener at or nane="SEQ GEN'
sequence- nane="my_sequence"
al | ocati on-si ze="20"/ >

//and the annotation equival ent

@ avax. per si st ence. SequenceCener at or (
name="SEQ GEN',
sequenceNane="ny_sequence",
al | ocati onSi ze=20

If JIPA XML (like META- 1 NF/ or m xmi) is used to define thegenerators, EMP_GEN and SEQ GEN are
application level generators. EMP_GEN defines a table based id generator using the hilo algorithm
with a max_| o of 20. The hi value is kept in a t abl e "GENERATOR_TABLE". The information is kept
in a row where pkCol utmName "key" is equals to pkCol umVval ue "EMP" and column

val ueCol utnNane "hi " contains the the next high value used.

SEQ GEN defines a sequence generator using a sequence named ny_sequence. The allocation
size used for this sequence based hilo algorithm is 20. Note that this version of Hibernate
Annotations does not handle i ni ti al Val ue in the sequence generator. The default allocation
size is 50, so if you want to use a sequence and pickup the value each time, you must set the
allocation size to 1.

Note

Package level definition is no longer supported by the EJB 3.0 specification.

However, you can use the @=eneri cGener at or at the package level (see
Section 4.ldentifier, “Identifier”).

The next example shows the definition of a sequence generator in a class scope:

@ntity

@ avax. persi st ence. SequenceCGener at or (
name="SEQ STORE",
sequenceNane="ny_sequence"

)

public class Store inplenents Serializable {

17

Chapter 3. Entity Beans

private Long id;

@d @xnerat edVal ue(strat egy=CGener ati onType. SEQUENCE,
gener at or =" SEQ STORE")

public Long getld() { return id; }
}

This class will use a sequence named my_sequence and the SEQ_STORE generator is not
visible in other classes. Note that you can check the Hibernate Annotations tests in the
org.hibernate.test.metadata.id package for more examples.

You can define a composite primary key through several syntaxes:

« annotate the component property as @Id and make the component class @Embeddable
« annotate the component property as @Embeddedld

« annotate the class as @ldClass and annotate each property of the entity involved in the
primary key with @Id

While quite common to the EJB2 developer, @ dd ass is likely new for Hibernate users. The
composite primary key class corresponds to multiple fields or properties of the entity class, and
the names of primary key fields or properties in the primary key class and those of the entity
class must match and their types must be the same. Let's look at an example:

@ntity@dd ass(Foot bal | er Pk. cl ass)
public class Footballer {
//part of the id key
@d public String getFirstnane() {
return firstnaneg;

}

public void setFirstname(String firstname) {
this.firstname = firstnaneg;

}

//part of the id key
@d public String getLastnanme() ({
return | astnaneg;

}

public void setlLastnane(String |astnanme) {
this.|lastnane = | astnane;

}

public String getd ub() {
return cl ub;

}

public void setCl ub(String club) {

18

Mapping inheritance

this.club = cl ub;

}

[appropriate equal s() and hashCode() i npl enentation
}
@nbeddabl e

public class FootballerPk inplenents Serializable {
// same nane and type as in Footballer
public String getFirstnane() {
return firstnane;

}

public void setFirstnane(String firstnanme) {
this.firstnane = firstnaneg;

}

// same nane and type as in Footballer
public String getLastname() ({
return | ast nane;

}

public void setlLastnane(String |astnane) {
this.|lastname = | ast nane;

}

[/ appropriate equal s() and hashCode() i npl enentation

As you may have seen, @ dd ass points to the corresponding primary key class.

While not supported by the EJB3 specification, Hibernate allows you to define associations
inside a composite identifier. Simply use the regular annotations for that

@ntity
@\ssoci ati onOverri de(nanme="id. channel ", joinColums =
@ oi nCol um(nanme="chan_i d"))
public class TvMagazin {
@nbeddedl d public TvMagazi nPk i d;
@enpor al (Tenpor al Type. TI ME) Date ti me;

}
@nbeddabl e
public class TvMagazi nPk i npl ements Seri alizable {
@/manyToOne
publi ¢ Channel channel;
public String nane;
@manyToOne
public Presenter presenter;
}

2.4. Mapping inheritance

19

Chapter 3. Entity Beans

EJB3 supports the three types of inheritance:

« Table per Class Strategy: the <union-class> element in Hibernate
 Single Table per Class Hierarchy Strategy: the <subclass> element in Hibernate

« Joined Subclass Strategy: the <joined-subclass> element in Hibernate

The chosen strategy is declared at the class level of the top level entity in the hierarchy using
the @ nheri t ance annotation.

Note

Annotating interfaces is currently not supported.

2.4.1. Table per class

This strategy has many drawbacks (esp. with polymorphic queries and associations) explained
in the EJB3 spec, the Hibernate reference documentation, Hibernate in Action, and many other
places. Hibernate work around most of them implementing this strategy using SQ. UNI ON
queries. It is commonly used for the top level of an inheritance hierarchy:

@ntity
@nheritance(strategy = | nheritanceType. TABLE_PER _CLASS)
public class Flight inplenents Serializable {

This strategy support one to many associations provided that they are bidirectional. This
strategy does not support the | DENTI TY generator strategy: the id has to be shared across
several tables. Consequently, when using this strategy, you should not use AUTO nor | DENTI TY.

2.4.2. Single table per class hierarchy

All properties of all super- and subclasses are mapped into the same table, instances are
distinguished by a special discriminator column:

@ntity
@ nheritance(strategy=Il nheritanceType. SI NGLE_TABLE)
@i scri m nat or Col umm(

nanme="pl anet ype",

di scri m nat or Type=Di scri m nat or Type. STRI NG

)
@i scri m nat or Val ue(" Pl ane")
public class Plane { ... }

20

Mapping inheritance

@ntity
@i scri m nat or Val ue(" A320")
public class A320 extends Plane { ... }

Pl ane is the superclass, it defines the inheritance strategy | nheri t anceType. SI NGLE_TABLE. It
also defines the discriminator column through the @i scri mi nat or Col um annotation, a
discriminator column can also define the discriminator type. Finally, the @i scri ni nat or Val ue
annotation defines the value used to differentiate a class in the hierarchy. All of these attributes
have sensible default values. The default name of the discriminator column is DTYPE. The
default discriminator value is the entity name (as defined in @nti ty. name) for
DiscriminatorType.STRING. A320 is a subclass; you only have to define discriminator value if
you don't want to use the default value. The strategy and the discriminator type are implicit.

@ nheritance and @i scri mi nat or Col unm should only be defined at the top of the entity
hierarchy.

2.4.3. Joined subclasses

The @°ri mar yKeyJoi nCol unm and @Pr i mar yKeyJoi nCol unms annotations define the primary
key(s) of the joined subclass table:

@ntity

@ nheritance(strategy=IlnheritanceType. JO NED)
public class Boat inplements Serializable { ... }
@ntity

public class Ferry extends Boat { ... }

@ntity

@°r i mar yKeyJoi nCol utm(nane="BOAT_| D")

public class AnericaCupCl ass extends Boat { ... }

All of the above entities use the JO NED strategy, the Fer ry table is joined with the Boat table
using the same primary key names. The Aneri caCupd ass table is joined with Boat using the
join condition Boat . i d = Aneri caCupd ass. BOAT I D.

2.4.4. Inherit properties from superclasses

This is sometimes useful to share common properties through a technical or a business
superclass without including it as a regular mapped entity (ie no specific table for this entity). For
that purpose you can map them as @mppedSuper cl ass.

@mppedSuper cl ass
public class BaseEntity {
@Basi c

21

Chapter 3. Entity Beans

@enpor al (Tenpor al Type. TI MESTAVP)
public Date getlLastUpdate() { ... }
public String getlLastUpdater() { ... }

}

@ntity class Order extends BaseEntity {
@d public Integer getld() { ... }

In database, this hierarchy will be represented as an Or der table having the i d, | ast Updat e
and | ast Updat er columns. The embedded superclass property mappings are copied into their
entity subclasses. Remember that the embeddable superclass is not the root of the hierarchy
though.

Note

Properties from superclasses not mapped as @hppedSuper cl ass are ignored.

Note

The access type (field or methods), is inherited from the root entity, unless you
use the Hibernate annotation @\ccessType

Note

The same notion can be applied to @nbeddabl e objects to persist properties
from their superclasses. You also need to use @happedSuper cl ass to do that
(this should not be considered as a standard EJB3 feature though)

Note

It is allowed to mark a class as @mappedSuper cl ass in the middle of the mapped
inheritance hierarchy.

22

Mapping entity bean

Note

Any class in the hierarchy non annotated with @appedSuper cl ass nor @ntity
will be ignored.

You can override columns defined in entity superclasses at the root entity level using the
@\t tri but eOverri de annotation.

@mppedSuper cl ass
public class FlyingQbject inplements Serializable {

public int getAltitude() {
return altitude;

}

@r ansi ent
public int getMetricAltitude() {
return nmetricAltitude;

}

@manyToOne
publ i ¢ Propul sionType get Propul sion() {
return nmetricAltitude;

}
}
@ntity
@\ttributeOverride(name="altitude", colum = @ol um(nane="fld_altitude"))
@\ssoci ati onOverride(nane="propul sion", joinColums =

@oi nCol um(nane="f| d_propul sion_fk"))
public class Plane extends Flyi ngloj ect {

}

The al ti t ude property will be persisted inan f1 d_al ti t ude column of table Pl ane and the
propulsion association will be materialized in a f | d_pr opul si on_f k foreign key column.

You can define @t tri but eOverri de(s) and @ssoci ati onOverri de(s) on @ntity classes,
@mppedSuper cl ass classes and properties pointing to an @nbeddabl e object.

2.5. Mapping entity bean associations/relationships

2.5.1. One-to-one

You can associate entity beans through a one-to-one relationship using @neToOne. There are
three cases for one-to-one associations: either the associated entities share the same primary
keys values, a foreign key is held by one of the entities (note that this FK column in the

23

Chapter 3. Entity Beans

database should be constrained unigque to simulate one-to-one multiplicity), or a association
table is used to store the link between the 2 entities (a unique constraint has to be defined on
each fk to ensure the one to one multiplicity)

First, we map a real one-to-one association using shared primary keys:

@ntity
public class Body ({
@d

public Long getld() { returnid; }

@neToOne(cascade = CascadeType. ALL)
@r i mar yKeyJoi nCol urm
public Heart getHeart() {

return heart;

}
}
@ntity
public class Heart {
@d
public Long getld() { ...}
}

The one to one is marked as true by using the @r i mar yKeyJoi nCol unm annotation.

In the following example, the associated entities are linked through a foreign key column:

@ntity

public class Custoner inplenents Serializable {
@neToOne(cascade = CascadeType. ALL)
@ oi nCol um(nanme="passport _fk")
publ i ¢ Passport getPassport() {

}

@ntity

public class Passport inplenents Serializable {
@neToOne(mappedBy = "passport")
publ i c Custoner getOaner() {

A Cust oner is linked to a Passport, with a foreign key column named passport _f k in the

24

associations/relationships

Cust orer table. The join column is declared with the @oi nCol urm annotation which looks like
the @ol unm annotation. It has one more parameters named r ef er encedCol urmNane. This
parameter declares the column in the targeted entity that will be used to the join. Note that when
using r ef er encedCol urmNarre to a non primary key column, the associated class has to be

Seri al i zabl e. Also note that the r ef er encedCol uimNane to a non primary key column has to
be mapped to a property having a single column (other cases might not work).

The association may be bidirectional. In a bidirectional relationship, one of the sides (and only
one) has to be the owner: the owner is responsible for the association column(s) update. To
declare a side as not responsible for the relationship, the attribute nappedBy is used. mappedBy
refers to the property hame of the association on the owner side. In our case, this is passport .
As you can see, you don't have to (must not) declare the join column since it has already been
declared on the owners side.

If no @oi nCol umm is declared on the owner side, the defaults apply. A join column(s) will be
created in the owner table and its name will be the concatenation of the name of the relationship
in the owner side, _ (underscore), and the name of the primary key column(s) in the owned side.
In this example passport _i d because the property name is passport and the column id of
Passport isid.

The third possibility (using an association table) is very exotic.

@ntity

public class Custonmer inplenents Serializable {
@neToOne(cascade = CascadeType. ALL)
@oi nTabl e(nane = " Cust oner Passports" joi nCol ums =

@ oi nCol um(nane="cust onmer _fk"),
i nver seJoi nCol utms = @oi nCol uMms(name="passport_fk"))
publ i ¢ Passport getPassport() {

}

@ntity

public class Passport inplenents Serializable {
@neToOne(mappedBy = "passport")
publ i ¢ Custoner getOmer() {

A Cust oner is linked to a Passport through a association table named Cust omer Passports ;
this association table has a foreign key column named passport _f k pointing to the Passport
table (materialized by the i nver seJoi nCol um, and a foreign key column named cust ormer _f k
pointing to the Cust oner table materialized by the j oi nCol unms attribute.

You must declare the join table name and the join columns explicitly in such a mapping.
2.5.2. Many-to-one

Many-to-one associations are declared at the property level with the annotation @anyToOne:

25

Chapter 3. Entity Beans

@ntity()
public class Flight inplenments Serializable {
@manyToOne(cascade = {CascadeType. PERSI ST, CascadeType. MERGE})
@oi nCol um(nane="COWP_| D")
publ i ¢ Conpany get Conpany() ({
return conpany;

}

The @oi nCol um attribute is optional, the default value(s) is like in one to one, the
concatenation of the name of the relationship in the owner side, _ (underscore), and the name
of the primary key column in the owned side. In this example conpany_i d because the property
name is conpany and the column id of Company isii d.

@manyToOne has a parameter named t ar get Ent i t y which describes the target entity name.
You usually don't need this parameter since the default value (the type of the property that
stores the association) is good in almost all cases. However this is useful when you want to use
interfaces as the return type instead of the regular entity.

@ntity()
public class Flight inplenents Serializable {
@mnyToOne(cascade = {CascadeType. PERSI ST, CascadeType. MERGE},
target Enti t y=Conpanyl npl . cl ass)
@oi nCol uMm(nane="COWP_| D")
publ i ¢ Conpany get Conpany() {
return conpany;

}
}

public interface Conpany {

You can alse map a many to one association through an association table. This association
table described by the @oi nTabl e annotation will contains a foreign key referencing back the
entity table (through @oi nTabl e. j oi nCol ums) and a a foreign key referencing the target
entity table (through @oi nTabl e. i nver seJoi nCol umms).

@ntity()
public class Flight inplenments Serializable {
@manyToOne(cascade = {CascadeType. PERSI ST, CascadeType. MERGE})
@oi nTabl e(nanme="Fl i ght _Conpany”, j oi nCol ums =
@oi nCol um(nane="FLIGHT_I D"),
i nver seJoi nCol ums = @oi nCol utms(nane="COWP_I D"))
publ i ¢ Conpany get Conpany() {

26

Mapping entity bean

return conpany;

2.5.3. Collections

2.5.3.1. Overview

You can map Col | ecti on, Li st (ie ordered lists, not indexed lists), Map and Set . The EJB3
specification describes how to map an ordered list (ie a list ordered at load time) using

@ avax. per si st ence. Or der By annotation: this annotation takes into parameter a list of comma
separated (target entity) properties to order the collection by (eg fi rst name asc, age desc), if
the string is empty, the collection will be ordered by id. @ der By currently works only on
collections having no association table. For true indexed collections, please refer to the
Hibernate Annotation Extensions. EJB3 allows you to map Maps using as a key one of the
target entity property using @vapKey(name="rmyProperty") (myProperty is a property name in
the target entity). When using @vapKey (without property name), the target entity primary key is
used. The map key uses the same column as the property pointed out: there is no additional
column defined to hold the map key, and it does make sense since the map key actually
represent a target property. Be aware that once loaded, the key is no longer kept in sync with
the property, in other words, if you change the property value, the key will not change
automatically in your Java model (for true map support please refers to Hibernate Annotation
Extensions). Many people confuse <map> capabilities and @apKey ones. These are two
different features. @mpKey still has some limitations, please check the forum or the JIRA
tracking system for more informations.

Hibernate has several notions of collections.

SEINER

Bag semantic

Bag semantic with primary
key (withtout the limitations of
Bag semantic)

List semantic

Set semantic

java representation

java.util.List,
java.util.Collection

java.util.List,

java.util.Collection

java.util.List

java.util.Set

annotations

@org.hibernate.annotations.Ca
or @OneToMany or
@ManyToMany

llectionOfElements

(@org.hibernate.annotations.CollectionOfElement:

or @OneToMany or
@ManyToMany) and
@Collectionld

(@org.hibernate.annotations.C
or @OneToMany or
@ManyToMany) and
@org.hibernate.annotations.Ing

@org.hibernate.annotations.Ca
or @OneToMany or
@ManyToMany

27

ollectionOfElement:

JlexColumn

llectionOfElements

Chapter 3. Entity Beans

Semantic java representation

Map semantic java.util.Map

Table 3.1. Collections semantics

annotations

(@org.hibernate.annotations.C
or @OneToMany or
@ManyToMany) and (nothing
or
@org.hibernate.annotations.Ma
for true map support, OR
@javax.persistence.MapKey

Collection of primitive, core type or embedded objects is not supported by the EJB3
specification. Hibernate Annotations allows them however (see Hibernate Annotation
Extensions).

@ntity public class City {
@neToMany(mappedBy="city")
@ der By (" st reet Name")
public List<Street> getStreets() {
return streets;

}

@ntity public class Street {
public String getStreet Name() {
return street Name;

}

@manyToOne
public City getGity() {
return city;

}

@ntity
public class Software {
@neToMany(mappedBy="sof t war e")
@mapKey(nane="codeNanme")
public Map<String, Version> getVersions() {
return versions;

}

@ntity
@rabl e(name="t bl _versi on")
public class Version {
public String get CodeNarme() {...}

28

ollectionOfElement:

pKey/MapKeyMan

associations/relationships

@manyToOne
public Software getSoftware() { ... }

So Gty has a collection of St r eet s that are ordered by st r eet Nane (of St r eet) when the
collection is loaded. Sof t war e has a map of Ver si ons which key is the Ver si oncodeNane.

Unless the collection is a generic, you will have to define t ar get Ent i ty. This is a annotation
attribute that take the target entity class as a value.

2.5.3.2. One-to-many

One-to-many associations are declared at the property level with the annotation @neToMany.
One to many associations may be bidirectional.

2.5.3.2.1. Bidirectional

Since many to one are (almost) always the owner side of a bidirectional relationship in the EJB3
spec, the one to many association is annotated by @neToNMany(mappedBy=...)

@ntity
public class Troop {
@neToMany(mappedBy="tr oop")
publ i c Set<Sol di er> get Sol di ers() {

}

@ntity

public class Sol dier {
@manyToOne
@ oi nCol um(nanme="troop_fk")
public Troop get Troop() {

Tr oop has a bidirectional one to many relationship with Sol di er through the t r oop property.
You don't have to (must not) define any physical mapping in the mappedBy side.

To map a bidirectional one to many, with the one-to-many side as the owning side, you have to
remove the mappedBy element and set the many to one @oi nCol umm as insertable and
updatable to false. This solution is obviously not optimized and will produce some additional
UPDATE statements.

@ntity
public class Troop {
@neToMany

@ oi nCol um(nane="troop_fk") //we need to duplicate the physical
i nformati on
publ i c Set<Sol di er> get Sol di ers() {

29

Chapter 3. Entity Beans

}
@ntity

public class Sol dier {
@manyToOne
@ oi nCol um(nane="troop_f k", insertabl e=fal se, updatabl e=fal se)
public Troop get Troop() {

2.5.3.2.2. Unidirectional

A unidirectional one to many using a foreign key column in the owned entity is not that common
and not really recommended. We strongly advise you to use a join table for this kind of
association (as explained in the next section). This kind of association is described through a
@oi nCol um

@ntity

public class Custonmer inplenents Serializable {
@neToMany(cascade=CascadeType. ALL, fetch=FetchType. EAGER)
@ oi nCol um(nanme="CUST_| D")
publ i c Set <Ti cket> get Ti ckets() {

}

@ntity

public class Ticket inplenments Serializable {
//no bidir

}

Cust oner describes a unidirectional relationship with Ti cket using the join column CUST_|I D.
2.5.3.2.3. Unidirectional with join table

A unidirectional one to many with join table is much preferred. This association is described
through an @oi nTabl e.

@ntity
public class Trainer {
@neToMany
@ oi nTabl e(
name="Tr ai nedMbnkeys",
joi nCol utms = { @oi nCol um(nane="trainer_id") },
i nver seJoi nCol utms = @oi nCol unm(nanme="nonkey_i d")
)

publ i c Set <Monkey> get Tr ai nedMonkeys() {

30

Mapping entity bean

@ntity

public class Mnkey {
//no bidir

}

Tr ai ner describes a unidirectional relationship with Monkey using the join table
Tr ai nedMonkeys, with a foreign key t r ai ner _i d to Tr ai ner (j oi nCol ums) and a foreign key
nmonkey_i d to Monkey (i nver sej oi nCol ums).

2.5.3.2.4. Defaults

Without describing any physical mapping, a unidirectional one to many with join table is used.
The table name is the concatenation of the owner table name, _, and the other side table name.
The foreign key name(s) referencing the owner table is the concatenation of the owner table, _,
and the owner primary key column(s) name. The foreign key name(s) referencing the other side
is the concatenation of the owner property name, _, and the other side primary key column(s)
name. A unique constraint is added to the foreign key referencing the other side table to reflect
the one to many.

@ntity
public class Trainer {

@neToMany

publ i ¢ Set <Ti ger> get Trai nedTi gers() {
}
@ntity
public class Tiger {

//no bidir

}

Tr ai ner describes a unidirectional relationship with Ti ger using the join table Tr ai ner _Ti ger,
with a foreign key t rai ner _i d to Tr ai ner (table name, _, trainer id) and a foreign key
trai nedTi gers_i d to Monkey (property name, _, Tiger primary column).

2.5.3.3. Many-to-many
2.5.3.3.1. Definition

A many-to-many association is defined logically using the @vanyToMany annotation. You also
have to describe the association table and the join conditions using the @oi nTabl e annotation.
If the association is bidirectional, one side has to be the owner and one side has to be the
inverse end (ie. it will be ignored when updating the relationship values in the association table):

@ntity

31

Chapter 3. Entity Beans

public class Enpl oyer inplenents Serializable {
@any ToMany (
target Entity=org. hi bernate. test.netadata. manyt omany. Enpl oyee. cl ass,
cascade={ CascadeType. PERSI ST, CascadeType. VERGE}

)
@oi nTabl e(

nanme="EMPLOYER EMPLOYEE",

j oi nCol uims={ @oi nCol uMm(nane="EMPER | D") },

i nver seJoi nCol ums={ @oi nCol um(name="EMPEE_| D") }
)

public Col | ection get Enpl oyees() {
return enpl oyees;

}
}
@ntity
public class Enpl oyee inplenents Serializable {
@any ToMany (
cascade={ CascadeType. PERSI ST, CascadeType. VERGE},
mappedBy="enpl oyees"
target Enti t y=Enpl oyer. cl ass
)
public Col | ection get Enpl oyers() {
return enpl oyers;
}
}

We've already shown the many declarations and the detailed attributes for associations. We'll
go deeper in the @oi nTabl e description, it defines a name, an array of join columns (an array in
annotation is defined using { A, B, C }), and an array of inverse join columns. The latter ones are
the columns of the association table which refer to the Enpl oyee primary key (the "other side").

As seen previously, the other side don't have to (must not) describe the physical mapping: a
simple mappedBy argument containing the owner side property name bind the two.

2.5.3.3.2. Default values

As any other annotations, most values are guessed in a many to many relationship. Without
describing any physical mapping in a unidirectional many to many the following rules applied.
The table name is the concatenation of the owner table name, _ and the other side table name.
The foreign key name(s) referencing the owner table is the concatenation of the owner table
name, _ and the owner primary key column(s). The foreign key name(s) referencing the other
side is the concatenation of the owner property name, _, and the other side primary key
column(s). These are the same rules used for a unidirectional one to many relationship.

@ntity

32

associations/relationships

public class Store {
@manyToMany(cascade = CascadeType. PERSI ST)
public Set<City> getlnplantedin() {

}
}

@ntity
public class Gty {
//no bidirectional relationship

}

A Store_City is used as the join table. The St ore_i d column is a foreign key to the St or e
table. The i npl ant edl n_i d column is a foreign key to the Gi ty table.

Without describing any physical mapping in a bidirectional many to many the following rules
applied. The table name is the concatenation of the owner table name, _ and the other side

table name. The foreign key name(s) referencing the owner table is the concatenation of the
other side property name, _, and the owner primary key column(s). The foreign key name(s)
referencing the other side is the concatenation of the owner property name, _, and the other
side primary key column(s). These are the same rules used for a unidirectional one to many
relationship.

@ntity

public class Store {
@manyToMany(cascade = {CascadeType. PERSI ST, CascadeType. MERGE})
publ i ¢ Set <Cust oner > get Cust oners() {

}
}

@ntity

public class Customer {
@manyToMany (mappedBy="cust onmer s")
public Set<Store> getStores() {

}

A St ore_Cust oner is used as the join table. The st ores_i d column is a foreign key to the
St or e table. The cust oners_i d column is a foreign key to the Cust oner table.

2.5.4. Transitive persistence with cascading

You probably have noticed the cascade attribute taking an array of CascadeType as a value.
The cascade concept in EJB3 is very is similar to the transitive persistence and cascading of
operations in Hibernate, but with slightly different semantics and cascading types:

Chapter 3. Entity Beans

« CascadeType.PERSIST: cascades the persist (create) operation to associated entities
persist() is called or if the entity is managed

» CascadeType.MERGE: cascades the merge operation to associated entities if merge() is
called or if the entity is managed

» CascadeType.REMOVE: cascades the remove operation to associated entities if delete() is
called

» CascadeType.REFRESH: cascades the refresh operation to associated entities if refresh() is
called

» CascadeType.ALL: all of the above

Please refer to the chapter 6.3 of the EJB3 specification for more information on cascading and
create/merge semantics.

2.5.5. Association fetching

You have the ability to either eagerly or lazily fetch associated entities. The f et ch parameter
can be set to Fet chType. LAZY or Fet chType. EAGER. EAGER will try to use an outer join select to
retrieve the associated object, while LAZY will only trigger a select when the associated object is
accessed for the first time. @neToMany and @/anyToMany associations are defaulted to LAZY
and @neToOne and @anyToOne are defaulted to EAGER. For more information about static
fetching, check Section 4.5.Lazy options and fetching modes, “Lazy options and fetching
modes”.

The recommanded approach is to use LAZY onn all static fetching definitions and override this
choice dynamically through JPA-QL. JPA-QL has a f et ch keyword that allows you to override
laziness when doing a particular query. This is very useful to improve performance and is
decided on a use case to use case basis.

2.6. Mapping composite primary and foreign keys

Composite primary keys use a embedded class as the primary key representation, so you'd use
the @ d and @nbeddabl e annotations. Alternatively, you can use the @nbedded! d annotation.
Note that the dependent class has to be serializable and implements equal s() /hashCode() .
You can also use @ dCl ass as described in Mapping identifier properties.

@ntity
public class Regional Article inplenments Serializable {
@d
public Regional ArticlePk getPk() { ... }
}
@nbeddabl e
public class Regional ArticlePk inplenents Serializable { ... }

34

Mapping composite primary and foreign

or alternatively

@ntity

public class Regional Article inplements Serializable {
@nbeddedl d
public Regional ArticlePk getPk() { ... }

}

public class Regional ArticlePk inplenents Serializable { ... }

@nbeddabl e inherit the access type of its owning entity unless the Hibernate specific
annotation @ccessType is used. Composite foreign keys (if not using the default sensitive
values) are defined on associations using the @oi nCol unms element, which is basically an
array of @oi nCol umm. It is considered a good practice to express r ef er encedCol unmNanes
explicitly. Otherwise, Hibernate will suppose that you use the same order of columns as in the
primary key declaration.

@ntity
public class Parent inplenments Serializable {
@d

public ParentPk id;
public int age;

@neToMany(cascade=CascadeType. ALL)
@oi nCol ums ({

@ oi nCol um(nane="parentCG vility", referencedColumNane = "isMale"),
@oi nCol umm(nane="par ent Last Nane", referencedCol umNanme =
"| ast Nanme") ,
@ oi nCol um(nane="par ent Fi r st Nane", referencedCol untmmName =
"firstName")
b
publ i c Set<Child> children; //unidirectional
}
@ntity
public class Child inplenents Serializable {
@d @ener at edVal ue
public Integer id;
@manyToOne
@ oi nCol ums ({
@ oi nCol um(nane="parentCG vility", referencedColumNane = "isMale"),

35

Chapter 3. Entity Beans

@oi nCol um(nane="par ent Last Nane", referencedCol umNanme =

"| ast Nane"),
@oi nCol um(nane="par ent Fi r st Name", referencedCol unmNane =
"firstName")
9]
public Parent parent; //unidirectional
}
@nbeddabl e

public class ParentPk inmplenents Serializable {
String firstNane;
String | ast Nane;

Note the explicit usage of the r ef er encedCol utmNane.

2.7. Mapping secondary tables

You can map a single entity bean to several tables using the @econdar yTabl e or
@econdar yTabl es class level annotations. To express that a column is in a particular table,
use the t abl e parameter of @ol umm or @oi nCol um.

@ntity
@rabl e(name="Mi nCat ")
@secondar yTabl es({ @econdar yTabl e(nane="Cat 1",
pkJoi nCol ums={ @ri maryKeyJoi nCol um(name="cat _i d",
r ef er encedCol umNane="i d")),
@econdar yTabl e(nanme="Cat 2",
uni queConst r ai nt s={ @Jni queConst r ai nt (col umNanes={"storyPart2"})})

})
public class Cat inplenments Serializable {

private |nteger id;
private String name;
private String storyPart1l;
private String storyPart2;

@d @cener at edVal ue
public Integer getld() {
return id;

}

public String getName() {
return nane;

}

@col um(t abl e="Cat 1")

36

keys

public String getStoryPart1() {
return storyPart1;

}

@Col um(t abl e="Cat 2")
public String getStoryPart2() {
return storyPart2;

}

In this example, name will be in Mai nCat . st or yPart 1 will be in Cat 1 and st or yPar t 2 will be in
Cat 2. Cat 1 will be joined to Mai nCat using the cat _i d as a foreign key, and Cat 2 using i d (ie

the same column name, the Mai nCat id column has). Plus a unique constraint on st or yPart 2

has been set.

Check out the JBoss EJB 3 tutorial or the Hibernate Annotations unit test suite for more
examples.

3. Mapping Queries

3.Mapping JPAQL/HQL queries. Mapping JPAQL/HQL queries

You can map EJBQL/HQL queries using annotations. @lanedQuery and @anedQueri es can be
defined at the class level or in a JPA XML file. However their definitions are global to the
session factory/entity manager factory scope. A named query is defined by its name and the
actual query string.

<entity- mappi ngs>
<named- query name="pl ane. getAl | ">
<query>sel ect p from Pl ane p</query>
</ naned- quer y>

</ entity-mappi ngs>

@ntity

@lanedQuer y(nane="ni ght . nor eRecent Than", query="select n from N ght n where
n.date >= :date")

public class Night {

}

public class MyDao {
doStuff () {
Query g = s. get NamedQuer y("ni ght. nor eRecent Than") ;
g. setDate("date", aMonthAgo);
List results = g.list();

37

Chapter 3. Entity Beans

You can also provide some hints to a query through an array of Quer yHi nt through a hi nt's
attribute.

The availabe Hibernate hints are

hint description

org.hibernate.cacheable Whether the query should interact with the
second level cache (defualt to false)

org.hibernate.cacheRegion Cache region name (default used otherwise)
org.hibernate.timeout Query timeout

org.hibernate.fetchSize resultset fetch size

org.hibernate.flushMode Flush mode used for this query
org.hibernate.cacheMode Cache mode used for this query
org.hibernate.readOnly Entities loaded by this query should be in read

only mode or not (default to false)

org.hibernate.comment Query comment added to the generated SQL

Table 3.2. Query hints

3.2. Mapping native queries

You can also map a native query (ie a plain SQL query). To achieve that, you need to describe
the SQL resultset structure using @ql Resul t Set Mappi ng (or @ql Resul t Set Mappi ngs if you
plan to define several resulset mappings). Like @anmedQuery, a @ql Resul t Set Mappi ng can be
defined at class level or in a JPA XML file. However its scope is global to the application.

As we will see, aresul t Set Mappi ng parameter is defined in @lanedNat i veQuery, it represents
the name of a defined @ql Resul t Set Mappi ng. The resultset mapping declares the entities
retrieved by this native query. Each field of the entity is bound to an SQL alias (or column
name). All fields of the entity including the ones of subclasses and the foreign key columns of
related entities have to be present in the SQL query. Field definitions are optional provided that
they map to the same column name as the one declared on the class property.

@\anedNat i veQuer y(nane="ni ght &rea", query="select night.id nid,
ni ght . ni ght _durati on,
+ " night.night_date, area.id aid, night.area id, area.nane "
+ "from Ni ght night, Area area where night.area id = area.id",
resul t Set Mappi ng="j oi nMappi ng")
@5ql Resul t Set Mappi ng(name="j oi nMappi ng", entities={
@ntityResul t(entityCd ass=org. hi bernate.test.annotations. query. N ght. cl ass,
fields = {
@i el dResul t (nanme="id", col um="nid"),
@i el dResul t (nanme="dur ati on", col um="ni ght _duration"),
@i el dResul t (name="dat e", col unm="ni ght date"),

38

Mapping native queries

@i el dResul t (name="area", colum="area_id"),
di scri m nat or Col um="di sc"
1.
@ntityResult(entityCd ass=org. hi bernate.test.annotations.query. Area. cl ass,
fields = {
@i el dResul t (name="id", colum="aid"),
@i el dResul t (name="nane", col um="nane")
b
}

In the above example, the ni ght &r ea named query use the j oi nMappi ng result set mapping.
This mapping returns 2 entities, Ni ght and Ar ea, each property is declared and associated to a
column name, actually the column name retrieved by the query. Let's now see an implicit
declaration of the property / column.

@nt i ty@sql Resul t Set Mappi ng(hame="inplicit",
entities=@ntityResult(entityC ass=org. hi bernate.test.annotations. query. SpaceShi p. cl
@NanedNat i veQuer y(nane="i npl i ci t Sanpl e", query="select * from
SpaceShi p",
resul t Set Mappi ng="inmplicit")
public class SpaceShip {
private String nane;
private String nodel;
private doubl e speed;

@d
public String getName() {
return nane;

}

public void set Nane(String name) {
thi s. nane = nane;

}

@Col um(nane="nodel _txt")
public String getMdel () {
return nodel ;

}

public void set Model (String nodel) {
thi s. nbdel = nodel;

}

publ i ¢ doubl e get Speed() {
return speed;

}

public voi d set Speed(doubl e speed) {
thi s. speed = speed;

}

39

Chapter 3. Entity Beans

In this example, we only describe the entity member of the result set mapping. The property /
column mappings is done using the entity mapping values. In this case the nodel property is
bound to the nodel _t xt column. If the association to a related entity involve a composite
primary key, a @i el dResul t element should be used for each foreign key column. The

@i el dResul t name is composed of the property hame for the relationship, followed by a dot
(".", followed by the name or the field or property of the primary key.

@ntity
@5ql Resul t Set Mappi ng(nanme="conposi t ekey",
entities=@ntityResult(entityCd ass=org. hi bernate.test.annotations. query. SpaceShi p. cl ass,

fields = {

@i el dResul t (nanme="nane", colum = "pane"),

@i el dResul t (name="nodel ", colum = "nodel "),

@i el dResul t (nane="speed", colum = "speed"),

@i el dResul t (name="capt ai n. fir st name",
colum = "firstn"),

@i el dResul t (nanme="capt ai n. | ast nane", colum = "lastn"),

@i el dResul t (nanme="di nensi ons. | ength", colum =
"l ength"),

@i el dResul t (name="di nensi ons. wi dt h", colum = "wi dth")

.

colums = { @Col umResul t (nanme
@Col umResul t (nane

"surface"),
"vol une") })

@\anedNat i veQuer y(name="conposi t ekey",
query="sel ect nane, nodel, speed, Inane as lastn, fname as firstn,
| ength, width,
length * width as surface from SpaceShi p",
resul t Set Mappi ng="conposi t ekey")
)
public class SpaceShip {
private String nane;
private String nodel;
private doubl e speed;
private Captain captain;
private D nensions di nensi ons;

@d
public String getName() {
return nane;

}

public void set Nane(String name) {
t hi s. name = nane;

}

@manyToOne(f et ch= Fet chType. LAZY)
@ oi nCol ums({
@oi nCol um(nane="f nane", referencedCol umNane = "firstnane"),
@ oi nCol um(nane="I| nane", referencedCol umNane = "Il ast nane")
)
public Captain getCaptain() {
return captain;

}

40

Mapping native queries

public void set Captai n(Captain captain) {
this.captain = captain;

}

public String getMddel () {
return nodel ;

}

public void set Model (String nodel) {
thi s. nbdel = nodel;

}

publ i ¢ doubl e get Speed() {
return speed;

}

publi c voi d set Speed(doubl e speed) {
thi s. speed = speed;

}

publ i ¢ Di mensi ons getDi mensi ons() {
return di mensions;

}

public void set D nensi ons(Di nensi ons di nensi ons) {
t hi s. di mensi ons = di mensi ons;
}
}

@ntity

@dd ass(ldentity.class)

public class Captain inplenments Serializable {
private String firstname;
private String |astnane;

@d
public String getFirstnane() {
return firstnane;

}

public void setFirstname(String firstname) {
this.firstnane = firstnaneg;

}

@d
public String getLastname() ({
return | astnane;

}

public void setlLastnane(String |astnanme) {
this.|lastnane = | ast nane;

}

41

Chapter 3. Entity Beans

Note

If you look at the dimension property, you'll see that Hibernate supports the

dotted notation for embedded objects (you can even have nested embedded
objects). EJB3 implementations do not have to support this feature, we do :-)

If you retrieve a single entity and if you use the default mapping, you can use the resul t d ass
attribute instead of r esul t Set Mappi ng:

@\NanmedNat i veQuery(nanme="i npl i ci t Sanpl e", query="sel ect * from SpaceShi p",
resul t d ass=SpaceShi p. cl ass)
public class SpaceShip {

In some of your native queries, you'll have to return scalar values, for example when building
report queries. You can map them in the @ql Resul t set Mappi ng through @ol umResul t. You
actually can even mix, entities and scalar returns in the same native query (this is probably not
that common though).

@3ql Resul t Set Mappi ng(name="scal ar", col utms=@Col umResul t (nane="di nensi on"))
@\anedNat i veQuer y(nane="scal ar", query="select |ength*w dth as

di nensi on from SpaceShi p",
resul t Set Mappi ng="scal ar")

An other query hint specific to native queries has been introduced: or g. hi ber nat e. cal | abl e
which can be true or false depending on whether the query is a stored procedure or not.

4. Hibernate Annotation Extensions

Hibernate 3.1 offers a variety of additional annotations that you can mix/match with your EJB 3
entities. They have been designed as a natural extension of EJB3 annotations.

To empower the EJB3 capabilities, hibernate provides specific annotations that match hibernate
features. The or g. hi ber nat e. annot at i ons package contains all these annotations extensions.

4.1. Entity

You can fine tune some of the actions done by Hibernate on entities beyond what the EJB3
spec offers.

@r g. hi ber nat e. annot ati ons. Enti ty adds additional metadata that may be needed beyond
what is defined in the standard @ntity

« mutable: whether this entity is mutable or not

42

Entity

« dynamiclnsert: allow dynamic SQL for inserts
» dynamicUpdate: allow dynamic SQL for updates

» selectBeforeUpdate: Specifies that Hibernate should never perform an SQL UPDATE unless
it is certain that an object is actually modified.

» polymorphism: whether the entity polymorphism is of PolymorphismType.IMPLICIT (default)
or PolymorphismType.EXPLICIT

« persister: allow the overriding of the default persister implementation

« optimisticLock: optimistic locking strategy (OptimisticLockType.VERSION,
OptimisticLockType.NONE, OptimisticLockType.DIRTY or OptimisticLockType.ALL)

Note

@javax.persistence.Entity is still mandatory, @org.hibernate.annotations.Entity
is not a replacement.

Here are some additional Hibernate annotation extensions

@r g. hi ber nat e. annot at i ons. Bat chSi ze allows you to define the batch size when fetching
instances of this entity (eg. @at chSi ze(si ze=4)). When loading a given entity, Hibernate will
then load all the uninitialized entities of the same type in the persistence context up to the batch
size.

@r g. hi ber nat e. annot at i ons. Pr oxy defines the laziness attributes of the entity. lazy (default
to true) define whether the class is lazy or not. proxyClassName is the interface used to
generate the proxy (default is the class itself).

@r g. hi ber nat e. annot at i ons. Wher e defines an optional SQL WHERE clause used when
instances of this class is retrieved.

@r g. hi ber nat e. annot at i ons. Check defines an optional check constraints defined in the DDL
statetement.

@nbDel et e(acti on=OnDel et eAct i on. CASCADE) on joined subclasses: use a SQL cascade
delete on deletion instead of the regular Hibernate mechanism.

@rabl e(appl i esTo="t abl eNane", indexes = { @ ndex(nanme="index1",

col umNanmes={"col uml", "colum2"}) }) creates the defined indexes on the columns of
table t abl eName. This can be applied on the primary table or any secondary table. The @abl es
annotation allows your to apply indexes on different tables. This annotation is expected where
@ avax. per si st ence. Tabl e or @ avax. per si st ence. Secondar yTabl e(s) occurs.

43

Chapter 3. Entity Beans

Note

@r g. hi ber nat e. annot at i ons. Tabl e is a complement, not a replacement to

@ avax. per si st ence. Tabl e. Especially, if you want to change the default name
of a table, you must use @ avax. per si st ence. Tabl e, not
@r g. hi ber nat e. annot at i ons. Tabl e.

@ntity
@Bat chSi ze(si ze=5)
@r g. hi ber nat e. annot ati ons. Entity(
sel ect Bef oreUpdate = true,
dynam cl nsert = true, dynam cUpdate = true,
optimsticlLock = OptimsticLockType. ALL,
pol ymor phi sm = Pol ynor phi sniType. EXPLI CI T)
@her e(cl ause="1=1")

@r g. hi ber nat e. annot at i ons. Tabl e(nane="Forest", indexes = {
@ ndex(name="i dx",

col umNanes = { "nane", "length" }) })

public class Forest { ... }

@ntity

@ nheri tance(
strat egy=I nheritanceType. JO NED

)

public class Vegetable { ... }

@ntity

@nDel et e(acti on=0nDel et eAct i on. CASCADE)
public class Carrot extends Vegetable { ... }

4 |dentifier. Identifier

@r g. hi bernate. annotati ons. Generi cGenerator allows you to define an Hi bernate
specific id generator.

@d @=ner at edVal ue(gener at or ="syst em uui d")
@neri cGener at or (nane="system uui d*, strategy = "uuid")
public String getld() {

@d @=xner at edVal ue(gener at or =" hi bseq")

@=neri cGener at or (nane="hi bseq", strategy = "seqghil 0",
paraneters = {
@par anet er (nane="max_| 0", value = "5"),

@par anet er (nane="sequence", val ue="heybabyhey")

}

)
public Integer getld() {

44

Property

st rat egy is the short name of an Hibernate3 generator strategy or the fully qualified class
name of an I denti fi er Gener at or implementation. You can add some parameters through the
par anet er s attribute.

Contrary to its standard counterpart, @zner i cGener at or can be used in package level
annotations, making it an application level generator (just like if it were in a JPA XML file).

@zneri cGener at or (nane="hi bseq", strategy = "seqghil 0",
paraneters = {
@par anet er (nane="nmax_| 0", value = "5"),

@pPar anet er (nane="sequence", val ue="heybabyhey")
}
)

package org. hi bernate. test. nodel

4.3. Property

4.3.1. Access type

The access type is guessed from the position of @ d or @nbeddedl d in the entity hierarchy.
Sub-entities, embedded objects and mapped superclass inherit the access type from the root
entity.

In Hibernate, you can override the access type to:

* use a custom access type strategy

« fine tune the access type at the class level or at the property level

An @AccessType annotation has been introduced to support this behavior. You can define the
access type on

e an entity

e asuperclass

an embeddable object
* a property
The access type is overriden for the annotated element, if overriden on a class, all the

properties of the given class inherit the access type. For root entities, the access type is
considered to be the default one for the whole hierarchy (overridable at class or property level).

If the access type is marked as "property"”, the getters are scanned for annotations, if the access

45

Chapter 3. Entity Beans

type is marked as "field", the fields are scanned for annotations. Otherwise the elements
marked with @1d or @embeddedId are scanned.

You can override an access type for a property, but the element to annotate will not be
influenced: for example an entity having access type fi el d, can annotate a field with
@ccessType("property"), the access type will then be property for this attribute, the the
annotations still have to be carried on the field.

If a superclass or an embeddable object is not annotated, the root entity access type is used
(even if an access type has been define on an intermediate superclass or embeddable object).
The russian doll principle does not apply.

@ntity

public class Person inplenents Serializable {
@d @=xneratedValue //access type field
I nt eger id;

@nbedded

@\ttributeOverrides({

@\t tributeOverride(nane

@\t tributeOverride(nane
"bor nCount r yName"))

})
Country bornl n;

"iso02", colum @ol utm(name = "bornlso2")),
"name", colum = @Col um(nane

}

@nbeddabl e@\ccessType("property") //override access type for all properties
in Country
public class Country inplenments Serializable {

private String iso2;

private String nane;

public String getlso2() {
return iso2;

}

public void setlso2(String iso2) {
this.iso2 = iso2;

}

@col uim(nane = "countryName")

public String getName() {
return nane;

}

public void set Nane(String name) {
t hi s. name = nane;

}

4.3.2. Formula

Sometimes, you want the Database to do some computation for you rather than in the JVM, you

46

Property

might also create some kind of virtual column. You can use a SQL fragment (aka formula)
instead of mapping a property into a column. This kind of property is read only (its value is
calculated by your formula fragment).

@ormul a("obj I ength * obj_hei ght * obj _w dth")
public | ong get Qvj ect Vol unme()

The SQL fragment can be as complex as you want avec even include subselects.

4.3.3. Type

@r g. hi ber nat e. annot at i ons. Type overrides the default hibernate type used: this is
generally not necessary since the type is correctly inferred by Hibernate. Please refer to the
Hibernate reference guide for more informations on the Hibernate types.

@r g. hi ber nat e. annot ati ons. TypeDef and @r g. hi ber nat e. annot at i ons. TypeDef s
allows you to declare type definitions. These annotations are placed at the class or package
level. Note that these definitions will be global for the session factory (even at the class level)
and that type definition has to be defined before any usage.

@ypeDef s(
{
@ypeDef (
name="caster",
typed ass = CasterStringType. cl ass,
paraneters = {
@par anet er (nane="cast", val ue="1Iower")
}
)
}
)

package org. hi bernate.test.annotations.entity;

public class Forest {
@ype(type="caster")
public String getSmall Text () {

When using composite user type, you will have to express column definitions. The @ol urms
has been introduced for that purpose.

@ype(type="org. hi bernate.test.annotations. entity. Monet aryAmount User Type")
@Col ums(col ums = {
@Col um(nanme="r _anmount "),
@col utm(nane="r _currency")
})
publ i c Monet aryAnmount get Amount () {
return anount;

47

Chapter 3. Entity Beans

public class MnetaryAmount inplenments Serializable {
private Bi gDeci mal anount;
private Currency currency;

4.3.4. Index

You can define an index on a particular column using the @ ndex annotation on a one column
property, the columnNames attribute will then be ignored

@Col utm(secondar yTabl e=" Cat 1")

@ ndex(nanme="st or yli ndex")

public String getStoryPart1() {
return storyPart1;

}

4.3.5. @Parent

When inside an embeddable object, you can define one of the properties as a pointer back to
the owner element.

@ntity
public class Person {
@nbeddabl e public Address address;

}

@nbeddabl e
public class Address {
@Par ent public Person owner;

person == person. addr ess. owner

4.3.6. Generated properties

Some properties are generated at insert or update time by your database. Hibernate can deal
with such properties and triggers a subsequent select to read these properties.

@ntity
public class Antenna {
@d public Integer id;
@=ner at ed(Gener ati onTi me. ALWAYS) @Col um(i nsertabl e = fal se, updatabl e

48

Inheritance

= fal se)
public String |ongitude;

@=ner at ed(Gener ati onTi me. | NSERT) @Zol um(i nsertabl e = fal se)
public String latitude;

Annotate your property as @sener at ed You have to make sure your insertability or updatability
does not conflict with the generation strategy you have chosen. When GenerationTime.INSERT
is chosen, the property must not contains insertable columns, when GenerationTime.ALWAYS
is chosen, the property must not contains insertable nor updatable columns.

@/er si on properties cannot be @xener at ed(| NSERT) by design, it has to be either NEVER or
ALWAYS.

4.3.7. @Target

Sometimes, the type guessed by reflection is not the one you want Hibernate to use. This is
especially true on components when an interface is used. You can use @ar get to by pass the
reflection guessing mechanism (very much like the t ar get Ent i t y attribute available on
associations.

@nbedded

@rar get (Oaner | npl . cl ass)

publ i c Omer get Owner() {
return owner;

}

4.4. Inheritance

SINGLE_TABLE is a very powerful strategy but sometimes, and especially for legacy systems,
you cannot add an additional discriminator column. For that purpose Hibernate has introduced
the notion of discriminator formula: @i scri i nat or For nul a is a replacement of

@i scrim nat or Col um and use a SQL fragment as a formula for discriminator resolution (no
need to have a dedicated column).

@ntity

@i scrim natorForum a("case when forest _type is null then 0 else forest_type
end")

public class Forest { ... }

By default, when querying the top entities, Hibernate does not put a restriction clause on the
discriminator column. This can be inconvenient if this column contains values not mapped in
your hierarchy (through @i scri i nat or Val ue). To work around that you can use

@orceDi scri ni nat or (at the class level, next to @i scri m nat or Col unm). Hibernate will then
list the available values when loading the entities.

49

Chapter 3. Entity Beans

4.5. Single Association related annotations

By default, when Hibernate cannot resolve the association because the expected associated
element is not in database (wrong id on the association column), an exception is raised by
Hibernate. This might be inconvenient for lecacy and badly maintained schemas. You can ask
Hibernate to ignore such elements instead of raising an exception using the @it Found
annotation. This annotation can be used on a @neToOne (with FK), @/anyToOne, @neToMany or
@manyToMany association.

@ntity
public class Child {

@manyToOne
@Not Found(act i on=Not FoundAct i on. | GNORE)
public Parent getParent() { ... }

Sometimes you want to delegate to your database the deletion of cascade when a given entity
is deleted.

@ntity

public class Child {
@manyToOne
@nDel et e(acti on=0OnDel et eAct i on. CASCADE)
public Parent getParent() { ... }

In this case Hibernate generates a cascade delete constraint at the database level.

Foreign key constraints, while generated by Hibernate, have a fairly unreadable name. You can
override the constraint name by use @or ei gnkey.

@ntity

public class Child {
@manyToOne
@ or ei gnKey(nane="FK_PARENT")
public Parent getParent() { ... }

}

alter table Child add constrai nt FK _PARENT foreign key (parent_id)
ref erences Parent

4.5.Lazy options and fetching modes. Lazy options and fetching
modes

50

Collection related annotations

EJB3 comes with the f et ch option to define lazy loading and fetching modes, however
Hibernate has a much more option set in this area. To fine tune the lazy loading and fetching
strategies, some additional annotations have been introduced:

e @azyTone: defines the lazyness option on @/anyToOne and @neToOne associations.
LazyToOneOpt i on can be PROXY (ie use a proxy based lazy loading), NO_ PROXY (use a
bytecode enhancement based lazy loading - note that build time bytecode processing is
necessary) and FALSE (association not lazy)

e @azyCol | ecti on: defines the lazyness option on @wanyToMany and @neToMany
associations. LazyCollectionOption can be TRUE (the collection is lazy and will be loaded
when its state is accessed), EXTRA (the collection is lazy and all operations will try to avoid the
collection loading, this is especially useful for huge collections when loading all the elements
is not necessary) and FALSE (association not lazy)

» @et ch: defines the fetching strategy used to load the association. Fet chMbde can be SELECT
(a select is triggered when the association needs to be loaded), SUBSELECT (only available for
collections, use a subselect strategy - please refers to the Hibernate Reference
Documentation for more information) or JO N (use a SQL JOIN to load the association while
loading the owner entity). JO N overrides any lazy attribute (an association loaded through a
JO N strategy cannot be lazy).

The Hibernate annotations overrides the EJB3 fetching options.

Annotations Lazy Fetch
@[One|Many]ToOne](fetch=Fet@Tapg LFNEO(PROXY) @Fetch(SELECT)
@[One|Many]ToOne](fetch=Fet@Topg FXBEFALSE) @Fetch(JOIN)
@ManyTo[One|Many](fetch=FetéhTapellol&dtlon(TRUE) @Fetch(SELECT)

@ManyTo[One|Many](fetch=Fet@ilypohcsER) (FALSE) @Fetch(JOIN)

Table 3.3. Lazy and fetch options equivalent

4.6. Collection related annotations

4.6.1. Enhance collection settings

It is possible to set

* the batch size for collections using @BatchSize

 the where clause, using @Where (applied on the target entity) or @WhereJoinTable (applied
on the association table)

« the check clause, using @Check

51

Chapter 3. Entity Beans

« the SQL order by clause, using @OrderBy

« the delete cascade strategy through @OnDelete(action=OnDeleteAction.CASCADE)

You can also declare a sort comparator. Use the @or t annotation. Expressing the comparator
type you want between unsorted, natural or custom comparator. If you want to use your own
comparator implementation, you'll also have to express the implementation class using the
conpar at or attribute. Note that you need to use either a Sort edSet or a Sor t edMap interface.

@neToMany(cascade=CascadeType. ALL, fetch=FetchType. EAGER)
@ oi nCol um(nane="CUST_| D")
@ort (type = Sort Type. COMPARATOR, conparator = Ti cket Conpar at or. cl ass)
@Wer e(cl ause="1=1")
@nDel et e(acti on=0nDel et eAct i on. CASCADE)
publ i ¢ SortedSet <Ti cket > get Ti ckets() {
return tickets;

}

Please refer to the previous descriptions of these annotations for more informations.

Foreign key constraints, while generated by Hibernate, have a fairly unreadable name. You can
override the constraint name by use @or ei gnkKey. Note that this annotation has to be placed on
the owning side of the relationship, i nver seNane referencing to the other side constraint.

@ntity
public class Wman {

@manyToMany(cascade = {CascadeType. ALL})
@or ei gnKey(nane = "TO WOVAN_FK", inverseNane = "TO MAN FK")
publ i c Set<Man> get Mens() {

return nens;

}
}

alter table Man_Worman add constraint TO WOMAN FK forei gn key (woman_id)
ref erences Wnman

alter table Man_Wonan add constraint TO MAN FK foreign key (nman_id)

ref erences Man

4.6.2. Extra collection types

4.6.2.1. List

Beyond EJB3, Hibernate Annotations supports true Li st and Array. Map your collection the
same way as usual and add the @I ndexCol umm. This annotation allows you to describe the
column that will hold the index. You can also declare the index value in DB that represent the
first element (aka as base index). The usual value is 0 or 1.

@neToMany(cascade = CascadeType. ALL)

52

Collection related annotations

@ ndexCol um(nanme = "drawer_position", base=1)
public List<Drawer> getDrawers() {
return drawers;

}

Note

If you forgot to set @ ndexCol unm, the bag semantic is applied. If you want the
bag semantic without the limitations of it, consider using @ol | ect i onl d.

4.6.2.2. Map

Hibernate Annotations also supports true Map mappings, if @ avax. per si st ence. MapKey is not
set, hibernate will map the key element or embeddable object in its/their own columns. To
overrides the default columns, you can use @r g. hi ber nat e. annot at i ons. MapKey if your key
is a basic type (defaulted to mapkey) or an embeddable object, or you can use

@r g. hi ber nat e. annot at i ons. MapKeyMany ToMany if your key is an entity.

Both @r g. hi ber nat e. annot ati ons. MapKey and

@r g. hi ber nat e. annot at i ons. MapKeyMany ToMany allows you to override the target element
to be used. This is especially useful if your collection does not use generics (or if you use
interfaces).

@ol | ecti onOf El ement s(t arget El ement = Si zel npl . cl ass)

@mbpKeyManyToMany(target Entity = Luggagel npl . cl ass)

private Map<Luggage, Size> sizePerlLuggage = new HashMap<Luggage,
Si ze>();

4.6.2.3. Bidirectional association with indexed collections

A bidirectional association where one end is represented as a @ ndexCol umm or

@r g. hi ber nat e. annot at i ons. MapKey[ManyToMany] requires special consideration. If there is
a property of the child class which maps to the index column, no problem, we can continue
using mappedBy on the collection mapping:

@ntity

public class Parent {
@neToMany(mappedBy="par ent ")
@r g. hi ber nat e. annot at i ons. MapKey(col ums=@Col umm(name="namne"))
private Map<String, Child> children;

}

@ntity
public class Parent {

53

Chapter 3. Entity Beans

@asi ¢
private String nane;

@manyToOne
@oi nCol um(nane="parent _i d", null abl e=f al se)
private Parent parent;

But, if there is no such property on the child class, we can't think of the association as truly
bidirectional (there is information available at one end of the association that is not available at
the other end). In this case, we can't map the collection mappedBy. Instead, we could use the
following mapping:

@ntity
public class Parent {
@neToMany

@r g. hi ber nat e. annot at i ons. MapKey(col ums=@Col umm(name="namne"))
@oi nCol um(nane="parent _i d", null abl e=f al se)
private Map<String, Child> children;

}

@ntity
public class Parent {

@manyToOne

@oi nCol um(nane="parent _id", insertabl e=fal se, updatabl e=fal se,
nul | abl e=f al se)

private Parent parent;

Note that in this mapping, the collection-valued end of the association is responsible for updates
to the foreign key.

4.6.2.4. Bag with primary key

Another interesting feature is the ability to define a surrogate primary key to a bag collection.
This remove pretty much all of the drawbacks of bags: update and removal are efficient, more
than one EAGER bag per query or per entity. This primary key will be contained in a additional
column of your collection table but will not be visible to the Java application. @Collectionld is
used to mark a collection as id bag, it also allow to override the primary key column(s), the
primary key type and the generator strategy. The strategy can be i denti ty, or any defined
generator name of your application.

@ntity
@rabl eGener at or (nane="i ds_generator", table="IDS")
public class Passport {

54

Collection related annotations

@manyToMany(cascade = CascadeType. ALL)

@oi nTabl e(nane=" PASSPORT_VI SASTAMP")

@col | ectionld(colums = @ol utm(nane="COLLECTION I D"),
type=@ype(type="1ong"),

generator = "ids_generator")

private Coll ecti on<Stanp> vi saStanp = new ArraylList();

4.6.2.5. Collection of element or composite elements

Hibernate Annotations also supports collections of core types (Integer, String, Enums, ...),
collections of embeddable objects and even arrays of primitive types. This is known as
collection of elements.

A collection of elements has to be annotated as @ol | ecti onCOf El enent s (as a replacement of
@neToMany) To define the collection table, the @oi nTabl e annotation is used on the
association property, j oi nCol unms defines the join columns between the entity primary table
and the collection table (inverseJoincolumn is useless and should be left empty). For collection
of core types or array of primitive types, you can override the element column definition using a
@col unm on the association property. You can also override the columns of a collection of
embeddable object using @\t t ri but eOverri de. To reach the collection element, you need to
append "element" to the attribute override name (eg "element" for core types, or "element.serial"
for the serial property of an embeddable element). To reach the index/key of a collection,
append "key" instead.

@ntity
public class Boy {
private |nteger id;
private Set<String> ni ckNanes = new HashSet <Stri ng>();
private int[] favoriteNunbers;
private Set<Toy> favoriteToys = new HashSet <Toy>();
private Set<Character> characters = new HashSet <Char act er>();

@d @cener at edVal ue
public Integer getld() {
return id;

}

@Col | ecti onOF El ements public Set<String> get N ckNanes() {
return ni ckNanes;

}

@col | ecti onOF El ements @oi nTabl e(
t abl e=@abl e(nane="BoyFavorit eNunbers"),
joi nCol ums = @oi nCol um(nane="Boyl d")) @Col um(nane="favoriteNunber",
nul | abl e=f al se)
@ ndexCol utm(name="nbr _i ndex")
public int[] getFavoriteNunbers() {
return favoriteNunbers;

}

55

Chapter 3. Entity Beans

@ol | ecti onOFEl ements @A\ttri buteOverride(name="el ement. serial",
col um=@ol um(name="serial _nbr"))

publ i c Set <Toy> get FavoriteToys() {
return favoriteToys;

}

@ol | ecti onOf El ements public Set<Character> getCharacters() ({
return characters;

}

}

publ i c enum Character {
CENTLE,
NORVAL,
AGGRESSI VE,
ATTENTI VE,
VI OLENT,
CRAFTY

}

@nbeddabl e

public class Toy {
public String nane;
public String serial;
publi ¢ Boy owner;

public String getName() {
return nane;

}

public void set Nane(String name) {
t hi s. name = nane;

}

public String getSerial () {
return serial;

}

public void setSerial (String serial) {
this.serial = serial;

}

@par ent

publ i c Boy get Omer () {
return owner;

}

public void set Omer (Boy owner) {
thi s. owner = owner;

}
publ i c bool ean equal s(Obj ect 0) {
if (this == 0) return true;
if (o==null || getCass() != o.getCass()) return fal se;

56

Cache

final Toy toy = (Toy) o;

if (!'name.equal s(toy.name)) return fal se;
if (!'serial.equals(toy.serial)) return false;

return true;

public int hashCode() ({
int result;
result = name. hashCode();
result = 29 * result + serial.hashCode();
return result;

On a collection of embeddable objects, the embeddable object can have a property annotated
with @ar ent . This property will then point back to the entity containing the collection.

Note

Previous versions of Hibernate Annotations used the @neToMany to mark a

collection of elements. Due to semantic inconsistencies, we've introduced the
annotation @ol | ect i onOf El ement s. Marking collections of elements the old
way still work but is considered deprecated and is going to be unsupported in
future releases

4.7. Cache

In order to optimize your database accesses, you can activave the so called second level cache
of Hibernate. This cache is configurable on a per entity and per collection basis.

@r g. hi ber nat e. annot at i ons. Cache defines the caching strategy and region of a given
second level cache. This annotation can be applied on the root entity (not the sub entities), and
on the collections.

@ntity
@Cache(usage = CacheConcurrencyStrat egy. NONSTRI CT_READ WRI TE)
public class Forest { ... }

@neToMany(cascade=CascadeType. ALL, fetch=FetchType. EAGER)
@ oi nCol um(nane="CUST_| D")
@Cache(usage = CacheConcurrencyStrat egy. NONSTRI CT_READ WRI TE)
publ i c SortedSet <Ti cket > get Ti ckets() {
return tickets;

}

57

Chapter 3. Entity Beans

@ache(
CacheConcurrencyStrat egy usage();
String region() default
String include() default "all"

o usage: the given cache concurrency strategy (NONE, READ_ONLY,

NONSTRICT_READ_WRITE, READ_WRITE, TRANSACTIONAL)

e region (optional): the cache region (default to the fgcn of the class or the fq role name of
the collection)

e i ncl ude (optional): all to include all properties, non-lazy to only include non lazy properties
(default all).

4.8. Filters

Hibernate has the ability to apply arbitrary filters on top of your data. Those filters are applied at
runtime on a given session. First, you need to define them.

@r g. hi bernat e. annot ati ons. Fi |l ter Def or @i | t er Def s define filter definition(s) used by
filter(s) using the same name. A filter definition has a name() and an array of parameters(). A
parameter will allow you to adjust the behavior of the filter at runtime. Each parameter is defined
by a @ar anDef which has a name and a type. You can also define a defaultCondition()
parameter for a given @i | t er Def to set the default condition to use when none are defined in
each individual @i | ter. A @i | t er Def (S) can be defined at the class or package level.

We now need to define the SQL filter clause applied to either the entity load or the collection
load. @i | t er is used and placed either on the entity or the collection element

@ntity

@i | t er Def (nane="m nLengt h", paraneters={ @Par anDef (nane="m nLengt h",
type="integer") })

@ilters({

@i | t er (nane="bet weenLengt h", condition=":m nLength <= | ength and
: maxLength >= | ength"),
@il ter(nanme="m nLength", condition=":m nLength <= | ength")

1)

public class Forest { ... }

When the collection use an association table as a relational representation, you might want to
apply the filter condition to the association table itself or to the target entity table. To apply the
constraint on the target entity, use the regular @i | t er annotation. However, if you wan to
target the association table, use the @i | t er Joi nTabl e annotation.

@neToMany

@oi nTabl e

//filter on the target entity table

@i | t er (nane="bet weenLengt h", condition=":m nLength <= | ength and

58

Queries

:maxLength >= | engt h")

//filter on the association table

@il terJoi nTabl e(name="security", condition=":userlevel >=
requr edLevel ")

publi c Set<Forest> getForests() { ... }

4.9. Queries

Since Hibernate has more features on named queries than the one defined in the EJB3
specification, @r g. hi ber nat e. annot at i ons. NanedQuery,

@r g. hi ber nat e. annot at i ons. NamedQueri es,

@r g. hi ber nat e. annot at i ons. NanedNat i veQuery and

@r g. hi ber nat e. annot ati ons. NamedNat i veQuer i es have been introduced. They add some
attributes to the standard version and can be used as a replacement:

flushMode: define the query flush mode (Always, Auto, Commit or Never)
« cacheable: whether the query should be cached or not

« cacheRegion: cache region used if the query is cached

« fetchSize: JDBC statement fetch size for this query

« timeout: query time out

« callable: for native queries only, to be set to true for stored procedures

- comment: if comments are activated, the comment seen when the query is sent to the
database.

» cacheMode: Cache interaction mode (get, ignore, normal, put or refresh)

readOnly: whether or not the elements retrievent from the query are in read only mode.

Those hints can be set in a standard @ avax. per si st ence. NamedQuer y annotations through
the detyped @uer yHi nt . Another key advantage is the ability to set those annotations at a
package level.

4.10. Custom SQL for CRUD operations

Hibernate gives you the avility to override every single SQL statement generated. We have
seen native SQL query usage already, but you can also override the SQL statement used to
load or change the state of entities.

@ntity
@rabl e(name=" CHACS")
@QLI nsert (sql ="I NSERT | NTO CHACS(si ze, nane, nicknane, id)
VALUES(?, upper (?),?,?)") @Q.Update(sql ="UPDATE CHACS SET size = ?,
nanme = upper(?),

59

Chapter 3. Entity Beans

ni cknane = ? WHERE id = ?")

@Q.Del et e(sql ="DELETE CHAOCS WHERE id = ?") @Q.Del et eAl | (
sqgl =" DELETE CHAGCS")

@.oader (nanedQuery = "chaos")
@\anedNat i veQuer y(nane="chaos", query="select id, size, nane, |ower(
ni cknane)
as ni cknane from CHACS where id= ?", resultC ass = Chaos. cl ass)
public class Chaos {

@d

private Long id;

private Long si ze;
private String name;
private String ni cknane;

@Q| nsert, @Q Updat e, @QLDel et e, @QDel et eAl | respectively override the INSERT
statement, UPDATE statement, DELETE statement, DELETE statement to remove all entities.

If you expect to call a store procedure, be sure to set the cal | abl e attribute to true
(@Ql nsert(cal | abl e=true, ...)).

To check that the execution happens correctly, Hibernate allows you to define one of those
three strategies:

* NONE: no check is performed: the store procedure is expected to fail upon issues
« COUNT: use of rowcount to check that the update is successful

* PARAM: like COUNT but using an output parameter rather that the standard mechanism

To define the result check style, use the check parameter
(@QLUpdat e(check=Resul t CheckSt yl e. COUNT, ...)).

You can also override the SQL load statement by a native SQL query or a HQL query. You just
have to refer to a named query with the @.oader annotation.

You can use the exact same set of annotations to override the collection related statements.

@neToMany
@ oi nCol um(nane="chaos_fk")

@QI nsert(sql =" UPDATE CASI M R_PARTI CULE SET chaos_fk = ? where id
=?")

@Q.Del et e(sql =" UPDATE CASI M R_PARTI CULE SET chaos_fk = null where
id =2?")
private Set<CasimrParticle> particles = new HashSet <Casi nmirParticle>();

The parameters order is important and is defined by the order Hibernate handle properties. You
can see the expected order by enabling debug logging for the

or g. hi bernate. persi ster. entity level. With this level enabled Hibernate will print out the
static SQL that is used to create, update, delete etc. entities. (To see the expected sequence,

60

Custom SQL for CRUD operations

remember to not include your custom SQL through annotations as that will override the
Hibernate generated static sql.)

61

62

Chapter Overriding metadata through XML.

Overriding metadata through XML

The primary target for metadata in EJB3 is annotations, but the EJB3 specification provides a
way to override or replace the annotation defined metadata through an XML deployment
descriptor. In the current release only pure EJB3 annotations overriding are supported. If you
wish to use Hibernate specific features in some entities, you'll have to either use annotations or
fallback to hbm files. You can of course mix and match annotated entities and entities describes
in hbm files.

The unit test suite shows some additional XML file samples.

1. Principles

The XML deployment descriptor structure has been designed to reflect the annotations one. So
if you know the annotations structure, using the XML schema will be straightforward for you.

You can define one ot more XML files describing your metadata, these files will be merged by
the overriding engine.

1.1. Global level metadata

You can define global level metadata available for all XML files. You must not define these
metadata more than once per deployment.

<?xm version="1.0" encodi ng="UTF- 8" ?>

<entity- mappi ngs

xm ns="http://java. sun. com xm / ns/ per si st ence/ or ni

xm ns: xsi ="http://ww. wW3. org/ 2001/ XM_Schema- i nst ance"

xsi : schemalLocati on="http://java. sun. conf xm / ns/ per si st ence/ orm
orm1 0.xsd"

versi on="1. 0" >

<per si st ence- uni t - net adat a>
<xm - mappi ng- net adat a- conpl et e/ >
<per si st ence- uni t - def aul t s>
<schema>nyschenma</ schema>
<cat al og>nycat al og</ cat al og>
<cascade- persi st/ >
</ per si st ence-uni t - def aul t s>
</ per si st ence- uni t - net adat a>

xm - mappi ng- net adat a- conpl et e means that all entity, mapped-superclasses and
embeddable metadata should be picked up from XML (ie ignore annotations).

schema / cat al og will override all default definitions of schema and catalog in the metadata
(both XML and annotations).

cascade- per si st means that all associations have PERSIST as a cascade type. We

63

Chapter Overriding metadata through XML. Overriding metadata through XML

recommend you to not use this feature.

1.2. Entity level metadata
You can either define or override metadata informations on a given entity.

<?xm version="1.0" encodi ng="UTF- 8" ?>

<entity- mappi ngs

xm ns="http://java. sun. com xm / ns/ per si st ence/ or ni'

xm ns: xsi ="http://ww. wW3. org/ 2001/ XM_Schema- i nst ance"

Xsi : schemalLocati on="http://java. sun. coml xm / ns/ per si st ence/ orm
orm1 0.xsd"

versi on="1.0">

<package>or g. hi bernat e. test. refl ecti on.java. xnl </ package>
<entity class="Adm nistration" access="PROPERTY"
nmet adat a- conpl et e="true" >
<t abl e name="t bl _adm n">
<uni que- constrai nt >
<col um- nane>fi r st nane</ col um- nane>
<col um- nanme>| ast name</ col um- name>
</ uni que- const r ai nt >
</t abl e>
<secondar y-tabl e nane="adm n2">
<pri mary-key-j oi n-col um nane="adm n_i d"
r ef er enced- col um- name="id"/ >
<uni que- constr ai nt >
<col um- name>addr ess</ col uimm- nanme>
</ uni que- const r ai nt >
</ secondary-t abl e>
<i d-cl ass cl ass="Soci al SecurityNumber"/>
<i nheritance strategy="JO NED'/>
<sequence- gener at or nanme="seghi |l 0" sequence- nane="seqghi |l 0"/ >
<t abl e- generat or nane="tabl e" tabl e="tabl ehil 0"/>

</entity>

<entity class="Postal Adm ni strati on">
<pri mary-key-joi n-col uim nane="id"/>

</entity>
</entity-mppi ngs>

o entity- mappi ngs: entity-mappings is the root element for all XML files. You must declare

the xml schema, the schema file is included in the hibernate-annotations.jar file, no internet
access will be processed by Hibernate Annotations.
package (optional): default package used for all non qualified class names in the given
deployment descriptor file.

e entity: desribes an entity.

met adat a- conpl et e defines whether the metadata description for this element is complete
or not (in other words, if annotations present at the class level should be considered or

64

Entity level metadata

not).
An entity has to have a cl ass attribute refering the java class the metadata applies on.

You can overrides entity name through the nane attribute, if none is defined and if an
@nt i ty. nane is present, then it is used (provided that metadata complete is not set).

For netadata complete (see below) element, you can define an access (either FI ELD or
PROPERTY (default)). For non medatada complete element, if access is not defined, the
@Id position will lead position, if access is defined, the value is used.

t abl e: you can declare table properties (hame, schema, catalog), if none is defined, the
java annotation is used.

You can define one or several unigue constraints as seen in the example

e secondar y-t abl e: defines a secondary table very much like a regular table except that
you can define the primary key / foreign key column(s) through the
pri mary- key-j oi n- col utm element. On non metadata complete, annotation secondary
tables are used only if there is no secondar y- t abl e definition, annotations are ignored
otherwise.
i d-cl ass: defines the id class in a similar way @ dCl ass does

o i nheri t ance: defines the inheritance strategy (JO NED, TABLE_PER_CLASS,
SI NGLE_TABLE), Available only at the root entity level
sequence- gener at or : defines a sequence generator
t abl e- gener at or : defines a table generator
pri mary- key-j oi n- col um: defines the primary key join column for sub entities when
JOINED inheritance strategy is used

<?xm version="1.0" encodi ng="UTF- 8" ?>

<entity- mappi ngs

xm ns="http://java. sun. com xm / ns/ per si st ence/ or ni

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"

xsi : schemalLocati on="http://java. sun. conf xm / ns/ per si st ence/ orm
orm1 0.xsd"

versi on="1. 0" >

<package>or g. hi bernate. test.refl ecti on.java. xn </ package>

<entity class="Misic" access="PROPERTY" netadata-conpl ete="true">
<di scri m nat or - val ue>Generi c</ di scri m nat or - val ue>
<di scri m nat or - col um | engt h="34"/>

</entity>

<entity class="Postal Adm ni strati on">

<pri mary-key-joi n-col uim nane="id"/>

<named- query name="admni nByl d" >
<query>sel ect mfrom Admi nistration mwhere mid = :id</query>
<hi nt nanme="org. hi bernate. ti meout" val ue="200"/>

</ naned- quer y>

<naned- nati ve- query name="al | Admi n" result-set-mappi ng="adm nrs">
<query>sel ect *, count(taxpayer _id) as taxPayerNunber
from Adm ni stration, TaxPayer
where taxpayer_admin_id = adm n_id group by ...</query>

65

Chapter Overriding metadata through XML. Overriding metadata through XML

<hi nt nanme="org. hi bernate. ti meout" val ue="200"/>
</ naned- nati ve- query>
<sql -resul t - set - mappi ng nane="adm nrs">
<entity-result entity-class="Adm nistration">
<field-result nane="name" colum="fld_nane"/>
</entity-result>
<col um-resul t name="t axPayer Nunber"/ >
</sql -resul t - set - mappi ng>
<attribute-override name="ground">
<col um name="fl d_ground" uni que="true" scal e="2"/>
</attribute-override>
<associ ati on-override name="referer">
<j oi n-col um name="referer_id" referenced-col um-nane="id"/>
</ associ ati on-overri de>

</entity>
</ entity-mappi ngs>

di scrimnator-value / discrimnator-col um: defines the discriminator value and
the column holding it when the SINGLE_TABLE inheritance strategy is chosen

e naned- quer y: defines named queries and possibly the hints associated to them. Those
definitions are additive to the one defined in annotations, if two definitions have the same
name, the XML one has priority.

o naned- nat i ve- quer y: defines an named native query and its sql result set mapping.
Alternatively, you can define the resul t - cl ass. Those definitions are additive to the one
defined in annotations, if two definitions have the same name, the XML one has priority.

o sql -resul t - set - mappi ng: describes the result set mapping structure. You can define
both entity and column mappings. Those definitions are additive to the one defined in
annotations, if two definitions have the same name, the XML one has priority

o attribute-override / association-override: defines a column or join column
overriding. This overriding is additive to the one defined in annotations

Same applies for <enbeddabl e> and <mapped- super cl ass>.

1.3. Property level metadata

You can of course defines XML overriding for properties. If metadata complete is defined, then
additional properties (ie at the Java level) will be ignored. Otherwise, once you start overriding a
property, all annotations on the given property are ignored. All property level metadata behave
inentity/attributes, mapped-supercl ass/attributes or enbeddabl e/ attri butes.

<attributes>
<id name="id">
<col um name="fld_id"/>
<gener at ed- val ue gener at or="generator" strategy="SEQUENCE"/ >
<t enpor al >DATE</ t enpor al >
<sequence- gener at or nanme="generator" sequence-nane="seq"/>
</id>
<versi on nane="version"/>
<enbedded nane="enbeddedOhj ect" >
<attribute-override nane"subproperty">

66

Association level metadata

<col um name="nmy_col um"/ >

</attribute-override>

</ enbedded>

<basi ¢ nane="status" optional ="fal se">
<enurmer at ed>STRI NG</ enuner at ed>

</ basi c>

<basi ¢ nane="serial" optional ="true">
<col um name="seri al bytes"/>
<l ob/ >

</ basi c>

<basi ¢ name="term nusTi me" fetch="LAZY">
<t enpor al >TI MESTAMP</ t enpor al >

</ basi c>

</attributes>

You can override a property through i d, enbedded- i d, ver si on, enbedded and basi c. Each of
these elements can have subelements accordingly: | ob, t enpor al , enurrer at ed, col um.

1.4. Association level metadata

You can define XML overriding for associations. All association level metadata behave in
entity/attributes, mapped-supercl ass/attributes or enbeddabl e/ attri butes.

<attributes>
<one-to- many nanme="pl ayers" fetch="EAGER'>
<map- key nanme="name"/>
<j oi n-col um nane="driver"/>
<j oi n-col um name="nunber" />
</ one-t o- many>
<many-t o- many nane="roads" target-entity="Admi nistration">
<or der - by>maxSpeed</ or der - by>
<j oi n-t abl e name="bus_r oad" >
<j oi n-col um name="driver"/>
<j oi n-col um nanme="nunber"/>
<i nverse-joi n-col utm nane="road_i d"/>
<uni que- constr ai nt >
<col um- name>dri ver </ col utm- nane>
<col um- name>nunber </ col um- name>
</ uni que- const r ai nt >
</j oi n-tabl e>
</ many-t o- many>
<many-t o- many nane="al | Ti meDri vers" mapped-by="drivenBuses">
</attributes>

You can override an association through one-t o- many, one-t o- one, many- t o- one, and

many- t o- many. Each of these elements can have subelements accordingly: j oi n-t abl e (which
can have j oi n- col utms and i nver se-j oi n- col ums), j oi n- col umms, map- key, and

or der - by. mapped- by and t ar get - ent i t y can be defined as attributes when it makes sense.
Once again the structure is reflects the annotations structure. You can find all semantic
informations in the chapter describing annotations.

67

68

Chapter 5.

Hibernate Validator

Annotations are a very convenient and elegant way to specify invariant constraints for a domain
model. You can, for example, express that a property should never be null, that the account
balance should be strictly positive, etc. These domain model constraints are declared in the
bean itself by annotating its properties. A validator can then read them and check for constraint
violations. The validation mechanism can be executed in different layers in your application
without having to duplicate any of these rules (presentation layer, data access layer). Hibernate
Validator has been designed for that purpose.

Hibernate Validator works at two levels. First, it is able to check in-memory instances of a class
for constraint violations. Second, it can apply the constraints to the Hibernate metamodel and
incorporate them into the generated database schema.

Each constraint annotation is associated to a validator implementation responsible for checking
the constraint on the entity instance. A validator can also (optionally) apply the constraint to the
Hibernate metamodel, allowing Hibernate to generate DDL that expresses the constraint. With
the appropriate event listener, you can execute the checking operation on inserts and updates
done by Hibernate. Hibernate Validator is not limited to use with Hibernate. You can easily use it
anywhere in your application.

When checking instances at runtime, Hibernate Validator returns information about constraint
violations in an array of | nval i dval ues. Among other information, the | nval i dval ue contains
an error description message that can embed the parameter values bundle with the annotation
(eg. length limit), and message strings that may be externalized to a Resour ceBundl e.

1. Constraints

1.1. What is a constraint?

A constraint is represented by an annotation. A constraint usually has some attributes used to
parameterize the constraints limits. The constraint apply to the annotated element.

1.2. Built in constraints

Hibernate Validator comes with some built-in constraints, which covers most basic data checks.
As we'll see later, you're not limited to them, you can in a minute write your own constraints.

Annotation Apply on Runtime checking Hibernate Metadata
impact
@Length(min=, property (String) check if the string Column length will be
max=) length match the set to max
range
@Max(value=) property (numeric or check if the value is Add a check
string representation less than or equals to = constraint on the
of a numeric) max column

69

Chapter 5. Hibernate Validator

Annotation

Apply on

Runtime checking

Hibernate Metadata

impact

@Min(value=)

@NotNull

@NotEmpty

@Past

@Future

flag=)

@Range(min=,
max=)

@Size(min=, max=)

@AssertFalse

@AssertTrue

@Valid

property (numeric or
string representation
of a numeric)

property

property

property (date or
calendar)

property (date or
calendar)

@Pattern(regex="regexp! property (string)

property (numeric or
string representation
of a numeric)

property (array,
collection, map)

property

property

property (object)

check if the value is
more than or equals
to min

check if the value is
not null

check if the string is
not null nor empty.
Check if the
connection is not null
nor empty

check if the date is in
the past

check if the date is in
the future

check if the property
match the regular
expression given a
match flag (see

Add a check
constraint on the
column

Column(s) are not
null

Column(s) are not
null (for String)

Add a check
constraint on the
column

none

none

java.util.regex. Pattern

)

check if the value is
between min and max
(included)

check if the element
size is between min
and max (included)

check that the
method evaluates to
false (useful for
constraints expressed
in code rather than
annotations)

check that the
method evaluates to
true (useful for
constraints expressed
in code rather than
annotations)

perform validation
recursively on the

Add a check
constraint on the
column

none

none

none

none

70

Error messages

Annotation Apply on Runtime checking Hibernate Metadata

impact

associated object. If
the object is a
Collection or an array,
the elements are
validated recursively.
If the object is a Map,
the value elements
are validated
recursively.

@Emalil property (String) check whether the none
string is conform to
the email address
specification

Table 5.1. Built-in constraints

1.3. Error messages

Hibernate Validator comes with a default set of error messages translated in about ten
languages (if yours is not part of it, please sent us a patch). You can override those messages
by creating a Val i dat or Messages. properties or (Val i dat or Messages_| oc. properties) and
override the needed keys. You can even add your own additional set of messages while writing
your validator annotations. If Hibernate Validator cannot resolve a key from your
resourceBundle nor from ValidatorMessage, it falls back to the default built-in values.

Alternatively you can provide a Resour ceBundl e while checking programmatically the validation
rules on a bean or if you want a completly different interpolation mechanism, you can provide an
implementation of or g. hi ber nat e. val i dat or . Messagel nt er pol at or (check the JavaDoc for
more informations).

1.4. Writing your own constraints

Extending the set of built-in constraints is extremely easy. Any constraint consists of two pieces:
the constraint descriptor (the annotation) and the constraint validator (the implementation class).
Here is a simple user-defined descriptor:

@/al i dat or Cl ass(Capi tal i zedVal i dat or. cl ass)
@rar get (METHCD)
@Ret ent i on(RUNTI MVE)
@ocunent ed
public @nterface Capitalized {
CapitalizeType type() default Capitalize.FlRST;
String nmessage() default "has incorrect capitalization";

71

Chapter 5. Hibernate Validator

t ype is a parameter describing how the property should to be capitalized. This is a user
parameter fully dependant on the annotation business.

message is the default string used to describe the constraint violation and is mandatory. You can
hard code the string or you can externalize part/all of it through the Java ResourceBundle
mechanism. Parameters values are going to be injected inside the message when the

{ par anet er} string is found (in our example Capi tal i zation i s not {type} would generate
Capitalization is not FIRST), externalizing the whole string in

Val i dat or Messages. properti es is considered good practice. See Error messages.

@/al i dat or d ass(Capi talizedValidator. cl ass)

@rar get (METHCD)

@ret ent i on(RUNTI ME)

@ocunent ed

public @nterface Capitalized {
CapitalizeType type() default Capitalize.Fl RST;
String nmessage() default "{validator.capitalized}";

#i n Val i dat or Messages. properties
val idator.capitalized=Capitalization is not {type}

As you can see the {} notation is recursive.

To link a descriptor to its validator implementation, we use the @/al i dat or O ass
meta-annotation. The validator class parameter must name a class which implements
Val i dat or <Const rai nt Annot ati on>.

We now have to implement the validator (ie. the rule checking implementation). A validation
implementation can check the value of the a property (by implementing Pr opert yConstrai nt)
and/or can modify the hibernate mapping metadata to express the constraint at the database
level (by implementing Per si st ent O assConstrai nt).

public class CapitalizedValidator
i mpl emrents Val i dat or<Capi talized>, PropertyConstraint {
private CapitalizeType type;

[/ part of the Validator<Annotation> contract,

/lallows to get and use the annotation val ues

public void initialize(Capitalized paraneters) {
type = paraneters.type();

}

//part of the property constraint contract
publ i c bool ean isValid(Cbject value) {
if (value==null) return true;
if (!'(value instanceof String)) return false;
String string = (String) val ue;
if (type == CapitalizeType. ALL) {
return string.equal s(string.toUpperCase());
}

72

Annotating your domain model

el se {
String first = string.substring(0,1);
return first.equal s(first.toUpperCase();

The i sVval i d() method should return false if the constraint has been violated. For more
examples, refer to the built-in validator implementations.

We only have seen property level validation, but you can write a Bean level validation
annotation. Instead of receiving the return instance of a property, the bean itself will be passed
to the validator. To activate the validation checking, just annotated the bean itself instead. A
small sample can be found in the unit test suite.

1.5. Annotating your domain model

Since you are already familiar with annotations now, the syntax should be very familiar.

public class Address {
private String |inel;
private String |ine2;
private String zip;
private String state;
private String country;
private |long id;

// a not null string of 20 characters maxi num
@.engt h(max=20)
@\ot Nul |
public String getCountry() {
return country;

}

/1 a non null string

@\ot Nul |

public String getLinel() {
return |inel;

}

//no constraint
public String getLine2() {
return |line2;

}

// a not null string of 3 characters maxi mum
@-engt h(max=3) @Not Nul |
public String getState() {

return state,;

}

[/ a not null numeric string of 5 characters maxi mum
/Il if the string is |longer, the nessage wil |

73

Chapter 5. Hibernate Validator

|/ be searched in the resource bundle at key 'l ong'
@engt h(max=5, nessage="{long}")
@rattern(regex="[0-9]+")
@\ot Nul |
public String getZp() {

return zip;

}

/1 shoul d al ways be true

@\ssert True

publ i ¢ bool ean isValid() {
return true;

}

// a nuneric between 1 and 2000
@d @ n(1)
@range(max=2000)
public long getld() {
return id;

}

While the example only shows public property validation, you can also annotate fields of any
kind of visibility.

@W¥BeanConst r ai nt (max=45)
public class Dog {
@\ssertTrue private bool ean isMl e;
@\ot Nul | protected String getName() { ... };

You can also annotate interfaces. Hibernate Validator will check all superclasses and interfaces
extended or implemented by a given bean to read the appropriate validator annotations.

public interface Named {
@Not Nul I String get Nane();

}

public class Dog inplenments Named {
@\ssert True private bool ean i sMal g;

public String getName() { ... };

The name property will be checked for nullity when the Dog bean is validated.

74

Database schema-level validation

2. Using the Validator framework

Hibernate Validator is intended to be used to implement multi-layered data validation, where we
express constraints in one place (the annotated domain model) and apply them at various
different layers of the application.

2.1. Database schema-level validation

Out of the box, Hibernate Annotations will translate the constraints you have defined for your
entities into mapping metadata. For example, if a property of your entity is annotated @iot Nul | ,
its columns will be declared as not nul | in the DDL schema generated by Hibernate.

2.2. Hibernate event-based validation

Hibernate Validator has two built-in Hibernate event listeners. Whenever a Pr el nsert Event or
Pr eUpdat eEvent occurs, the listeners will verify all constraints of the entity instance and throw
an exception if any constraint is violated. Basically, objects will be checked before any inserts
and before any updates made by Hibernate. This is the most convenient and the easiest way to
activate the validation process. On constraint violation, the event will raise a runtime

I nval i dSt at eExcept i on which contains an array of | nval i dval ues describing each failure.

<hi ber nat e- confi gurati on>

<event type="pre-update">

<l i stener
cl ass="org. hi bernat e. val i dat or. event . Val i dat ePr eUpdat eEvent Li st ener"/ >
</ event >
<event type="pre-insert">
<l i stener
cl ass="org. hi bernat e. val i dat or. event. Val i dat ePr el nsert Event Li st ener"/ >
</ event >

</ hi ber nat e-confi gurati on>

Note

When using Hibernate Entity Manager, the Validation framework is activated out

of the box. If the beans are not annotated with validation annotations, there is no
performance cost.

2.3. Application-level validation
Hibernate Validator can be applied anywhere in your application code.

Cl assVal i dat or personVal i dator = new Cl assVal i dator (Person. class);
Cl assVal i dat or addressVal i dator = new Cl assVal i dat or (Address. cl ass,
Resour ceBundl e. get Bundl e(" messages"”, Local e. ENGLI SH));

75

Chapter 5. Hibernate Validator

I nval i dval ue[] validati onMessages =
addressVal i dat or . get | nval i dVal ues(addr ess) ;

The first two lines prepare the Hibernate Validator for class checking. The first one relies upon
the error messages embedded in Hibernate Validator (see Error messages), the second one
uses a resource bundle for these messages. It is considered a good practice to execute these
lines once and cache the validator instances.

The third line actually validates the Addr ess instance and returns an array of | nval i dval ues.
Your application logic will then be able to react to the failure.

You can also check a particular property instead of the whole bean. This might be useful for
property per property user interaction

Cl assVal i dat or addressVal i dator = new C assVal i dat or (Address. cl ass,
Resour ceBundl e. get Bundl e(" messages", Local e. ENGLI SH));

//lonly get city property invalid val ues

I nval i dval ue[] validati onMessages =

addr essVal i dat or. get I nval i dVal ues(address, "city");
/lonly get potential city property invalid val ues

I nval i dval ue[] val i dati onMessages =

addr essVal i dat or. get Pot enti al | nval i dVal ues
("city", "Paris")

2.4. Validation informations

As a validation information carrier, hibernate provide an array of I nval i dval ue. Each
I nval i dval ue has a buch of methods describing the individual issues.

get BeanCl ass() retrieves the failing bean type

get Bean() retrieves the failing instance (if any ie not when using
get Pot enti anl nval i dval ues())

get Val ue() retrieves the failing value
get Message() retrieves the proper internationalized error message

get Root Bean() retrieves the root bean instance generating the issue (useful in conjunction with
@/al i d), is null if getPotentianinvalidValues() is used.

get PropertyPat h() retrieves the dotted path of the failing property starting from the root bean

76

Chapter 6.

Hibernate Search: Apache Lucene
Integration

Apache Lucenelis a high-performance Java search engine library available at the Apache
Software Foundation. Hibernate Annotations includes a package of annotations that allows you
to mark any domain model object as indexable and have Hibernate maintain a Lucene index of
any instances persisted via Hibernate. Apache Lucene is also integrated with the Hibernate
query facility.

Hibernate Search is a work in progress and new features are cooking in this area. So expect
some compatibility changes in subsequent versions.

1. Architecture

Hibernate Search is made of an indexing engine and an index search engine. Both are backed
by Apache Lucene.

When an entity is inserted, updated or removed to/from the database, Hibernate Search will
keep track of this event (through the Hibernate event system) and schedule an index update.
When out of transaction, the update is executed right after the actual database operation. It is
however recommended, for both your database and Hibernate Search, to execute your
operation in a transaction (whether JDBC or JTA). When in a transaction, the index update is
schedule for the transaction commit (and discarded in case of transaction rollback). You can
think of this as the regular (infamous) autocommit vs transactional behavior. From a
performance perspective, the in transaction mode is recommended. All the index updates are
handled for you without you having to use the Apache Lucene APIs.

To interact with Apache Lucene indexes, Hibernate Search has the notion of
Di rect oryProvi der . A directory provider will manage a given Lucene Di r ect ory type. You
can configure directory providers to adjust the directory target.

Hibernate Search can also use a Lucene index to search an entity and return a (list of)
managed entity saving you from the tedious Object / Lucene Document mapping and low level
Lucene APIs. The application code use the unified or g. hi ber nat e. Query API exactly the way
a HQL or native query would be done.

2. Configuration

2.1. Directory configuration

Apache Lucene has a notion of Directory where the index is stored. The Directory
implementation can be customized but Lucene comes bundled with a file system and a full

1 http://lucene.apache.org

77

http://lucene.apache.org
http://lucene.apache.org

Chapter 6. Hibernate Search: Apache Lucene™ Integration

memory implementation. Hibernate Search has the notion of Di r ect or yPr ovi der that handle
the configuration and the initialization of the Lucene Directory.

Class description Properties

org.hibernate.search.store.FSDiFélet@yReorvidased directory. i ndexBase: Base directory
The directory used will be
<indexBase>/<@ ndexed. nane>

org.hibernate.search.store. RAMNieactoyyPaseitidirectory, the | none
directory will be uniquely
indentified by the
@ ndexed. nane element

Table 6.1. List of built-in Directory Providers

If the built-in directory providers does not fit your needs, you can write your own directory
provider by implementing the or g. hi ber nat e. st ore. Di r ect or yPr ovi der interface

Each indexed entity is associated to a Lucene index (an index can be shared by several entities
but this is not usually the case). You can configure the index through properties prefixed by

hi ber nat e. sear ch. i ndexname. Default properties inherited to all indexes can be defined using
the prefix hi ber nat e. sear ch. def aul t .

To define the directory provider of a given index, you use the
hi ber nat e. search. i ndexnane. di rectory_provi der

hi ber nat e. search. defaul t. di rectory_provi der
or g. hi bernat e. search. store. FSDi r ect or yPr ovi der
hi ber nat e. search. defaul t. i ndexDi r =/ usr/| ucene/ i ndexes

hi ber nat e. search. Rul es. di rectory_provi der
or g. hi bernat e. search. st ore. RAMDI r ect or yProvi der

applied on

@ ndexed(name=" St at us")
public class Status { ... }

@ ndexed(name="Rul es")
public class Rule { ... }

will create a file system directory in / usr/ 1 ucene/ i ndexes/ St at us where the Status entities
will be indexed, and use an in memory directory named Rul es where Rule entities will be
indexed.

So you can easily defined common rules like the directory provider and base directory, and
overide those default later on on a per index basis.

78

Enabling automatic indexing

Writing your own Di r ect or yPr ovi der, you can benefit this configuration mechanism too.

2.2. Enabling automatic indexing

Finally, we enable the Sear chEvent Li st ener for the three Hibernate events that occur after
changes are executed to the database.

<hi ber nat e- confi gurati on>

<event type="post-update"

<l i stener
cl ass="org. hi ber nat e. search. event. Ful | Text | ndexEvent Li st ener" />
</ event >
<event type="post-insert"
<l i stener
cl ass="org. hi ber nat e. search. event. Ful | Text | ndexEvent Li st ener" />
</ event >
<event type="post-del ete"
<l i stener
cl ass="org. hi ber nat e. search. event. Ful | Text | ndexEvent Li st ener" />
</ event >

</ hi ber nat e- conf i gurati on>

3. Mapping entities to the index structure

All the metadata information related to indexed entities is described through some Java
annotations. There is no need for xml mapping files nor a list of indexed entities. The list is
discovered at startup time scanning the Hibernate mapped entities.

First, we must declare a persistent class as indexable. This is done by annotating the class with
@ ndexed (all entities not annotated with @ ndexed will be ignored by the indexing process):

@ntity@ ndexed(i ndex="i ndexes/ essays")
public class Essay {

}

The i ndex attribute tells Hibernate what the Lucene directory name is (usually a directory on
your file system). If you wish to define a base directory for all Lucene indexes, you can use the
hi ber nat e. sear ch. def aul t . i ndexDi r property in your configuration file. Each entity instance
will be represented by a Lucene Docunent inside the given index (aka Directory).

For each property (or attribute) of your entity, you have the ability to describe how it will be
indexed. The default (ie no annotation) means that the property is completly ignored by the
indexing process. @i el d does declare a property as indexed. When indexing an element to a
Lucene document you can specify how it is indexed:

« nane: describe under which name, the property should be stored in the Lucene Document.

79

Chapter 6. Hibernate Search: Apache Lucene™ Integration

The default value is the property name (following the JavaBeans convention)

st ore: describe whether or not the property is stored in the Lucene index. You can store the
value St or e. YES (comsuming more space in the index), store it in a compressed way
St or e. COVPRESS (this does consume more CPU), or avoid any storage St or e. NO (this is the
default value). When a property is stored, you can retrieve it from the Lucene Document (note
that this is not related to whether the element is indexed or not).

« index: describe how the element is indexed (ie the process used to index the property and the
type of information store). The different values are I ndex. NO (no indexing, ie cannot be found
by a query), I ndex. TOKENI ZED (use an analyzer to process the property),

I ndex. UN_TOKENI SED (no analyzer pre processing), | ndex. NO_NORM(do not store the
normalization data).

These attributes are part of the @i el d annotation.

Whether or not you want to store the data depends on how you wish to use the index query
result. As of today, for a pure Hibernate Search usage, storing is not necessary. Whether or not
you want to tokenize a property or not depends on whether you wish to search the element as
is, or only normalized part of it. It make sense to tokenize a text field, but it does not to do it for a
date field (or an id field).

Finally, the id property of an entity is a special property used by Hibernate Search to ensure
index unicity of a given entity. By design, an id has to be stored and must not be tokenized. To
mark a property as index id, use the @ocunent | d annotation.

@ntity
@ ndexed(i ndex="i ndexes/ essays")
public class Essay {

@d
@ocunent 1 d
public Long getld() { return id; }

@i el d(name="Abstract", index=lndex. TOKENI ZED, st ore=Store. YES)
public String getSummary() { return summary; }

@.ob

@i el d(i ndex=I ndex. TOKENI ZED)
public String getText() { return text; }

These annotations define an index with three fields: i d, Abstract and t ext. Note that by
default the field name is decapitalized, following the JavaBean specification.

Note: you must specify @ocunent | d on the identifier property of your entity class.

Lucene has the notion of boost factor. It's a way to give more weigth to a field or to an indexed

80

Property/Field Bridge

element over an other during the indexation process. You can use @oost at the field or the
class level.

@ntity
@ ndexed(i ndex="i ndexes/ essays") @oost (2)
public class Essay {

@d
@ocunent | d
public Long getld() { return id; }

@i el d(name="Abstract", index=l ndex. TOKENI ZED, st ore=Store. YES)
@Boost (2. 5f)
public String getSummary() { return sumary; }

@ob
@i el d(i ndex=I ndex. TOKENI ZED)
public String getText() { return text; }

In our example, Essay's probability to reach the top of the search list will be multiplied by 2 and
the summary field will be 2.5 more important than the test field. Note that this explaination is
actually wrong, but it is simple and close enought to the reality. Please check the Lucene
documentation or the excellent Lucene In Action from Otis Gospodnetic and Erik Hatcher.

The analyzer class used to index the elements is configurable through the
hi ber nat e. sear ch. anal yzer property. If none defined,
org. apache. | ucene. anal ysi s. st andar d. St andar dAnal yzer is used as the default.

4. Property/Field Bridge

All field of a full text index in Lucene have to be represented as Strings. Ones Java properties
have to be indexed in a String form. For most of your properties, Hibernate Search does the
translation job for you thanks to a built-in set of bridges. In some cases, though you need a fine
grain control over the translation process.

4.1. Built-in bridges

Hi ber nat e Sear ch comes bundled with a set of built-in bridges between a Java property type
and its full text representation.

Nul I elements are not indexed (Lucene does not support null elements and it does not make
much sense either)

null
null elements are not indexed. Lucene does not support null elements and this does not
make much sense either.

81

Chapter 6. Hibernate Search: Apache Lucene™ Integration

java.lang.String
String are indexed as is

short, Short, integer, Integer, long, Long, float, Float, double, Double, Biginteger, BigDecimal
Numbers are converted in their String representation. Note that numbers cannot be
compared by Lucene (ie used in ranged queries) out of the box: they have to be padded 2

java.util.Date
Dates are stored as yyyyMMddHHmMmMssSSS in GMT time (200611072203012 for Nov 7th
of 2006 4:03PM and 12ms EST). You shouldn't really bother with the internal format. What
is important is that when using a DateRange Query, you should know that the dates have to
be expressed in GMT time.

Usually, storing the date up to the milisecond is not necessary. @at eBr i dge defines the
appropriate resolution you are willing to store in the index

(@at eBri dge(resol uti on=Resol uti on. DAY)). The date pattern will then be truncated
accordingly.

@ntity @ndexed

public class Meeting {
@i el d(i ndex=I ndex. UN_TOKENI ZED)
@at eBri dge(resol uti on=Resol uti on. M NUTE)
private Date date;

Warning

A Date whose resolution is lower than M LLI SECOND cannot be a @ocunent | d

4.2. Custom Bridge

It can happen that the built-in bridges of Hibernate Search does not cover some of your property
types, or that the String representation used is not what you expect.

4.2.1. StringBridge

The simpliest custom solution is to give Hibernate Search an implementation of your expected
object to String bridge. To do so you need to implements the
or g. hi bernate. search. bri dge. Stri ngBri dge interface

2 Using a Range query is debattable and has drawbacks, an alternative approach is to use a Filter query which will filter
the result query to the appropriate range.

Hibernate Search will support a padding mechanism

82

Custom Bridge

/**

* Paddi ng | nteger bridge.

* Al nunbers will be padded with O to natch 5 digits

* @ut hor Emmanuel Bernard

*/

publ i c class Paddedl nt egerBri dge inplenments StringBridge {

private int PADDI NG = 5;

public String objectToString(Object object) {

String raw nteger = ((Integer) object).toString();

if (rawinteger.length() > PADDI NG throw new
I'I'l egal Argunment Excepti on(

"Try to pad on a nunber too big");

StringBui | der paddedl nteger = new StringBuilder();

for (int padlndex = rawi nteger.length() ; padlndex < PADDI NG ;
padl ndex++) {

paddedl nt eger . append(' 0');
}
return paddedl nt eger. append(rawi nteger).toString();

Then any property or field can use this bridge thanks to the @i el dBri dge annotation

@i el dBri dge(i npl = Paddedl nt eger Bri dge. cl ass)
private |nteger |ength;

Parameters can be passed to the Bridge implementation making it more flexible. The Bridge
implementation implements a Par anet eri zedBr i dge interface, and the parameters are passed
through the @i el dBri dge annotation.

public cl ass Paddedl nt egerBri dge inplements StringBridge,
Par amet eri zedBri dge {

public static String PADDI NG PROPERTY = "paddi ng";
private int padding = 5; //default

public void set Paranet er Val ues(Map paraneters) {
Obj ect paddi ng = paranet ers. get (PADDI NG_PROPERTY) ;
if (padding !'= null) this.padding = (Integer) padding;
}

public String objectToString(Object object) {

String rawi nteger = ((Integer) object).toString();

if (rawnteger.length() > padding) throw new
I'I'l egal Argunent Excepti on(

"Try to pad on a nunmber too big");

StringBui |l der paddedl nteger = new StringBuil der();

for (int padlndex = rawl nteger.length() ; padl ndex < padding ;
padl ndex++) {

paddedI nt eger . append(' 0');

83

Chapter 6. Hibernate Search: Apache Lucene™ Integration

}
return paddedl nt eger. append(rawi nteger).toString();

[/ property
@i el dBri dge(i npl = Paddedl nt eger Bri dge. cl ass,

parans = @par anet er (nane="paddi ng", val ue="10"))
private |nteger |ength;

The Par amet eri zedBr i dge interface can be implemented by St ri ngBri dge,
TwoWay St ri ngBri dge, Fi el dBri dge implementations (see bellow).

If you expect to use your bridge implementation on for an id property (ie annotated with
@ocunent | d), you need to use a slightly extended version of St ri ngBri dge named

TwoWaySt ri ngBri dge. Hi ber nat e Sear ch needs to read the string representation of the
identifier and generate the object out of it. There is not difference in the way the @i el dBri dge
annotation is used.

publ i c cl ass Paddedl nt egerBri dge inpl enents TwoWayStri ngBri dge,
Par amet eri zedBri dge {

public static String PADD NG PROPERTY = "paddi ng";
private int padding = 5; //default

publi c voi d set Paranet er Val ues(Map paraneters) {
hj ect paddi ng = paraneters. get (PADDI NG_PROPERTY) ;
if (padding !'= null) this.padding = (Integer) padding;
}

public String objectToString(Object object) {

String rawi nteger = ((Integer) object).toString();

if (rawinteger.length() > padding) throw new
I'I'l egal Argunment Excepti on(

"Try to pad on a nunber too big");

StringBui | der paddedl nteger = new StringBuilder();

for (int padlndex = rawi nteger.length() ; padlndex < padding ;
padl ndex++) {

paddedl nt eger . append(' 0');
}
return paddedl nt eger. append(raw nteger).toString();

}

public Object stringToQbject(String stringValue) {
return new I nteger(stringVal ue);

}

//1id property
@ocunent | d
@i el dBri dge(i npl = Paddedl nt eger Bri dge. cl ass,
parans = @par anet er (nane="paddi ng", val ue="10"))

84

Custom Bridge

private |Integer id;

It is critically important for the two-way process to be idempotent (ie object = stringToObject(
objectToString(object))).

4.2.2. FieldBridge

Some usecase requires more than a simple object to string translation when mapping a property
to a Lucene index. To give you most of the flexibility you can also implement a bridge as a

Fi el dBri dge. This interface give you a property value and let you map it the way you want in
your Lucene Docunent .This interface is very similar in its concept to the HibernateUser Type.

You can for example store a given property in two different document fields

/**
* Store the date in 3 different field year, nonth, day
* to ease Range Query per year, nonth or day
* (eg get all the elenments of decenber for the last 5 years)
*
* @aut hor Enmanuel Bernard
*/
public class DateSplitBridge inplenments Fiel dBridge {
private final static Ti meZone GMI = Ti neZone. get Ti neZone(" GMI™) ;

public void set(String name, Object val ue, Docunent document,
Fiel d. Store store,
Fi el d. I ndex index, Float boost) ({

Date date = (Date) val ue;

Cal endar cal = GregorianCal endar. getl nstance(GMVI);

cal .setTine(date);

int year = cal .get(Cal endar. YEAR);

int month = cal.get(Calendar. MONTH) + 1;

int day = cal.get(Cal endar. DAY_OF _MONTH);

/] set year

Field field = new Field(name + ".year", String.val ueX (year),
store, index);

if (boost !'=null) field.setBoost(boost);

docunent . add(field);

//set month and pad it if needed

field = new Field(name + ".nonth", nmonth < 10 ? "0" : "" +

String. val ued (nmonth), store, index);

if (boost '=null) field.setBoost(boost);

docunent . add(field);

//set day and pad it if needed

field = new Field(name + ".day", day < 10 ? "0" : "" +

String. val uet (day), store, index);

if (boost '= null) field.setBoost(boost);

docunent . add(field);

[/ property@i el dBri dge(inpl = DateSplitBridge.class)
private |nteger |ength;

85

Chapter 6. Hibernate Search: Apache Lucene™ Integration

5. Querying

The second most important capability of Hibernate Search is the ability to execute a Lucene
query and retrieve entities managed by an Hibernate session, providing the power of Lucene
without living the Hibernate paradygm, and giving another dimension to the Hibernate classic
search mechanisms (HQL, Criteria query, native SQL query).

To access the Hibernate Search querying facilities, you have to use an Hibernate
Ful | Text Sessi on. A SearchSession wrap an regular or g. hi ber nat e. Sessi on to provide
query and indexing capabilities.

Sessi on session = sessi onFactory. openSessi on();

Ful | Text Sessi on ful | Text Sessi on = Search. cr eat eFul | Text Sessi on(sessi on) ;

The search facility is built on native Lucene queries.

or g. apache. | ucene. QueryParser parser = new QueryParser("title", new
St opAnal yzer ());

org. hi bernate. | ucene. search. Query | uceneQuery = parser. parse(
"summary: Festina O brand: Sei ko");

org. hi bernate. Query full Text Query =
ful | Text Sessi on. creat eFul | Text Query(| uceneQuery);

List result = full TextQuery.list(); //return a list of managed objects

The Hibernate query built on top of the Lucene query is a regular or g. hi ber nat e. Query, you
are is the same paradygm as the other Hibernate query facilities (HQL, Native or Criteria). The
regular i st (), uniqueResult(),iterate() andscroll () can be used.

If you expect a reasonnable result number and expect to work on all of them, I i st () or

uni queResul t () are recommanded. | i st () work best if the entity bat ch-si ze is set up
properly. Note that Hibernate Seach has to process all Lucene Hits elements when using
list(),uniqueResult() anditerate(). If youwishto minimize Lucene document loading,
scrol | () is more appropriate, Don't forget to close the Scrol | abl eResul t s object when you're
done, since it keeps Lucene resources.

An efficient way to work with queries is to use pagination. The pagination API is exactly the one
available in or g. hi ber nat e. Query:

org. hi bernate. Query full Text Query = full Text Sessi on. cr eat eFul | Text Quer y(

| uceneQuery);

ful | Text Query. set FirstResult(30);

ful | Text Query. set MaxResul t (20);

full TextQuery.list(); //will return a list of 20 elenments starting fromthe

86

Indexing

30t h

Only the relevant Lucene Documents are accessed.

6. Indexing

It is sometimes useful to index an object event if this object is not inserted nor updated to the
database. This is especially true when you want to build your index the first time. You can
achieve that goal using the Ful | Text Sessi on.

Ful | Text Sessi on ful | Text Sessi on = Search. cr eat eFul | Text Sessi on(sessi on) ;
Transaction tx = full Text Sessi on. begi nTransacti on();
for (Customer custoner : custoners) {

ful | Text Sessi on. i ndex(cust oner) ;

}

tx.commit(); //index are witten at comit tine

For maximum efficiency, Hibernate Search batch index operations which and execute them at
commit time (Note: you don't need to use or g. hi ber nat e. Transacti on in a JTA environment).

87

88

	Hibernate Annotations Reference Guide
	Table of Contents
	Chapter 1. Feedback
	Preface
	Chapter 2. Setting up an annotations project
	1. Requirements
	2. Configuration

	Chapter 3. Entity Beans
	1. Intro
	2. Mapping with EJB3/JPA Annotations
	2.1. Declaring an entity bean
	2.1.1. Defining the table
	2.1.2. Versioning for optimistic locking

	2.2. Mapping simple properties
	2.2.1. Declaring basic property mappings
	2.2.2. Declaring column attributes
	2.2.3. Embedded objects (aka components)
	2.2.4. Non-annotated property defaults

	2.. Mapping identifier properties
	2.4. Mapping inheritance
	2.4.1. Table per class
	2.4.2. Single table per class hierarchy
	2.4.3. Joined subclasses
	2.4.4. Inherit properties from superclasses

	2.5. Mapping entity bean associations/relationships
	2.5.1. One-to-one
	2.5.2. Many-to-one
	2.5.3. Collections
	2.5.3.1. Overview
	2.5.3.2. One-to-many
	2.5.3.2.1. Bidirectional
	2.5.3.2.2. Unidirectional
	2.5.3.2.3. Unidirectional with join table
	2.5.3.2.4. Defaults

	2.5.3.3. Many-to-many
	2.5.3.3.1. Definition
	2.5.3.3.2. Default values

	2.5.4. Transitive persistence with cascading
	2.5.5. Association fetching

	2.6. Mapping composite primary and foreign keys
	2.7. Mapping secondary tables

	3. Mapping Queries
	3.Mapping JPAQL/HQL queries. Mapping JPAQL/HQL queries
	3.2. Mapping native queries

	4. Hibernate Annotation Extensions
	4.1. Entity
	4.Identifier. Identifier
	4.3. Property
	4.3.1. Access type
	4.3.2. Formula
	4.3.3. Type
	4.3.4. Index
	4.3.5. @Parent
	4.3.6. Generated properties
	4.3.7. @Target

	4.4. Inheritance
	4.5. Single Association related annotations
	4.5.Lazy options and fetching modes. Lazy options and fetching modes

	4.6. Collection related annotations
	4.6.1. Enhance collection settings
	4.6.2. Extra collection types
	4.6.2.1. List
	4.6.2.2. Map
	4.6.2.3. Bidirectional association with indexed collections
	4.6.2.4. Bag with primary key
	4.6.2.5. Collection of element or composite elements

	4.7. Cache
	4.8. Filters
	4.9. Queries
	4.10. Custom SQL for CRUD operations

	Chapter Overriding metadata through XML. Overriding metadata through XML
	1. Principles
	1.1. Global level metadata
	1.2. Entity level metadata
	1.3. Property level metadata
	1.4. Association level metadata

	Chapter 5. Hibernate Validator
	1. Constraints
	1.1. What is a constraint?
	1.2. Built in constraints
	1.3. Error messages
	1.4. Writing your own constraints
	1.5. Annotating your domain model

	2. Using the Validator framework
	2.1. Database schema-level validation
	2.2. Hibernate event-based validation
	2.3. Application-level validation
	2.4. Validation informations

	Chapter 6. Hibernate Search: Apache Lucene™ Integration
	1. Architecture
	2. Configuration
	2.1. Directory configuration
	2.2. Enabling automatic indexing

	3. Mapping entities to the index structure
	4. Property/Field Bridge
	4.1. Built-in bridges
	4.2. Custom Bridge
	4.2.1. StringBridge
	4.2.2. FieldBridge

	5. Querying
	6. Indexing

