
JBoss Cache 1.4.1

Frequently Asked
Questions

4.3
Ben Wang, Bela Ban, Manik Surtani, Scott Marlow, Galder

Zamarreño
ISBN: N/A

Publication date: June, 2007

This book is a compilation of frequently asked questions about JBoss Cache

JBoss Cache 1.4.1

JBoss Cache 1.4.1: Frequently Asked Questions
Author Ben Wang, Bela Ban, Manik

Surtani, Scott Marlow, Galder
Zamarreño

Copyright © 2008 Red Hat, Inc

Copyright © 2008 Red Hat, Inc. This material may only be distributed subject to the terms and conditions set forth in the
Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License (which is presently available at
http://creativecommons.org/licenses/by-nc-sa/3.0/).

Red Hat and the Red Hat "Shadow Man" logo are registered trademarks of Red Hat, Inc. in the United States and other
countries.

All other trademarks referenced herein are the property of their respective owners.

The GPG fingerprint of the security@redhat.com key is:

CA 20 86 86 2B D6 9D FC 65 F6 EC C4 21 91 80 CD DB 42 A6 0E

1801 Varsity Drive
Raleigh, NC 27606-2072
USA
Phone: +1 919 754 3700
Phone: 888 733 4281
Fax: +1 919 754 3701
PO Box 13588
Research Triangle Park, NC 27709
USA

http://creativecommons.org/licenses/by-nc-sa/3.0/

JBoss Cache 1.4.1

1. General Information ... 1
2. JBoss Cache - Tree Cache ... 3
3. JBoss Cache - Pojo Cache ..15
4. Eviction Policies ..23
5. Cache Loaders ...25
6. Troubleshooting ..29

v

vi

1 http://www.gnu.org/licenses/lgpl.html
2 http://www.jboss.com/products/jbosscache/downloads
3 http://wiki.jboss.org/wiki/Wiki.jsp?page=CVSRepository

General Information

1.1.
What is JBoss Cache?

JBoss Cache is a replicated and transactional cache. It is replicated since multiple JBoss
Cache instances can be distributed (either within the same JVM or across several JVMs
whether they reside on the same machine or on different machines on a network) and
data is replicated across the whole group. It is transactional because a user can configure
a JTA compliant transaction manager and make the cache operation transactional. Note
that the cache can also be run without any replication; this is the local mode.

Currently, JBoss Cache consists of two components: a generic cache (implemented
internally as org.jboss.cache.TreeCache) and a POJO cache (implemented internally
as org.jboss.cache.aop.PojoCache). TreeCache is a tree-structured cache that
provides replication and transaction context, while PojoCache extends the functionality of
TreeCache but behaves as a true object cache providing transparent and finer-grained
object mapping into internal cache.

1.2.
Who are the JBoss Cache developers?

JBossCache has been developed by Bela Ban, Ben Wang, Harald Gliebe, Manik Surtani
and Brian Stansberry. Manik is the lead on JBoss Cache and Ben is the lead on
PojoCache.

1.3.
What is the license for JBoss Cache?

JBoss Cache is licensed under LGPL1 .

1.4.
Where can I download JBoss Cache?

The JBoss Cache product download page2 has prebuilt binaries as well as source
distributions. You can also grab snapshots from the JBoss CVS repository (see this wiki
page3) - the module name is JBossCache

1.5.
How do I build JBoss Cache from CVS sources?

To build, do sh build.sh jar . This will produce jboss-cache.jar in the dist/lib

directory. Or if you want to build the standalone package, do sh build.sh dist this will
produce dist/jboss-cache-dist.zip Note that you will need to use JDK 5.0 to build the
distribution. You can still use the binaries you build with J2SE 1.4.x though.

Chapter 1.

1

http://www.gnu.org/licenses/lgpl.html
http://www.gnu.org/licenses/lgpl.html
http://www.jboss.com/products/jbosscache/downloads
http://www.jboss.com/products/jbosscache/downloads
http://wiki.jboss.org/wiki/Wiki.jsp?page=CVSRepository
http://wiki.jboss.org/wiki/Wiki.jsp?page=CVSRepository
http://wiki.jboss.org/wiki/Wiki.jsp?page=CVSRepository

4 http://www.jboss.org/index.html?module=bb&op=viewforum&f=157

1.6.
Which JVMs are supported by JBoss Cache?

JBoss Cache has been tested and supported on J2SE 1.4.x and JDK 5.0. On jboss-3.2
CVS tree, it also compiles on JDK1.3, but there is no official support for this version and
using this is not recommended.

1.7.
From JBoss Cache 1.3.0 onwards, there is a new directory lib-50 , what is it?

From JBoss Cache 1.3.0 onwards, we support the use of Java 5 annotations, used by
PojoCache. As a result, there are jboss-aop-jdk50.jar and jboss-cache-jdk50.jar

that are needed to work with the Java 5 annotations. You will need to replace
jboss-aop.jar and jboss-cache.jar in the lib directory with the -jdk50 versions if you
intend to use PojoCache, Java 5 and annotations.

1.8.
How do I know the version of JBoss Cache that I am using?

Since release 1.2, you can check the jar version by running: java -jar

jboss-cache.jar org.jboss.cache.Version .

1.9.
Can I run JBoss Cache outside of JBoss Application Server?

Of course! JBoss Cache comes in two flavors:

• Integrated with JBoss Application Server as an MBean service.

• Standalone, that can run in any Java EE server such as BEA WebLogic or IBM
Websphere. Of course, it can also run in a standalone Java process (i.e., outside Java
EE context).

1.10.
Where can I report bugs or problems?

Please report any bugs or problems to JBoss Cache User Forum 4 .

Chapter 1. General Information

2

http://www.jboss.org/index.html?module=bb&op=viewforum&f=157
http://www.jboss.org/index.html?module=bb&op=viewforum&f=157

JBoss Cache - Tree Cache

2.1.
How do I deploy JBoss Cache as a MBean service?

To deploy JBoss Cache as an MBean inside JBoss, you can copy the configuration xml
file over to the deploy directory (from all configuration whereby the necessary jars are
present). Under the standalone package etc/META-INF directory , there are example
configuration files for different cache modes that can be used to deploy JBoss Cache as
well.

2.2.
How do I know if my JBoss Cache MBean has been deployed?

To verify that your JBoss Cache MBean is deployed correctly, you can first check the log
output under the command console. Next you can verify it from JBoss JMX console. Look
for jboss.cache domain.

2.3.
How do I access the JBoss Cache MBean?

Accessing the JBoss Cache MBean is just like accessing any JBoss MBean. Here is a
code snippet:

import org.jboss.mx.util.MBeanServerLocator;
import org.jboss.mx.util.MBeanProxyExt;
import org.jboss.cache.TreeCacheMBean;
import javax.management.MBeanServer;
...

MBeanServer server;
TreeCacheMBean cache;

public init() throws Exception
{
try
{
server = MBeanServerLocator.locateJBoss();
cache = (TreeCacheMBean)

MBeanProxyExt.create(TreeCacheMBean.class,
"jboss.cache:service=TreeCache",
server);
}
catch (Exception ex)
{
// handle exception
}
}

Chapter 2.

3

1 http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossCacheHibernate

public void myBusinessMethod()
{
Object value = cache.get("/my/node", "myKey");

HashMap stuff = new HashMap();
stuff.put("key1", "value1");
stuff.put("key2", "value2");
stuff.put("key3", "value3");

cache.put("/my/new/node", stuff);

cache.remove("/my/node");

...
}

2.4.
Can I run JBoss Cache on JBoss AS 3.2.x releases?

Yes. The JBoss Cache source code is also up to date on the jboss-3.2 CVS branch.
However, only TreeCache is supported there since JBossAop (which PojoCache relies on)
is only available in JBoss AS 4.x onwards.

2.5.
Can I run multiple JBoss Cache instances on the same VM?

Yes. There are some scenarios where you may want to run multiple instances of JBoss
Cache. For example, you want to run multiple local cache instances with each instance
having its own configuration (e.g., different cache policy). In this case, you will need
multiple xml configuration files.

2.6.
Can TreeCache run as a second level cache inside Hibernate?

Yes. Since Hibernate 3.0 release, you can configure it to use JBoss Cache (namely,
TreeCache) as a second level cache. For details, see Hibernate documentation, and also
see http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossCacheHibernate 1

Note that since Hibernate 3.0.2 and JBossCache 1.2.2, we have fixed a critical bug that
depending on the usage pattern can cause deadlock during query caching.

2.7.
What about using PojoCache as a Hibernate cache?

It is not necessary to use PojoCache for second level cache inside Hibernate because
Hibernate manages fine-grained fields in Java objects. So using PojoCache won't provide

Chapter 2. JBoss Cache - Tree Cache

4

http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossCacheHibernate
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossCacheHibernate

2 http://www.jgroups.org

any advantage.

2.8.
How can I configure JBoss Cache?

You can configure the JBoss Cache through a configuration xml file. Or you can set it
programmatically through its get/set methods. Check with the documentation for both
examples.

2.9.
In the configuration xml file, there are tags such as class , MBean , etc. What are these?

These are tags for deploying JBoss Cache as a JBoss MBean service. For consistency,
we have kept them in the standalone package as well, specifically, the MBean tag. If you
run in standalone mode, JBoss Cache will ignore these elements.

2.10.
What is the difference between the different cache modes?

JBossCache has five different cache modes, i.e., LOCAL , REPL_SYNC , REPL_ASYNC ,
INVALIDATION_SYNC and INVALIDATION_ASYNC . If you want to run JBoss Cache as a
single instance, then you should set the cache mode to LOCAL so that it won't attempt to
replicate anything. If you want to have synchronous replication among different JBoss
Cache instances, you set it to REPL_SYNC . For asynchronous replication, use AYSNC_REPL

. If you do not wish to replicate cached data but simply inform other caches in a cluster
that data under specific addresses are now stale and should be evicted from memory, use
INVALIDATION_SYNC or INVALIDTAION_ASYNC . Synchronous and asynchronous behavior
applies to invalidation as well as replication.

Note that ASYNC_REPL and INVALIDATION_ASYNC are non-blocking. This can be useful
when you want to have another JBoss Cache serving as a mirror or backup and you don't
want to wait for confirmation that this mirror has received your messages.

2.11.
How does JBoss Cache's replication mechanism work?

JBoss Cache leverages JGroups2 as a replication layer. A user can configure the cluster
of JBoss Cache instances by sharing the same cluster name (cluster name). There is
also an option of whether to populate the cache data upon starting a new instance in the
ClusterConfig attribute.

Note that once all instances join the same replication group, every replication change is
propagated to all participating members. There is no mechanism for sub-partitioning
where some replication can be done within only a subset of members. This is on our to do
list.

2.12.

5

http://www.jgroups.org
http://www.jgroups.org

I run a 2 node cluster. If the network dies, do the caches continue to run?

Yes, both will continue to run, but depending on your replication mode, all transactions or
operations may not complete. If REPL_SYNC is used, operations will fail while if REPL_ASYNC
is used they will succeed. Even if they succeed though, caches will be out of sync.

2.13.
Can I plug in library X instead of JGroups to handle remote calls and group
communications?

At this stage (JBoss Cache 1.x) the answer is no. We do have an abstraction layer
between the communication suite and JBoss Cache in the pipelines, and this may appear
as a feature at some stage in the future.

2.14.
Does the cache need to replicate to every other instance in the cluster? Isn't this slow if
the cluster is large?

As of JBoss Cache 1.4.0, replication need not occur to every node in the cluster. This
feature - called Buddy Replication - allows each node to pick one or more 'buddies' in the
cluster and only replicate to its buddies. This allows a cluster to scale very easily with no
extra impact on memory or network traffic with each node added.

See the User Guide for more information on Buddy Replication, and how it can be used to
achieve very high scalability.

2.15.
If I have the need for different TreeCache properties (e.g., CacheMode and
IsolationLevel), do I simply need to create multiple TreeCache instances with the
appropriate configuration?

Yes. All the above mentioned properties are per cache instance. Therefore you will need a
separate JBoss Cache instance.

2.16.
Does the Tree Cache config ClusterName have any relation to the JBoss AS cluster
PartitionName ?

Yes. They are both JGroups group names. Besides the notion of a channel in JGroups, it
also can partition the channel into different group names.

2.17.
When using multiple JGroups based components [cluster-service.xml, treecache (multiple
instances)], what is the correct/valid way to configure those components to make sure my
multicast addresses don't conflict?

Chapter 2. JBoss Cache - Tree Cache

6

There are two parameters to consider: multicast address (plus port) and the group name.
At minimum, you will have to run components using a different group name. But whether
to run them on the same channel depends upon whether the communication performance
is critical for you or not. If it is, then it'd be best to run them on different channels.

2.18.
Does JBoss Cache currently support cache persistence storage?

Yes. Starting with release 1.1, JBoss Cache has a CacheLoader interface that supports
cache persistence. See below.

2.19.
Does JBoss Cache currently support cache passivation/ overflow to a data store?

Yes. Starting with release 1.2.4, JBoss Cache uses the CacheLoader to support cache
passivation/ overflow. See documentation on how to configure and use this feature.

2.20.
Is JBoss Cache thread safe?

Yes, it is thread safe.

2.21.
Does JBoss Cache support XA (2PC) transactions now?

No, although it is also on our to do list. Our internal implementation does use a similar
2PC procedure to coordinate a transaction among different instances.

2.22.
Which TransactionManagers are supported by JBoss Cache?

JBoss Cache supports any TransactionManager that is JTA compliant such as JBossTM.
A user can configure the transaction manager through the configuration xml setting.
JBossCache also has a built in dummy transaction manager (
org.jboss.cache.tm.DummyTransactionManager) for testing purposes only. But note
that DummyTransactionManager is not thread safe .i.e., it does not support concurrent
transactions. Instead, only one transaction is allowed at a time.

2.23.
How do I set up the cache to be transactional?

You either use the default (JBoss) TransactionManager to run JBossCache inside JBoss,
or you have to implement the TransactionManagerLookup interface, and return an
instance of your javax.transaction.TransactionManager. The configuration property
TransactionManagerLookupClass defines the class to be used by the cache to fetch a
reference to a TransactionManager. It is trivial to implement this class to support other

7

TransactionManagers. Once this attribute is specified, the cache will look up the
transaction context from this transaction manager.

For the client code, here is a snippet to start and commit a transaction:

tx = (UserTransaction)new InitialContext(prop).lookup("UserTransaction");
tree = new TreeCache();
config = new PropertyConfigurator();
config.configure(tree, "META-INF/replSync-service.xml");

tx.begin()
tree.put(fqn, key, value);
tx.commit();

2.24.
How do I control the cache locking level?

JBossCache lets you control the cache locking level through the transaction isolation level.
This is configured through the attribute IsolationLevel . Currently, JBossCache employs
pessimistic locking internally. And the transaction isolation level from the pessimist locking
corresponds to JDBC isolation levels, namely, NONE , READ_UNCOMMITTED ,
READ_COMMITTED , REPEATABLE_READ , and SERIALIZABLE . Note that these isolation
levels are ignored if optimistic locking is used. For details, please refer to the user manual.

2.25.
How does JBoss Cache lock data for concurrent access?

By default JBoss Cache uses pessimistic locking to lock data nodes, based on the
isolation level configured. Since JBoss Cache 1.3.0, we also offer optimistic locking to
allow for greater concurrency at the cost of slight processing overhead and performance.
See the documentation for a more detailed discussion on concurrency and locking in
JBoss Cache.

2.26.
How do I enable Optimistic Locking in JBoss Cache?

Use the XMl attribute NodeLockingScheme . Note that IsolationLevel is ignored if
NodeLockingScheme is set to OPTIMISTIC . Also note that NodeLockingScheme defaults to
PESSIMISTIC if omitted.

2.27.
How does the write lock apply to an Fqn node, say, "/org/jboss/test"?

First of all, JBossCache has a notion of root that serves as a starting point for every
navigational operation. The default is "/" (since the default separator is "/" for the fqn). The
locking then is applied to the node under root, for example "/org" (no locking "/").

Chapter 2. JBoss Cache - Tree Cache

8

Furthermore, let's say when JBossCache needs to apply a write lock on node
"/org/jboss/test", it will first try to obtain read lock from the parent nodes recursively (in this
example, "/org", and "/org/jboss"). Only when it succeeds then it will try to obtain a write
lock on "/org/jboss/test".

2.28.
Can I use the cache locking level even without a transaction context?

Yes. JBossCache controls the individual node locking behavior through the isolation level
semantics. This means even if you don't use a transaction, you can specify the lock level
via isolation level. You can think of the node locking behavior outside of a transaction as if
it is under transaction with auto_commit on.

2.29.
With replication (REPL_SYNC/REPL_ASYNC) or invalidation
(INVALIDATION_SYNC/INVALIDATION_ASYNC), how often does the cache broadcast
messages over the network?

If the updates are under transaction, then the broadcasts happen only when the
transaction is about to commit (actually during the prepare stage internally). That is, it will
be a batch update. However, if the operations are not under transaction context, then
each update will trigger replication. Note that this has performance implication if network
transport is heavy (it usually is).

2.30.
How can I do a mass removal?

If you do a cache.remove("/root"), it will recursively remove all the entries under "/root".

2.31.
Can I monitor and manage the JBoss Cache?

With JBoss Cache 1.3.0, you can if you are running JBoss Cache within JBoss AS or are
using JDK 5.0's jconsole utility. See the chapter titled Management Information in the
JBoss Cache user guide for more details.

2.32.
Can I disable JBoss Cache management attributes in JBoss Cache 1.3.0?

Yes, you can. Set the UseInterceptorMbeans configuration attribute to false (this
defaults to true). See the chapter titled Management Information in the JBoss Cache
user guide for more details.

2.33.
What is jboss-serialization.jar, introduced in JBoss Cache 1.4.x and do I need this?

9

3 http://labs.jboss.org/portal/index.html?ctrl:id=page.default.info&project=serialization

jboss-serialization.jar is the JBoss Serialization 3 library, which is much more efficient in
terms of speed and CPU usage as well as the generated byte stream size than standard
Java serialization. This very significantly improves replication performance of custom
objects placed in the cache.

From 1.4.x, JBoss Cache relies on this library and it is needed to run JBoss Cache.

2.34.
Can I disable JBoss Serialization and revert back to standard Java serialization?

Yes you can, by passing in the -Dserialization.jboss=false environment variable to
your JVM.

2.35.
Does JBoss Cache support partitioning?

Not right now. JBoss Cache does not support partitioning that a user can configure to
have different set of data residing on different cache instances while still participating as a
replication group.

2.36.
Does JBoss Cache handle the concept of application classloading inside, say, a J2EE
container?

Application-specific classloading is used widely inside a J2EE container. For example, a
web application may require a new classloader to scope a specific version of the user
library. However, by default JBoss Cache is agnostic to the classloader. In general, this
leads to two kinds of problems:

• Object instance is stored in cache1 and replicated to cache2. As a result, the instance in
cache2 is created by the system classloader. The replication may fail if the system
classloader on cache2 does not have access to the required class. Even if replication
doesn't fail, a user thread in cache2 may not be able to access the object if the user
thread is expecting a type defined by the application classloader.

• Object instance is created by thread 1 and will be accessed by thread 2 (with two
different classloaders). JBossCache has no notion of the different classloaders involved.
As a result, you will have a ClassCastException . This is a standard problem in
passing an object from one application space to another; JBossCache just adds a level
of indirection in passing the object.

To solve the first kind of issue, in JBoss Cache 1.2.4 we introduced the concept of a
TreeCacheMarshaller . Basically, this allows application code to register a classloader
with a portion of the cache tree for use in handling objects replicated to that portion. See
the TreeCacheMarshaller section of the user guide for more details.

Chapter 2. JBoss Cache - Tree Cache

10

http://labs.jboss.org/portal/index.html?ctrl:id=page.default.info&project=serialization
http://labs.jboss.org/portal/index.html?ctrl:id=page.default.info&project=serialization

To solve the second kind of issue, the only solution (that we know of) is to cache
"serialized" byte code and only de-serialize it during every object get (and this will be
expensive!). That is, during a put operation, the object instance will be serialized and
therefore can be deserialized safely by a "foreign" classloader. However, the performance
penalty of this approach is quite severe so in general another local in-vm version will need
to be used as a "near-line" cache. Note also that each time the serialized bytes are
deserialized, a new instance of the object is created.

To help with this kind of handling, JBoss has a utility class called MarshalledValue that
wraps around the serialized object. Here is a code snippet that illustrates how you can
create a wrapper around JBossCache to handle the classloader issue:

import org.jboss.invocation.MarshalledValue;

public class CacheService {
private TreeCache cache_;

public object get(Fqn fqn, String key) {
return getUnMarshalledValue(cache_.get(fqn, key));
}

public object set(Fqn fqn, String key, Object value) {
cache_.put(fqn, key, getMarshalledValue(value));
return value; // only if successful
}

...

private Object getUnMarshalledValue(object value) {
// assuming we use the calling thread context classloader
return ((MarshalledValue)value).get();
}

private Object getMarshalledValue(Object value) {
return new MarshalledValue(value);
}
}

2.37.
Does JBoss Cache currently support pre-event and post-event notification?

Yes. Starting with release 1.2.4, JBoss Cache has introduced
ExtendedTreeCacheListener which takes in consideration pre and post event notification.
See documentation for more details. Note that TreeCacheListener and
ExtendedTreeCacheListener will be merged into TreeCacheListener in release 1.3.

2.38.
How do I implement a custom listener to listen to TreeCache events?

11

You create a class (myListener) that extends AbstractTreeCacheListener and provide
concrete implementation for the node events that you are interested in. Then you add this
listener to the TreeCache instance on startup to listen to the events as they occur by
calling TreeCache.addTreeCacheListener(myListener).

public class MyListener extends AbstractTreeCacheListener
{
...

public void nodeModify(Fqn fqn, boolean pre, boolean isLocal) {
if(log.isTraceEnabled()){
if(pre)
log.trace("Event DataNode about to be modified: " + fqn);
else
log.trace("Event DataNode modified: " + fqn);
}
}

...
}

2.39.
Can I use useRegionBasedMarshalling attribute in JBoss Cache in order to get around
ClassCastExceptions happening when accessing data in the cache that has just been
redeployed?

Yes, you can. Originally, TreeCache Marshalling was designed as a workaround for those
replicated caches that upon state transfer did not have access to the classloaders defining
the objects in the cache.

On each deployment, JBoss creates a new classloader per the top level deployment
artifact, for example an EAR. You also have to bear in mind that a class in an application
server is defined not only by the class name but also its classloader. So, assuming that
the cache is not deployed as part of your deployment, you could deploy an application and
put instances of classes belonging to this deployment inside the cache. If you did a
redeployment and try to do a get operation of the data previously put, this would result on
a ClassCastException. This is because even though the class names are the same, the
class definitions are not. The current classloader is different to the one when the classes
were originally put.

By enabling marshalling, you can control the lifecycle of the data in the cache and if on
undeployment, you inactivate the region and unregister the classloader that you'd have
registered on deployment, you'd evict the data in the cache locally. That means that in the
next deployment, the data won't be in the cache, therefore avoiding the problem.
Obviously, using marshalling to get around this problem is only recommended when you
have some kind of persistence backing where the data survives, for example using

Chapter 2. JBoss Cache - Tree Cache

12

CacheLoaders, or when JBossCache is used as a second level cache in a persistence
framework.

To implement this feature, please follow the instructions indicated in the example located
in the TreeCacheMarshaller section of the user's guide. It's worth noting that instead of a
ServletContextListener, you could add this code into an MBean that contained lifecycle
methods, such as start() and stop(). The key would be for this MBean to depend on
the target cache, so that it can operate as long as the cache is up and running.

13

14

JBoss Cache - Pojo Cache

3.1.
What is PojoCache?

PojoCache (currently implemented PojoCache as a sub-class of TreeCache) is a
fine-grained field-level replicated and transactional POJO (plain old Java object) cache. By
POJO, we mean that the cache: 1) automatically manages object mapping and
relationship for a client under both local and replicated cache mode, 2) provides support
for inheritance relationship between "aspectized" POJOs. By leveraging the dynamic AOP
in JBossAop, it is able to map a complex object into the cache store, preserve and
manage the object relationship behind the scene. During replication mode, it performs
fine-granularity (i.e., on a per-field basis) update, and thus has the potential to boost
cache performance and minimize network traffic.

From a user perspective, once your POJO is managed by the cache, all cache operations
are transparent. Therefore, all the usual in-VM POJO method semantics are still
preserved, providing ease of use. For example, if a POJO has been put in PojoCache (by
calling putObject, for example), then any get/set method will be intercepted by PojoCache
to provide the data from the cache.

3.2.
What's the relationship between PojoCache and TreeCacheAop classes?

Since release 1.4, we have created a new class called PojoCache (to better reflect the
cache nature). The old implementation TreeCacheAop has been deprecated.

3.3.
Does PojoCache have all the functional capabilities of TreeCache?

Yes. PojoCache extends TreeCache so it has all the same features TreeCache such as
cache mode, transaction isolation level, and eviction policy.

3.4.
What is the difference between TreeCache and PojoCache?

Think of PojoCache as a TreeCache on steroids. :-) Seriously, both are cache stores-- one
is a generic cache and the other other one POJO Cache. However, while TreeCache only
provides pure object reference storage (e.g., put(FQN fqn, Object key, Object

value)), PojoCache goes beyond that and performs fine-grained field level replication
object mapping and relationship management for a user behind the scenes. As a result, if
you have complex object systems that you would like to cache, you can have PojoCache
manage it for you. You simply treat your object systems as they are residing in-memory,
e.g., use your regular POJO methods without worrying about cache management.
Furthermore, this is true in replication mode as well.

Chapter 3.

15

3.5.
What are the steps to use the PojoCache feature?

Starting from release 1.3, depends on the JDK you use, it has slightly different steps. But
in general, in order to use PojoCache, you will need to:

• prepare POJO. You can do either via xml declaration or annotation. For annotation, you
can use either the JDK1.4 style or JDK50 one (of which is part of JVM spec). If you use
JDK14, you will also need a annotation pre-compiler (annoc) to pre-process it.

• instrumentation. You will need to instrument your POJO either at compile-time or
load-time. If you do it during compile-time, you use so-called aop pre-compiler (aopc) to
do bytecode manipulation. If you do it via load-time, however, you need either a special
system class loader or, in JDK50, you can use the javaagent option.

So if you use JDK50, for example, with annotation and load-time instrumentation, then you
won't need any pre-processing step to use PojoCache. For a full example, please refer to
the distro examples directory. There are numerous PojoCache examples that uses
different options.

3.6.
Can I run PojoCache in JBoss AS 3.2.x application server?

Yes and no. Yes, since JBossAop can also be back-ported to 3.2.x (see JBossAop wiki for
details). However, it will take some effort. Therefore, the recommended JBoss version is
4.x to run PojoCache.

3.7.
Can PojoCache run as a MBean as well?

Yes. It is almost the same as TreeCache MBean. The only difference is the object name
and the class name. E.g., instead of

<mbean code="org.jboss.cache.TreeCache"
name="jboss.cache:service=TreeCache">

you will have:

<mbean code="org.jboss.cache.aop.PojoCache"
name="jboss.cache:service=PojoCache">

in the xml configuration file.

3.8.
Can I pre-compile the aop classes such that I don't need to use the system classloader
and jboss-aop configuration xml?

Chapter 3. JBoss Cache - Pojo Cache

16

Yes. The latest versions of JBossCache have a pre-compiler option called aopc . You can
use this option to pre-compile your "aspectized" POJO. Once the classes have been byte
code generated, they can be treated as regular class files, i.e., you will not need to include
any jboss-aop.xml that specifies the advisable POJO and to specify the JBossAop
system class loader.

For an example of how to use aopc , please see 1) tools directory for
PojoCacheTasks14.xml and PojoCacheTasks50.xml. Both contain Ant tasks that you can
import to your regular project for annoc and aopc . In addition, please also check out the
examples directory for concrete examples.

3.9.
How do I use aopc on multiple module directories?

In aopc, you specify the src path for a specific directory. To pre-compile multiple ones, you
will need to invoke aopc multiple times.

3.10.
What's in the jboss-aop.xml configuration?

jboss-aop.xml is needed for POJO instrumentation. In jboss-aop.xml , you can declare
your POJO (e.g., Person) to be "prepared", a JBossAop term to denote that the object will
be "aspectized" by the system. After this declaration, JBossAop will invoke any interceptor
that associates with this POJO. PojoCache will dynamically add an
org.jboss.cache.aop.CacheInterceptor to this POJO to perform object mapping and
relationship management.

Note that to add your POJO, you should declare all the fields to be "prepared" as in the
example.

3.11.
Can I use annotation instead of the xml declaration?

Yes, starting with JBossCache 1.3, you can use annotation to instrument your POJO for
both JDK1.4 and 1.5. Check the documentation for details.

3.12.
What are the pro and con of xml vs. annotation?

It really depends on your organization environment, I'd say, since this can be turned into a
hot debate. Having said that, I feel strongly that POJO annotation is well suited for
PojoCache. This is because once you specify the annotation, you'd probably change it
rarely since there is no parameters to tune, for example.

3.13.
What are the @org.jboss.cache.aop.annotation.Transient and
@org.jboss.cache.aop.annotation.Serializable field level annotations?

17

Starting in 1.4, we also offer two additional field-level annotations. The first one,
@Transient , when applied has the same effect as declaring a field transient .
PojoCache won't put this field under management.

The second one, @Serializable when applied, will cause PojoCache to treat the field as
a Serializable object even when it is @PojoCacheable .

3.14.
What about compile-time vs. load-time instrumentation then?

Again it depends. But my preference is to do compile-time instrumentation via aopc. I
prefer this approach because it is easier to debug (at least at the development stage). In
addition, once I generate the new class, there is no more steps needed.

3.15.
Is it possible to store the same object multiple times but with different Fqn paths? Like
/foo/byName and /foo/byId ?

Yes, you can use PojoCache to do that. It supports the notion of object reference.
PojoCache manages the unique object through association of the dynamic cache
interceptor.

3.16.
Do I need to declare all my objects "prepared" in jboss-aop.xml ?

Not necessarily. If there is an object that you don't need the cache to manage for you, you
can leave it out of the declaration. The cache will treat this object as a "primitive" type.
However, the object will need to implement Serializable interface for replication.

3.17.
Can the cache aop intercept update via reflection?

No. The update via reflection will not be intercepted in JBossAop and therefore PojoCache
will not be able to perform the necessary synchronization.

3.18.
When I declare my POJO to be "aspectized", what happens to the fields with transient,
static, and final modifiers?

PojoCache currently will ignore the fields with these modifiers. That is, it won't put these
fields into the cache (and thus no replication either).

3.19.
What are those keys such as JBoss:internal:class and AOPInstance ?

They are for internal use only. Users should ignore these keys and values in the node
hashmap.

Chapter 3. JBoss Cache - Pojo Cache

18

3.20.
What about Collection classes? Do I need to declare them "prepared"?

No. Since the Collection classes such as ArrayList are java util classes, aop by default
won't instrument these classes. Instead, PojoCache will generate a dynamic class proxy
for the Collection classes (upon the putObject call is invoked). The proxy will delegate
the operations to a cache interceptor that implements the actual Collection classes APIs.
That is, the system classes won't be invoked when used in PojoCache.

Internally, the cache interceptor implements the APIs by direct interaction with respect to
the underlying cache store. Note that this can have implications in performance for certain
APIs. For example, both ArrayList and LinkedList will have the same implementation.
Plan is currently underway to optimize these APIs.

3.21.
How do I use List , Set , and Map dynamic proxy?

PojoCache supports classes extending from List , Set , and Map without users to declare
them "aspectized". It is done via a dynamic proxy. Here is a code snippet to use an
ArrayList proxy class.

ArrayList list = new ArrayList();
list.add("first");

cache.putObject("/list/test", list);
// Put the list under the aop cache
list.add("second");
// Won't work since AOP intercepts the dynamic proxy not the

original POJO.

ArrayList myList = (List)cache.getObject("/list/test");
// we are getting a dynamic proxy instead
myList.add("second");
// it works now
myList.add("third");
myList.remove("third");

3.22.
What is the proper way of assigning two different keys with Collection class object?

Let's say you want to assign a List object under two different names, you will need to use
the class proxy to insert the second time to ensure both are managed by the cache. Here
is the code snippet.

ArrayList list = new ArrayList();
list.add("first");

cache.putObject("/list", list);
// Put the list under the aop cache

19

ArrayList myList = (List)cache.getObject("/list");
// we are getting a dynamic proxy instead
myList.add("second");
// it works now

cache.putObject("/list_alias", myList);
// Note you will need to use the proxy here!!
myList.remove("second");

3.23.
OK, so I know I am supposed to use proxy when manipulating the Collection classes once
they are managed by the cache. But what happens to Pojos that share the Collection
objects, e.g., a List instance that is shared by 2 Pojos?

Pojos that share Collection instance references will be handled by the cache
automatically. That is, when you ask the Cache to manage it, the Cache will dynamically
swap out the regular Collection references with the dynamic proxy ones. As a result, it is
transparent to the users.

3.24.
What happens when my "aspectized" POJO has field members that are of Collection class
?

When a user puts a POJO into the cache through the call putObject , it will recursively
map the field members into the cache store as well. When the field member is of a
Collection class (e.g., List, Set, or Map), PojoCache will first map the collection into cache.
Then, it will swap out dynamically the field reference with an corresponding proxy
reference.

This is necessary so that an internal update on the field member will be intercepted by the
cache.

3.25.
What are the limitation of Collection classes in PojoCache?

Use of Collection class in PojoCache helps you to track fine-grained changes in your
collection fields automatically. However, current implementation has the follow limitation
that we plan to address soon.

Currently, we only support a limited implementation of Collection classes. That is, we
support APIs in List, Set, and Map. However, since the APIs do not stipulate of constraints
like NULL key or value, it makes mapping of user instance to our proxy tricky. For
example, ArrayList would allow NULL value and some other implementation would not.
The Set interface maps to java.util.HashSet implementation. The List interface maps to
java.util.ArrayList implementation. The Map interface maps to java.util.HashMap

Chapter 3. JBoss Cache - Pojo Cache

20

implementation.

Another related issue is the expected performance. For example, the current
implementation is ordered, so that makes insert/delete from the Collection slow.
Performance between Set, Map and List collections also vary. Adding items to a Set is
slower than a List or Map, since Set does not allow duplicate entries.

3.26.
What are the pros and cons of PojoCache?

As mentioned in the reference doc, PojoCache has the following advantages:

• Fine-grained replication and/or persistency. If you use a distributed PojoCache and
once your POJO is put in the cache store, there is no need to use another API to trigger
your changes. Furthermore, the replication are fine-grained field level. Note this also
applies to persistency.

• Fine-grained replication can have potential performance gain if your POJO is big and
the changes are fine-grained, e.g., only to some selected fields.

• POJO can posses object relationship, e.g., multiple referenced. Distributed PojoCache
will handle this transparently for you.

And here are some cases that you may not want to use PojoCache:

• You use only cache. That is you don't need replication or persistency. Then since
everything is operated on the in-memory POJO reference, there is no need for
PojoCache.

• You have simple and small POJOs. Your POJO is small in size and also there is no
object relationship, then PojoCache possess not clear advantage to plain cache.

• Your application is bounded by memory usage. Because PojoCache need almost twice
as much of memory (the original POJO in-memory space and also the additional cache
store for the primitive fields), you may not want to use PojoCache.

• Your POJO lifetime is short. That is, you need to create and destroy your POJO often.
Then you need to do "pubObject" and "removeObject" often, it will be slow in
performance.

21

22

Eviction Policies

4.1.
Does JBoss Cache support eviction policies?

Yes. JBoss Cache currently implements a LRU eviction policy for both TreeCache (
org.jboss.cache.eviction.LRUPolicy) and PojoCache (
org.jboss.cache.aop.eviction.AopLRUPolicy). Users can also plug in their own
eviction policy algorithms. See user manual for details. Currently there is user-contributed
policy called FIFOPolicy that evicts the node based on FIFO principle only.

4.2.
Why can't I use org.jboss.cache.eviction.LRUPolicy for PojoCache as well?

For PojoCache, you will need to use org.jboss.cache.aop.eviction.AopLRUPolicy)
because AOP has its eviction algorithm, although is LRU but has totally different notion of
an "object", for example.

4.3.
Does JBoss Cache's implemented LRU eviction policy operates in replication mode?

Yes and no. :-)

The LRU policy only operates in local mode. That is, nodes are only evicted locally. This
may cause the cache contents not to be synchronized temporarily. But when a user tries
to obtain the cached contents of an evicted node and finds out that is null (e.g., get
returns null), it should get it from the other data source and re-populate the data in the
cache. During this moment, the node content will be propagated and the cache content
will be in sync.

However, you still can run eviction policies with cache mode set to either REPL_SYNC or
REPL_ASYNC . Depending on your use case, you can set multiple cache instances to have
their own eviction policy (which are applied locally) or just have selected instances with
eviction policies activated.

Also note that, with cache loader option, a locally evicted node can also be persisted to
the backend store and a user can retrieve it from the store later on.

4.4.
Does JBoss Cache support Region ?

Yes. JBoss Cache has the notion of region where a user can configure the eviction policy
parameters (e.g., maxNodes or timeToIdleSeconds)

A region in JBoss Cache denotes a portion of tree hierarchy, e.g., a fully qualified name (
FQN). For example, a user can define /org/jboss and /org/foocom as two separate

Chapter 4.

23

regions. But note that you can configure the region programmatically now, i.e., everything
has to be configured through the xml file.

4.5.
What are the EvictionPolicyConfig tag parameters for
org.jboss.cache.eviction.LRUPolicy ?

They are:

wakeUpIntervalInSeconds Interval where the clean up thread wakes to
process the sitting queue and sweep away
the old data.

region A area where each eviction policy parameters
are specified. Note that it needs a minimum of
/_default region.

maxNodes Max number of nodes allowed in the eviction
queue. 0 means no limit.

timeToLiveInSeconds Age (in seconds) for the node to be evicted in
the queue. 0 denotes no limit.

Table 4.1. Parameters

4.6.
I have turned on the eviction policy, why do I still get "out of memory" (OOM) exception?

OOM can happen when the speed of cache access exceeds the speed of eviction policy
handling timer. Eviction policy handler will wake up every wakeUpIntervalInSeconds

seconds to process the eviction event queue. And the queue size is fixed at 20000 now.
So when the queue size is full, it will create a backlog and cause OOM to happen unless
the eviction timer catches up. To address this problem, in addition to increase the VM
heap size, you can also reduce the wakeUpIntervaleInSeconds so the timer thread
processes the queue more frequently.

We will also externalize the queue size so it will be configurable in the next release.

Chapter 4. Eviction Policies

24

1 http://www.sleepycat.com/jeforjbosscache

Cache Loaders

5.1.
What is a CacheLoader?

A CacheLoader is the connection of JBossCache to a (persistent) data store. The
CacheLoader is called by JBossCache to fetch data from a store when that data is not in
the cache, and when modifications are made to data in the cache the CacheLoader is
called to store those modifications back to the store.

In conjunction with eviction policies, JBossCache with a CacheLoader allows a user to
maintain a bounded cache for a large backend datastore. Frequently used data is fetched
from the datastore into the cache, and the least used data is evicted, in order to provide
fast access to frequently accessed data. This is all configured through XML, and the
programmer doesn't have to take care of loading and eviction.

JBossCache currently ships with several CacheLoader implementations, including:

• FileCacheLoader: this implementation uses the file system to store and retrieve data.
JBossCache nodes are mapped to directories, subnodes to subdirectories etc.
Attributes of a node are mapped to a file data inside the directory.

• BdbjeCacheLoader: this implementation is based on the Sleepycat Java Edition
database, a fast and efficient transactional database. It uses a single file for the entire
store. Note that if you use Sleepycat's CacheLoader with JBoss Cache and wish to ship
your product, you will have to acquire a commercial license from Sleepycat 1 .

• JDBCCacheLoader: this implementation uses the relational database as the persistent
storage.

• ClusteredCacheLoader: this implementation queries the rest of the cluster, treating
other servers' in-memory state as a data store.

• And more. See the documentation for more details.

5.2.
Can writing to CacheLoaders be asynchronous?

As of JBossCache 1.2.4, yes. Set the CacheLoaderAsynchronous property to true. See
the JBossCache documentation for a more detailed discussion. By default though, all
cache loader writes are synchronous and will block.

5.3.
Can I write my own CacheLoader ?

Chapter 5.

25

http://www.sleepycat.com/jeforjbosscache
http://www.sleepycat.com/jeforjbosscache

Yes. A CacheLoader is a class implementing org.jboss.cache.loader.CacheLoader . It
is configured via the XML file (see JBossCache and Tutorial documentation).

5.4.
Does a CacheLoader have to use a persistent store ?

No, a CacheLoader could for example fetch (and possibly store) its data from a
webdav-capable webserver. Another example is a caching proxy server, which fetches
contents from the web. Note that an implementation of CacheLoader may not implement
the 'store' functionality in this case, but just the 'load' functionality.

5.5.
What can I use a CacheLoader for?

Some applications:

• HTTP sessions can be persisted (besides being replicated by JBossCache). The
CacheLoader can be configured to be shared, or unshared, meaning that every node in
a cluster has its own local store. It is also possible to attach a CacheLoader to just one
of the nodes.

• Simple persistence for POJOs. Use of JBossCache aop and a local CacheLoader
persist POJOs transparently into the store provided by the CacheLoader.

• Highly available replicated and persisted data store. The service is up as long as at
least 1 node is running, but even if all nodes are taken offline, when the first node is
started again, the data previously saved will still be available (e.g. a shopping cart).

• A caching web proxy (a la Squid): all data are contents of URLs, users access the
proxy, and if the URL is not in the cache, the CacheLoader fetches it from the web. This
could actually be a replicated and transactional version of Squid.

5.6.
How do I configure JBossCache with a CacheLoader?

Through XML: both the fully-qualified classname of the CacheLoader and its configuration
string have to be given. JBossCache will then instantiate a CacheLoader. See
JBossCache documentation for details.

5.7.
Do I have to pay to use Sleepycat's CacheLoader?

Not if you use it only for personal use. As soon as you distribute your product with
BdbjeCacheLoader, you have to purchase a commercial license from Sleepycat. See
details at http://www.sleepycat.com/jeforjbosscache 2 .

Chapter 5. Cache Loaders

26

http://www.sleepycat.com/jeforjbosscache

2 http://www.sleepycat.com/jeforjbosscache
3 http://jira.jboss.com/jira/browse/JBCACHE-477
4 http://jira.jboss.com/jira/browse/JBCACHE-352

5.8.
Can I use more than one cache loader?

As of JBossCache 1.3.0, yes. With the new CacheLoaderConfiguration XML element (see
user manual section on cache loaders) you can now describe several cache loaders. The
impact is that the cache will look at all of the cache loaders in the order they've been
configured, until it finds a valid, non-null element of data. When performing writes, all
cache loaders are written to (except if the ignoreModifications element has been set to
true for a specific cache loader.

5.9.
Why do cache loaders go into an inconsistent state when I use transactions, pessimistic
locking, and I attempt to read a node after removing it from within the same transaction
scope?

This is a known bug (see JBCACHE-4773 and JBCACHE-3524), which have been fixed in
JBoss Cache 1.4.0. A very simple workaround if you're using JBoss Cache 1.3.x is to use
optimistic locking.

One of the consequences of this bug is that, for example, if you use PojoCache with pojos
that have private references to a List and you update and remove someelements of that
List within a transaction (when using pessimistic locking and a cache loader), you may see
IllegalStateExceptions thrown.

27

http://www.sleepycat.com/jeforjbosscache
http://jira.jboss.com/jira/browse/JBCACHE-477
http://jira.jboss.com/jira/browse/JBCACHE-352
http://jira.jboss.com/jira/browse/JBCACHE-477
http://jira.jboss.com/jira/browse/JBCACHE-352

28

1 http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossCacheTroubleshooting

Troubleshooting

6.1.
I am having problems getting JBoss Cache to work, where can I get information on
troubleshooting?

Troubleshooting section can be found in the following wiki link1 .

Chapter 6.

29

http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossCacheTroubleshooting
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossCacheTroubleshooting

30

	JBoss Cache 1.4.1
	Table of Contents
	Chapter 1. General Information
	Chapter 2. JBoss Cache - Tree Cache
	Chapter 3. JBoss Cache - Pojo Cache
	Chapter 4. Eviction Policies
	Chapter 5. Cache Loaders
	Chapter 6. Troubleshooting

