
Seam Reference Guide

JBoss Enterprise
Application Platform

4.3

Written By: Gavin King, Christian Bauer, Norman Richards,
Shane Bryzak, Pete Muir, Emmanuel Bernard, Max Andersen,

Michael Youngstrom, Thomas Heute, Michael Yuan
ISBN: N/A

Publication date: Sep, 2007

This book is a Reference Guide to Seam 1.2 for JBoss Enterprise Application Platform 4.3.

Seam Reference Guide

Seam Reference Guide: JBoss Enterprise Application
Platform
Author Written By: Gavin King,

Christian Bauer, Norman
Richards, Shane Bryzak, Pete
Muir, Emmanuel Bernard, Max
Andersen, Michael
Youngstrom, Thomas Heute,
Michael Yuan

Translator Japanese Translation: Fusayuki
Minamoto, Takayoshi Kimura,
Takayoshi Osawa, Reiko
Ohtsuka, Syunpei Shiraishi,
Toshiya Kobayashi, Shigeaki
Wakizaka, Ken Yamada, Noriko
Mizumoto

Copyright © 2008 Red Hat, Inc

Copyright © 2008 Red Hat, Inc. This material may only be distributed subject to the terms and conditions set forth in the
Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License (which is presently available at
http://creativecommons.org/licenses/by-nc-sa/3.0/).

Red Hat and the Red Hat "Shadow Man" logo are registered trademarks of Red Hat, Inc. in the United States and other
countries.

All other trademarks referenced herein are the property of their respective owners.

The GPG fingerprint of the security@redhat.com key is:

CA 20 86 86 2B D6 9D FC 65 F6 EC C4 21 91 80 CD DB 42 A6 0E

1801 Varsity Drive
Raleigh, NC 27606-2072
USA
Phone: +1 919 754 3700
Phone: 888 733 4281
Fax: +1 919 754 3701
PO Box 13588
Research Triangle Park, NC 27709
USA

http://creativecommons.org/licenses/by-nc-sa/3.0/

Seam Reference Guide

1. Feedback .. 1
Introduction to JBoss Seam .. iii
2. Seam Tutorial .. 7

1. Try the examples ... 7
1.1. Running the examples on JBoss AS ... 7
1.2. Running the examples on Tomcat .. 7
1.3. Running the example tests ... 8

2. Your first Seam application: the registration example .. 8
2.1. Understanding the code ... 9
2.2. How it works ..19

3. Clickable lists in Seam: the messages example ..20
3.1. Understanding the code ..20
3.2. How it works ..25

4. Seam and jBPM: the todo list example ...25
4.1. Understanding the code ..26
4.2. How it works ..32

5. Seam pageflow: the numberguess example ..33
5.1. Understanding the code ..33
5.2. How it works ..38

6. A complete Seam application: the Hotel Booking example38
6.1. Introduction ..38
6.2. Overview of the booking example ..41
6.3. Understanding Seam conversations ..41
6.4. The Seam UI control library ...49
6.5. The Seam Debug Page ..49

7. A complete application featuring Seam and jBPM: the DVD Store example50
8. A complete application featuring Seam workspace management: the Issue Tracker
example ...52
9. An example of Seam with Hibernate: the Hibernate Booking example53
10. A RESTful Seam application: the Blog example ..53

10.1. Using "pull"-style MVC ..54
10.2. Bookmarkable search results page ..56
10.3. Using "push"-style MVC in a RESTful application59

3. The contextual component model ...63
1. Seam contexts ..63

1.1. Stateless context ..63
1.2. Event context ...64
1.3. Page context ..64
1.4. Conversation context ..64
1.5. Session context ..65
1.6. Business process context ...65
1.7. Application context ...65
1.8. Context variables ...65
1.9. Context search priority ..66
1.10. Concurrency model ..66

2. Seam components ..67

v

2.1. Stateless session beans ...67
2.2. Stateful session beans ..67
2.3. Entity beans ...68
2.4. JavaBeans ...68
2.5. Message-driven beans ...68
2.6. Interception ..69
2.7. Component names ...69
2.8. Defining the component scope ..70
2.9. Components with multiple roles ...71
2.10. Built-in components ..71

3. Bijection ...72
4. Lifecycle methods ...75
5. Conditional installation ...75
6. Logging ..77
7. The Mutable interface and @ReadOnly ...78
8. Factory and manager components ...79

4. Configuring Seam components ..83
1. Configuring components via property settings ...83
2. Configuring components via components.xml ...83
3. Fine-grained configuration files ..86
4. Configurable property types ...87
5. Using XML Namespaces ...88

5. Events, interceptors and exception handling ...93
1. Seam events ..93

1.1. Page actions ..93
1.2. Component-driven events ...99
1.3. Contextual events ..101

2. Seam interceptors ...102
3. Managing exceptions ..104

3.1. Exceptions and transactions ...104
3.2. Enabling Seam exception handling ..104
3.3. Using annotations for exception handling ...105
3.4. Using XML for exception handling ...105

6. Conversations and workspace management ...107
1. Seam's conversation model ...107
2. Nested conversations ..109
3. Starting conversations with GET requests ...110
4. Using <s:link> and <s:button> ...111
5. Success messages ...113
6. Using an "explicit" conversation id ..114
7. Workspace management ...114

7.1. Workspace management and JSF navigation115
7.2. Workspace management and jPDL pageflow115
7.3. The conversation switcher ..116
7.4. The conversation list ...116
7.5. Breadcrumbs ...117

8. Conversational components and JSF component bindings117

Seam Reference Guide

vi

7. Pageflows and business processes ..119
1. Pageflow in Seam ...119

1.1. The two navigation models ...119
1.2. Seam and the back button ..122

2. Using jPDL pageflows ...124
2.1. Installing pageflows ..124
2.2. Starting pageflows ..124
2.3. Page nodes and transitions ...125
2.4. Controlling the flow ...126
2.5. Ending the flow ..126

3. Business process management in Seam ..127
4. Using jPDL business process definitions ...128

4.1. Installing process definitions ...128
4.2. Initializing actor ids ...128
4.3. Initiating a business process ...129
4.4. Task assignment ..129
4.5. Task lists ...129
4.6. Performing a task ...130

8. Seam and Object/Relational Mapping ...133
1. Introduction ..133
2. Seam managed transactions ...134

2.1. Enabling Seam-managed transactions ...135
3. Seam-managed persistence contexts ...135

3.1. Using a Seam-managed persistence context with JPA135
3.2. Using a Seam-managed Hibernate session ..136
3.3. Seam-managed persistence contexts and atomic conversations137

4. Using the JPA "delegate" ...138
5. Using EL in EJB-QL/HQL ..138
6. Using Hibernate filters ...139

9. JSF form validation in Seam ..141
10. The Seam Application Framework ..147

1. Introduction ..147
2. Home objects ...148
3. Query objects ...152
4. Controller objects ..154

11. Seam and JBoss Rules ...157
1. Installing rules ...157
2. Using rules from a Seam component ..157
3. Using rules from a jBPM process definition ...158

12. Security ..161
1. Overview ..161

1.1. Which mode is right for my application? ...161
2. Requirements ...161
3. Authentication ...162

3.1. Configuration ...162
3.2. Writing an authentication method ..163
3.3. Writing a login form ..163

vii

3.4. Simplified Configuration - Summary ...164
3.5. Handling Security Exceptions ..164
3.6. Login Redirection ...165
3.7. Advanced Authentication Features ..166

4. Error Messages ..166
5. Authorization ..167

5.1. Core concepts ..167
5.2. Securing components ...167
5.3. Security in the user interface ...169
5.4. Securing pages ..170
5.5. Securing Entities ..171

6. Writing Security Rules ...173
6.1. Permissions Overview ..173
6.2. Configuring a rules file ..173
6.3. Creating a security rules file ..173

7. SSL Security ...176
8. Implementing a Captcha Test ..176

8.1. Configuring the Captcha Servlet ..177
8.2. Adding a Captcha to a page ..177

13. Internationalization and themes ..179
1. Locales ..179
2. Labels ..180

2.1. Defining labels ...180
2.2. Displaying labels ..181
2.3. Faces messages ..181

3. Timezones ..182
4. Themes ..182
5. Persisting locale and theme preferences via cookies183

14. Seam Text ..185
1. Basic fomatting ...185
2. Entering code and text with special characters ..187
3. Links ..187
4. Entering HTML ...188

15. iText PDF generation ...189
1. Using PDF Support ...189
2. Creating a document ...189

2.1. p:document ..189
3. Basic Text Elements ...190

3.1. p:paragraph ...191
3.2. p:text ...191
3.3. p:font ...191
3.4. p:newPage ..192
3.5. p:image ...192
3.6. p:anchor ..193

4. Headers and Footers ...193
4.1. p:header and p:footer ...193
4.2. p:pageNumber ...194

Seam Reference Guide

viii

5. Chapters and Sections ..194
5.1. p:chapter and p:section ..194
5.2. p:title ...195

6. Lists ...195
6.1. p:list ..195
6.2. p:listItem ..196

7. Tables ..196
7.1. p:table ...196
7.2. p:cell ...197

8. Document Constants ...199
8.1. Color Values ..199
8.2. Alignment Values ...199

9. Configuring iText ...199
10. iText links ...200

16. Email ..201
1. Creating a message ..201

1.1. Attachments ...202
1.2. HTML/Text alternative part ..203
1.3. Multiple recipients ..203
1.4. Multiple messages ...203
1.5. Templating ...204
1.6. Internationalisation ...204
1.7. Other Headers ...204

2. Receiving emails ...205
3. Configuration ..206

3.1. mailSession ...206
4. Tags ..207

17. Asynchronicity and messaging ...211
1. Asynchronicity ..211

1.1. Asynchronous methods ..211
1.2. Asynchronous events ...214

2. Messaging in Seam ...214
2.1. Configuration ...214
2.2. Sending messages ...215
2.3. Receiving messages using a message-driven bean216
2.4. Receiving messages in the client ...216

18. Caching ..217
1. Using JBossCache in Seam ...218
2. Page fragment caching ..219

19. Remoting ..221
1. Configuration ..221
2. The "Seam" object ..222

2.1. A Hello World example ...222
2.2. Seam.Component ..224
2.3. Seam.Remoting ...226

3. Client Interfaces ..226
4. The Context ..227

ix

4.1. Setting and reading the Conversation ID ..227
5. Batch Requests ..228
6. Working with Data types ..228

6.1. Primitives / Basic Types ..228
6.2. JavaBeans ...228
6.3. Dates and Times ..229
6.4. Enums ...229
6.5. Collections ...230

7. Debugging ..230
8. The Loading Message ...231

8.1. Changing the message ...231
8.2. Hiding the loading message ..231
8.3. A Custom Loading Indicator ..231

9. Controlling what data is returned ..232
9.1. Constraining normal fields ...232
9.2. Constraining Maps and Collections ..233
9.3. Constraining objects of a specific type ...233
9.4. Combining Constraints ...234

10. JMS Messaging ..234
10.1. Configuration ...234
10.2. Subscribing to a JMS Topic ...234
10.3. Unsubscribing from a Topic ...235
10.4. Tuning the Polling Process ..235

20. Spring Framework integration ..237
1. Injecting Seam components into Spring beans ..237
2. Injecting Spring beans into Seam components ..238
3. Making a Spring bean into a Seam component ...239
4. Seam-scoped Spring beans ...239
5. Spring Application Context as a Seam Component ..240

21. Configuring Seam and packaging Seam applications ...243
1. Basic Seam configuration ..243

1.1. Integrating Seam with JSF and your servlet container243
1.2. Seam Resource Servlet ..244
1.3. Seam servlet filters ...244
1.4. Integrating Seam with your EJB container ..247
1.5. Using facelets ..247
1.6. Don't forget! ...248

2. Configuring Seam in Java EE 5 ..248
2.1. Packaging ..249

3. Configuring Seam in Java SE, with the JBoss Embeddable EJB3 container250
3.1. Installing the Embeddable EJB3 container ...251
3.2. Configuring a datasource with the Embeddable EJB3 container251
3.3. Packaging ..252

4. Configuring Seam in J2EE ...253
4.1. Boostrapping Hibernate in Seam ...254
4.2. Boostrapping JPA in Seam ...254
4.3. Packaging ..254

Seam Reference Guide

x

5. Configuring Seam in Java SE, with the JBoss Microcontainer255
5.1. Using Hibernate and the JBoss Microcontainer256
5.2. Packaging ..257

6. Configuring jBPM in Seam ...258
6.1. Packaging ..259

7. Configuring Seam in a Portal ...260
8. Configuring SFSB and Session Timeouts in JBoss AS260

22. Seam annotations ...263
1. Annotations for component definition ..263
2. Annotations for bijection ..266
3. Annotations for component lifecycle methods ..269
4. Annotations for context demarcation ...270
5. Annotations for transaction demarcation ...274
6. Annotations for exceptions ...275
7. Annotations for validation ..275
8. Annotations for Seam Remoting ...276
9. Annotations for Seam interceptors ...276
10. Annotations for asynchronicity ..277
11. Annotations for use with JSF dataTable ..278
12. Meta-annotations for databinding ...279
13. Annotations for packaging ...279

23. Built-in Seam components ...281
1. Context injection components ..281
2. Utility components ...281
3. Components for internationalization and themes ...283
4. Components for controlling conversations ...285
5. jBPM-related components ..286
6. Security-related components ...288
7. JMS-related components ...288
8. Mail-related components ...288
9. Infrastructural components ..289
10. Special components ..291

24. Seam JSF controls ..293
25. Expression language enhancements ..309

1. Configuration ..309
2. Usage ..309
3. Limitations ..310

3.1. Incompatibility with JSP 2.1 ...310
3.2. Calling a MethodExpression from Java code310

26. Testing Seam applications ...311
1. Unit testing Seam components ..311
2. Integration testing Seam applications ...313

2.1. Using mocks in integration tests ..317
27. Seam tools ...319

1. jBPM designer and viewer ...319
1.1. Business process designer ...319
1.2. Pageflow viewer ...319

xi

2. CRUD-application generator ..320
2.1. Creating a Hibernate configuration file ...320
2.2. Creating a Hibernate Console configuration321
2.3. Reverse engineering and code generation ...324

Index ...329

Seam Reference Guide

xii

1 http://jira.jboss.com/jira/browse/JBPAPP

Feedback
If you spot a typo in this guide, or if you have thought of a way to make this manual better, we
would love to hear from you! Submit a report in JIRA1 against the Product: JBoss Enterprise
Application Platform, Version: <version>, Component: Doc. If you have a suggestion for
improving the documentation, try to be as specific as possible. If you have found an error,
include the section number and some of the surrounding text so we can find it easily.

Chapter 1.

1

http://jira.jboss.com/jira/browse/JBPAPP
http://jira.jboss.com/jira/browse/JBPAPP

2

Introduction to JBoss Seam

Seam is an application framework for Java EE 5. It is inspired by the following principles:

Integrate JSF with EJB 3.0
JSF and EJB 3.0 are two of the best new features of Java EE 5. EJB3 is a brand new
component model for server side business and persistence logic. Meanwhile, JSF is a great
component model for the presentation tier. Unfortunately, neither component model is able
to solve all problems in computing by itself. Indeed, JSF and EJB3 work best used together.
But the Java EE 5 specification provides no standard way to integrate the two component
models. Fortunately, the creators of both models foresaw this situation and provided
standard extension points to allow extension and integration of other solutions.

Seam unifies the component models of JSF and EJB3, eliminating glue code, and letting
the developer think about the business problem.

Integrated AJAX
Seam supports two open source JSF-based AJAX solutions: ICEfaces and Ajax4JSF.
These solutions let you add AJAX capability to your user interface without the need to write
any JavaScript code.

Seam also provides a built-in JavaScript remoting layer for EJB3 components. AJAX clients
can easily call server-side components and subscribe to JMS topics, without the need for an
intermediate action layer.

Neither of these approaches would work well, were it not for Seam's built-in concurrency
and state management, which ensures that many concurrent fine-grained, asynchronous
AJAX requests are handled safely and efficiently on the server side.

Integrate Business Process as a First Class Construct
Optionally, Seam integrates transparent business process management via jBPM. You
won't believe how easy it is to implement complex workflows using jBPM and Seam.

Seam even allows definition of presentation tier conversation flow by the same means.

JSF provides an incredibly rich event model for the presentation tier. Seam enhances this
model by exposing jBPM's business process related events via exactly the same event
handling mechanism, providing a uniform event model for Seam's uniform component
model.

One Kind of "Stuff"
Seam provides a uniform component model. A Seam component may be stateful, with the
state associated to any one of a number of contexts, ranging from the long-running
business process to a single web request.

There is no distinction between presentation tier components and business logic
components in Seam. It is possible to write Seam applications where "everything" is an
EJB. This may come as a surprise if you are used to thinking of EJBs as coarse-grained,
heavyweight objects that are a pain in the backside to create! However, EJB 3.0 completely

iii

changes the nature of EJB from the point of view of the developer. An EJB is a fine-grained
object - nothing more complex than an annotated JavaBean. Seam even encourages you to
use session beans as JSF action listeners!

Unlike plain Java EE or J2EE components, Seam components may simultaneously access
state associated with the web request and state held in transactional resources (without the
need to propagate web request state manually via method parameters). You might object
that the application layering imposed upon you by the old J2EE platform was a Good Thing.
Well, nothing stops you creating an equivalent layered architecture using Seam - the
difference is that you get to architect your own application and decide what the layers are
and how they work together.

Declarative State Management
We are all used to the concept of declarative transaction management and J2EE
declarative security from EJB 2.x. EJB 3.0 even introduces declarative persistence context
management. These are three examples of a broader problem of managing state that is
associated with a particular context, while ensuring that all needed cleanup occurs when the
context ends. Seam takes the concept of declarative state management much further and
applies it to application state. Traditionally, J2EE applications almost always implement
state management manually, by getting and setting servlet session and request attributes.
This approach to state management is the source of many bugs and memory leaks when
applications fail to clean up session attributes, or when session data associated with
different workflows collides in a multi-window application. Seam has the potential to almost
entirely eliminate this class of bugs.

Declarative application state management is made possible by the richness of the context
model defined by Seam. Seam extends the context model defined by the servlet
spec—request, session, application—with two new contexts—conversation and business
process—that are more meaningful from the point of view of the business logic.

Bijection
The notion of Inversion of Control or dependency injection exists in both JSF and EJB3, as
well as in numerous so-called "lighweight containers". Most of these containers emphasize
injection of components that implement stateless services. Even when injection of stateful
components is supported (such as in JSF), it is virtually useless for handling application
state because the scope of the stateful component cannot be defined with sufficient
flexibility.

Bijection differs from IoC in that it is dynamic, contextual, and bidirectional. You can think of
it as a mechanism for aliasing contextual variables (names in the various contexts bound to
the current thread) to attributes of the component. Bijection allows auto-assembly of stateful
components by the container. It even allows a component to safely and easily manipulate
the value of a context variable, just by assigning to an attribute of the component.

Workspace Management
Optionally, Seam applications may take advantage of workspace management, allowing
users to freely switch between different conversations (workspaces) in a single browser
window. Seam provides not only correct multi-window operation, but also multi-window-like

Introduction to JBoss Seam

iv

operation in a single window!

Annotated POJOs Everywhere
EJB 3.0 embraces annotations and "configuration by exception" as the easiest way to
provide information to the container in a declarative form. Unfortunately, JSF is still heavily
dependent on verbose XML configuration files. Seam extends the annotations provided by
EJB 3.0 with a set of annotations for declarative state management and declarative context
demarcation. This lets you eliminate the noisy JSF managed bean declarations and reduce
the required XML to just that information which truly belongs in XML (the JSF navigation
rules).

Testability as a Core Feature
Seam components, being POJOs, are by nature unit testable. But for complex applications,
unit testing alone is insufficient. Integration testing has traditionally been a messy and
difficult task for Java web applications. Therefore, Seam provides for testability of Seam
applications as a core feature of the framework. You can easily write JUnit or TestNG tests
that reproduce a whole interaction with a user, exercising all components of the system
apart from the view (the JSP or Facelets page). You can run these tests directly inside your
IDE, where Seam will automatically deploy EJB components into the JBoss Embeddable
EJB3 container.

Get started now!
Seam works in any application server that supports EJB 3.0. You can even use Seam in a
servlet container like Tomcat, or in any J2EE application server, by leveraging the new
JBoss Embeddable EJB3 container.

However, we realize that not everyone is ready to make the switch to EJB 3.0. So, in the
interim, you can use Seam as a framework for applications that use JSF for presentation,
Hibernate (or plain JDBC) for persistence and JavaBeans for application logic. Then, when
you're ready to make the switch to EJB 3.0, migration will be straightforward.

It turns out that the combination of Seam, JSF and EJB3 is the simplest way to write a complex
web application in Java. You won't believe how little code is required!

v

vi

Seam Tutorial

1. Try the examples

In this tutorial, we'll assume that you are using JBoss AS 4.2 with Seam, as in the case of JBoss
Enterprise Application Platform.

The directory structure of each example in Seam follows this pattern:

• Web pages, images and stylesheets may be found in examples/registration/view

• Resources such as deployment descriptors and data import scripts may be found in
examples/registration/resources

• Java source code may be found in examples/registration/src

• The Ant build script is examples/registration/build.xml

1.1. Running the examples on JBoss AS

First, make sure you have Ant correctly installed, with $ANT_HOME and $JAVA_HOME set correctly.
Next, make sure you set the location of your JBoss AS installation in the build.properties file
in the root folder of your Seam installation. If you haven't already done so, start JBoss AS now
by typing bin/run.sh or bin/run.bat in the root directory of your JBoss installation.

By default the examples will deploy to the default configuration of the server. These examples
should be deployed to the production configuration if they are to be used with JBoss Enterprise
Application Platform 4.2, and the example build.xml file should be modified to reflect this
before building and deploying. Two lines should be changed in this file:

<property name="deploy.dir"
value="${jboss.home}/server/production/deploy"/>

<property name="webroot.dir"
value="${deploy.dir}/jboss-web.deployer/ROOT.war"/>

Now, build and deploy the example by typing ant deploy in the examples/registration

directory.

Try it out by accessing http://localhost:8080/seam-registration/ with your web browser.

1.2. Running the examples on Tomcat

First, make sure you have Ant correctly installed, with $ANT_HOME and $JAVA_HOME set correctly.
Next, make sure you set the location of your Tomcat installation in the build.properties file in

Chapter 2.

7

http://localhost:8080/seam-registration/

the root folder of your Seam installation.

Now, build and deploy the example by typing ant deploy.tomcat in the
examples/registration directory.

Finally, start Tomcat.

Try it out by accessing http://localhost:8080/jboss-seam-registration/ with your web
browser.

When you deploy the example to Tomcat, any EJB3 components will run inside the JBoss
Embeddable EJB3 container, a complete standalone EJB3 container environment.

1.3. Running the example tests

Most of the examples come with a suite of TestNG integration tests. The easiest way to run the
tests is to run ant testexample inside the examples/registration directory. It is also
possible to run the tests inside your IDE using the TestNG plugin.

2. Your first Seam application: the registration example

The registration example is a fairly trivial application that lets a new user store his username,
real name and password in the database. The example isn't intended to show off all of the cool
functionality of Seam. However, it demonstrates the use of an EJB3 session bean as a JSF
action listener, and basic configuration of Seam.

We'll go slowly, since we realize you might not yet be familiar with EJB 3.0.

The start page displays a very basic form with three input fields. Try filling them in and then
submitting the form. This will save a user object in the database.

Chapter 2. Seam Tutorial

8

http://localhost:8080/jboss-seam-registration/

2.1. Understanding the code

The example is implemented with two JSP pages, one entity bean and one stateless session
bean.

Let's take a look at the code, starting from the "bottom".

2.1.1. The entity bean: User.java

We need an EJB entity bean for user data. This class defines persistence and validation
declaratively, via annotations. It also needs some extra annotations that define the class as a
Seam component.

@Entity
@Name("user")
@Scope(SESSION)
@Table(name="users")
public class User implements Serializable
{

private static final long serialVersionUID = 1881413500711441951L;

private String username;
private String password;

Understanding the code

9

private String name;

public User(String name, String password, String username)
{

this.name = name;
this.password = password;
this.username = username;

}

public User() {}

@NotNull @Length(min=5, max=15)
public String getPassword()
{

return password;
}

public void setPassword(String password)
{

this.password = password;
}

@NotNull
public String getName()
{

return name;
}

public void setName(String name)
{

this.name = name;
}

@Id @NotNull @Length(min=5, max=15)
public String getUsername()
{

return username;
}

public void setUsername(String username)
{

this.username = username;
}

}

1. The EJB3 standard @Entity annotation indicates that the User class is an entity bean.

2. A Seam component needs a component name specified by the @Name annotation. This name
must be unique within the Seam application. When JSF asks Seam to resolve a context
variable with a name that is the same as a Seam component name, and the context variable
is currently undefined (null), Seam will instantiate that component, and bind the new instance

Chapter 2. Seam Tutorial

10

to the context variable. In this case, Seam will instantiate a User the first time JSF
encounters a variable named user.

3. Whenever Seam instantiates a component, it binds the new instance to a context variable in
the component's default context. The default context is specified using the @Scope

annotation. The User bean is a session scoped component.

4. The EJB standard @Table annotation indicates that the User class is mapped to the users

table.

5. name, password and username are the persistent attributes of the entity bean. All of our
persistent attributes define accessor methods. These are needed when this component is
used by JSF in the render response and update model values phases.

6. An empty constructor is both required by both the EJB specification and by Seam.

7. The @NotNull and @Length annotations are part of the Hibernate Validator framework. Seam
integrates Hibernate Validator and lets you use it for data validation (even if you are not using
Hibernate for persistence).

8. The EJB standard @Id annotation indicates the primary key attribute of the entity bean.

The most important things to notice in this example are the @Name and @Scope annotations.
These annotations establish that this class is a Seam component.

We'll see below that the properties of our User class are bound to directly to JSF components
and are populated by JSF during the update model values phase. We don't need any tedious
glue code to copy data back and forth between the JSP pages and the entity bean domain
model.

However, entity beans shouldn't do transaction management or database access. So we can't
use this component as a JSF action listener. For that we need a session bean.

Example 2.1.

2.1.2. The stateless session bean class: RegisterAction.java

Most Seam application use session beans as JSF action listeners (you can use JavaBeans
instead if you like).

We have exactly one JSF action in our application, and one session bean method attached to it.
In this case, we'll use a stateless session bean, since all the state associated with our action is
held by the User bean.

This is the only really interesting code in the example!

@Stateless
@Name("register")

Understanding the code

11

public class RegisterAction implements Register
{

@In
private User user;

@PersistenceContext
private EntityManager em;

@Logger
private Log log;

public String register()
{

List existing = em.createQuery(
"select username from User where username=#{user.username}")
.getResultList();

if (existing.size()==0)
{

em.persist(user);
log.info("Registered new user #{user.username}");
return "/registered.jsp";

}
else
{

FacesMessages.instance().add("User #{user.username} already
exists");

return null;
}

}

}

1. The EJB standard @Stateless annotation marks this class as stateless session bean.

2. The @In annotation marks an attribute of the bean as injected by Seam. In this case, the
attribute is injected from a context variable named user (the instance variable name).

3. The EJB standard @PersistenceContext annotation is used to inject the EJB3 entity
manager.

4. The Seam @Logger annotation is used to inject the component's Log instance.

5. The action listener method uses the standard EJB3 EntityManager API to interact with the
database, and returns the JSF outcome. Note that, since this is a sesson bean, a transaction
is automatically begun when the register() method is called, and committed when it
completes.

6. Notice that Seam lets you use a JSF EL expression inside EJB-QL. Under the covers, this
results in an ordinary JPA setParameter() call on the standard JPA Query object. Nice,

Chapter 2. Seam Tutorial

12

huh?

7. The Log API lets us easily display templated log messages.

8. JSF action listener methods return a string-valued outcome that determines what page will be
displayed next. A null outcome (or a void action listener method) redisplays the previous
page. In plain JSF, it is normal to always use a JSF navigation rule to determine the JSF view
id from the outcome. For complex application this indirection is useful and a good practice.
However, for very simple examples like this one, Seam lets you use the JSF view id as the
outcome, eliminating the requirement for a navigation rule. Note that when you use a view id
as an outcome, Seam always performs a browser redirect.

9. Seam provides a number of built-in components to help solve common problems. The
FacesMessages component makes it easy to display templated error or success messages.
Built-in Seam components may be obtained by injection, or by calling an instance()

method.

Note that we did not explicitly specify a @Scope this time. Each Seam component type has a
default scope if not explicitly specified. For stateless session beans, the default scope is the
stateless context. Actually, all stateless session beans belong in the stateless context.

Our session bean action listener performs the business and persistence logic for our
mini-application. In more complex applications, we might need to layer the code and refactor
persistence logic into a dedicated data access component. That's perfectly trivial to do. But
notice that Seam does not force you into any particular strategy for application layering.

Furthermore, notice that our session bean has simultaneous access to context associated with
the web request (the form values in the User object, for example), and state held in
transactional resources (the EntityManager object). This is a break from traditional J2EE
architectures. Again, if you are more comfortable with the traditional J2EE layering, you can
certainly implement that in a Seam application. But for many applications, it's simply not very
useful.

Example 2.2.

2.1.3. The session bean local interface: Register.java

Naturally, our session bean needs a local interface.

@Local
public interface Register
{

public String register();
}

Understanding the code

13

Example 2.3.

That's the end of the Java code. Now onto the deployment descriptors.

2.1.4. The Seam component deployment descriptor: components.xml

If you've used many Java frameworks before, you'll be used to having to declare all your
component classes in some kind of XML file that gradually grows more and more
unmanageable as your project matures. You'll be relieved to know that Seam does not require
that application components be accompanied by XML. Most Seam applications require a very
small amount of XML that does not grow very much as the project gets bigger.

Nevertheless, it is often useful to be able to provide for some external configuration of some
components (particularly the components built in to Seam). You have a couple of options here,
but the most flexible option is to provide this configuration in a file called components.xml,
located in the WEB-INF directory. We'll use the components.xml file to tell Seam how to find our
EJB components in JNDI:

<components xmlns="http://jboss.com/products/seam/components"
xmlns:core="http://jboss.com/products/seam/core">

<core:init jndi-pattern="@jndiPattern@"/>
</components>

Example 2.4.

This code configures a property named jndiPattern of a built-in Seam component named
org.jboss.seam.core.init.

2.1.5. The web deployment description: web.xml

The presentation layer for our mini-application will be deployed in a WAR. So we'll need a web
deployment descriptor.

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5"

xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">

<!- - Seam - ->

<listener>
<listener-class>org.jboss.seam.servlet.SeamListener</listener-class>

</listener>

Chapter 2. Seam Tutorial

14

<listener>
<listener-class>com.sun.faces.config.ConfigureListener</listener-class>

</listener>

<context-param>
<param-name>javax.faces.STATE_SAVING_METHOD</param-name>
<param-value>client</param-value>

</context-param>

<context-param>
<param-name>javax.faces.DEFAULT_SUFFIX</param-name>
<param-value>.jspx</param-value>

</context-param>

<servlet>
<servlet-name>Faces Servlet</servlet-name>

<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>Faces Servlet</servlet-name>
<url-pattern>*.seam</url-pattern>

</servlet-mapping>

</web-app>

Example 2.5.

This web.xml file configures Seam and Glassfish. The configuration you see here is pretty much
identical in all Seam applications.

2.1.6. The JSF configration: faces-config.xml

All Seam applications use JSF views as the presentation layer. So we'll need
faces-config.xml.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE faces-config
PUBLIC "-//Sun Microsystems, Inc.//DTD JavaServer Faces Config 1.0//EN"
"http://java.sun.com/dtd/web-facesconfig_1_0.dtd">
<faces-config>

<!- - A phase listener is needed by all Seam applications - ->

<lifecycle>
<phase-listener>org.jboss.seam.jsf.SeamPhaseListener</phase-listener>

</lifecycle>

Understanding the code

15

</faces-config>

Example 2.6.

The faces-config.xml file integrates Seam into JSF. Note that we don't need any JSF
managed bean declarations! The managed beans are the Seam components. In Seam
applications, the faces-config.xml is used much less often than in plain JSF.

In fact, once you have all the basic descriptors set up, the only XML you need to write as you
add new functionality to a Seam application is the navigation rules, and possibly jBPM process
definitions. Seam takes the view that process flow and configuration data are the only things
that truly belong in XML.

In this simple example, we don't even need a navigation rule, since we decided to embed the
view id in our action code.

2.1.7. The EJB deployment descriptor: ejb-jar.xml

The ejb-jar.xml file integrates Seam with EJB3, by attaching the SeamInterceptor to all
session beans in the archive.

<ejb-jar xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd"
version="3.0">

<interceptors>
<interceptor>

<interceptor-class>org.jboss.seam.ejb.SeamInterceptor</interceptor-class>
</interceptor>

</interceptors>

<assembly-descriptor>
<interceptor-binding>

<ejb-name>*</ejb-name>
<interceptor-class>org.jboss.seam.ejb.SeamInterceptor</interceptor-class>

</interceptor-binding>
</assembly-descriptor>

</ejb-jar>

2.1.8. The EJB persistence deployment descriptor: persistence.xml

The persistence.xml file tells the EJB persistence provider where to find the datasource, and
contains some vendor-specific settings. In this case, enables automatic schema export at
startup time.

Chapter 2. Seam Tutorial

16

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence

http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd"
version="1.0">

<persistence-unit name="userDatabase">
<provider>org.hibernate.ejb.HibernatePersistence</provider>
<jta-data-source>java:/DefaultDS</jta-data-source>
<properties>

<property name="hibernate.hbm2ddl.auto" value="create-drop"/>
</properties>

</persistence-unit>
</persistence>

2.1.9. The view: register.jsp and registered.jsp

The view pages for a Seam application could be implemented using any technology that
supports JSF. In this example we use JSP, since it is familiar to most developers and since we
have minimal requirements here anyway. (But if you take our advice, you'll use Facelets for your
own applications.)

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<%@ taglib uri="http://jboss.com/products/seam/taglib" prefix="s" %>
<html>
<head>
<title>Register New User</title>
</head>
<body>
<f:view>
<h:form>

<table border="0">
<s:validateAll>

<tr>
<td>Username</td>
<td><h:inputText value="#{user.username}"/></td>

</tr>
<tr>
<td>Real Name</td>
<td><h:inputText value="#{user.name}"/></td>

</tr>
<tr>
<td>Password</td>
<td><h:inputSecret value="#{user.password}"/></td>

</tr>
</s:validateAll>

</table>
<h:messages/>
<h:commandButton type="submit" value="Register"

action="#{register.register}"/>
</h:form>

</f:view>

Understanding the code

17

</body>
</html>

Example 2.7.

The only thing here that is specific to Seam is the <s:validateAll> tag. This JSF component
tells JSF to validate all the contained input fields against the Hibernate Validator annotations
specified on the entity bean.

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<html>
<head>
<title>Successfully Registered New User</title>
</head>
<body>
<f:view>

Welcome, <h:outputText value="#{user.name}"/>,
you are successfully registered as <h:outputText

value="#{user.username}"/>.
</f:view>
</body>

</html>

Example 2.8.

This is a boring old JSP pages using standard JSF components. There is nothing specific to
Seam here.

2.1.10. The EAR deployment descriptor: application.xml

Finally, since our application is deployed as an EAR, we need a deployment descriptor there,
too.

<?xml version="1.0" encoding="UTF-8"?>
<application xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/application_5.xsd"
version="5">

<display-name>Seam Registration</display-name>

<module>
<web>

Chapter 2. Seam Tutorial

18

<web-uri>jboss-seam-registration.war</web-uri>
<context-root>/seam-registration</context-root>

</web>
</module>
<module>

<ejb>jboss-seam-registration.jar</ejb>
</module>
<module>

<java>jboss-seam.jar</java>
</module>
<module>

<java>el-ri.jar</java>
</module>

</application>

Example 2.9.

This deployment descriptor links modules in the enterprise archive and binds the web
application to the context root /seam-registration.

2.2. How it works

When the form is submitted, JSF asks Seam to resolve the variable named user. Since there is
no value already bound to that name (in any Seam context), Seam instantiates the user

component, and returns the resulting User entity bean instance to JSF after storing it in the
Seam session context.

The form input values are now validated against the Hibernate Validator constraints specified on
the User entity. If the constraints are violated, JSF redisplays the page. Otherwise, JSF binds
the form input values to properties of the User entity bean.

Next, JSF asks Seam to resolve the variable named register. Seam finds the
RegisterAction stateless session bean in the stateless context and returns it. JSF invokes the
register() action listener method.

Seam intercepts the method call and injects the User entity from the Seam session context,
before continuing the invocation.

The register() method checks if a user with the entered username already exists. If so, an
error message is queued with the FacesMessages component, and a null outcome is returned,
causing a page redisplay. The FacesMessages component interpolates the JSF expression
embedded in the message string and adds a JSF FacesMessage to the view.

If no user with that username exists, the "/registered.jsp" outcome triggers a browser
redirect to the registered.jsp page. When JSF comes to render the page, it asks Seam to
resolve the variable named user and uses property values of the returned User entity from

How it works

19

Seam's session scope.

3. Clickable lists in Seam: the messages example

Clickable lists of database search results are such an important part of any online application
that Seam provides special functionality on top of JSF to make it easier to query data using
EJB-QL or HQL and display it as a clickable list using a JSF <h:dataTable>. The messages
example demonstrates this functionality.

3.1. Understanding the code

The message list example has one entity bean, Message, one session bean, MessageListBean
and one JSP.

3.1.1. The entity bean: Message.java

The Message entity defines the title, text, date and time of a message, and a flag indicating
whether the message has been read:

@Entity
@Name("message")
@Scope(EVENT)

Chapter 2. Seam Tutorial

20

public class Message implements Serializable
{

private Long id;
private String title;
private String text;
private boolean read;
private Date datetime;

@Id @GeneratedValue
public Long getId() {

return id;
}
public void setId(Long id) {

this.id = id;
}

@NotNull @Length(max=100)
public String getTitle() {

return title;
}
public void setTitle(String title) {

this.title = title;
}

@NotNull @Lob
public String getText() {

return text;
}
public void setText(String text) {

this.text = text;
}

@NotNull
public boolean isRead() {

return read;
}
public void setRead(boolean read) {

this.read = read;
}

@NotNull
@Basic @Temporal(TemporalType.TIMESTAMP)
public Date getDatetime() {

return datetime;
}
public void setDatetime(Date datetime) {

this.datetime = datetime;
}

}

Example 2.10.

Understanding the code

21

3.1.2. The stateful session bean: MessageManagerBean.java

Just like in the previous example, we have a session bean, MessageManagerBean, which
defines the action listener methods for the two buttons on our form. One of the buttons selects a
message from the list, and displays that message. The other button deletes a message. So far,
this is not so different to the previous example.

But MessageManagerBean is also responsible for fetching the list of messages the first time we
navigate to the message list page. There are various ways the user could navigate to the page,
and not all of them are preceded by a JSF action—the user might have bookmarked the page,
for example. So the job of fetching the message list takes place in a Seam factory method,
instead of in an action listener method.

We want to cache the list of messages in memory between server requests, so we will make
this a stateful session bean.

@Stateful
@Scope(SESSION)
@Name("messageManager")
public class MessageManagerBean implements Serializable, MessageManager
{

@DataModel
private List<Message> messageList;

@DataModelSelection
@Out(required=false)
private Message message;

@PersistenceContext(type=EXTENDED)
private EntityManager em;

@Factory("messageList")
public void findMessages()
{

messageList = em.createQuery("from Message msg order by msg.datetime
desc").getResultList();

}

public void select()
{

message.setRead(true);
}

public void delete()
{

messageList.remove(message);
em.remove(message);
message=null;

}

@Remove @Destroy
public void destroy() {}

Chapter 2. Seam Tutorial

22

}

1. The @DataModel annotation exposes an attibute of type java.util.List to the JSF page as
an instance of javax.faces.model.DataModel. This allows us to use the list in a JSF
<h:dataTable> with clickable links for each row. In this case, the DataModel is made
available in a session context variable named messageList.

2. The @DataModelSelection annotation tells Seam to inject the List element that
corresponded to the clicked link.

3. The @Out annotation then exposes the selected value directly to the page. So ever time a row
of the clickable list is selected, the Message is injected to the attribute of the stateful bean,
and the subsequently outjected to the event context variable named message.

4. This stateful bean has an EJB3 extended persistence context. The messages retrieved in the
query remain in the managed state as long as the bean exists, so any subsequent method
calls to the stateful bean can update them without needing to make any explicit call to the
EntityManager.

5. The first time we navigate to the JSP page, there will be no value in the messageList context
variable. The @Factory annotation tells Seam to create an instance of MessageManagerBean
and invoke the findMessages() method to initialize the value. We call findMessages() a
factory method for messages.

6. The select() action listener method marks the selected Message as read, and updates it in
the database.

7. The delete() action listener method removes the selected Message from the database.

8. All stateful session bean Seam components must have a method marked @Remove @Destroy

to ensure that Seam will remove the stateful bean when the Seam context ends, and clean
up any server-side state.

Example 2.11.

Note that this is a session-scoped Seam component. It is associated with the user login session,
and all requests from a login session share the same instance of the component. (In Seam
applications, we usually use session-scoped components sparingly.)

3.1.3. The session bean local interface: MessageManager.java

All session beans have a business interface, of course.

@Local

Understanding the code

23

public interface MessageManager
{

public void findMessages();
public void select();
public void delete();
public void destroy();

}

From now on, we won't show local interfaces in our code examples.

Let's skip over components.xml, persistence.xml, web.xml, ejb-jar.xml,
faces-config.xml and application.xml since they are much the same as the previous
example, and go straight to the JSP.

3.1.4. The view: messages.jsp

The JSP page is a straightforward use of the JSF <h:dataTable> component. Again, nothing
specific to Seam.

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<html>
<head>
<title>Messages</title>
</head>
<body>
<f:view>
<h:form>

<h2>Message List</h2>
<h:outputText value="No messages to display"

rendered="#{messageList.rowCount==0}"/>
<h:dataTable var="msg" value="#{messageList}"

rendered="#{messageList.rowCount>0}">
<h:column>

<f:facet name="header">
<h:outputText value="Read"/>

</f:facet>
<h:selectBooleanCheckbox value="#{msg.read}" disabled="true"/>

</h:column>
<h:column>

<f:facet name="header">
<h:outputText value="Title"/>

</f:facet>
<h:commandLink value="#{msg.title}"

action="#{messageManager.select}"/>
</h:column>
<h:column>

<f:facet name="header">
<h:outputText value="Date/Time"/>

</f:facet>
<h:outputText value="#{msg.datetime}">

<f:convertDateTime type="both" dateStyle="medium"
timeStyle="short"/>

Chapter 2. Seam Tutorial

24

</h:outputText>
</h:column>
<h:column>

<h:commandButton value="Delete"
action="#{messageManager.delete}"/>

</h:column>
</h:dataTable>
<h3><h:outputText value="#{message.title}"/></h3>
<div><h:outputText value="#{message.text}"/></div>

</h:form>
</f:view>
</body>

</html>

Example 2.12.

3.2. How it works

The first time we navigate to the messages.jsp page, whether by a JSF postback (faces
request) or a direct browser GET request (non-faces request), the page will try to resolve the
messageList context variable. Since this context variable is not initialized, Seam will call the
factory method findMessages(), which performs a query against the database and results in a
DataModel being outjected. This DataModel provides the row data needed for rendering the
<h:dataTable>.

When the user clicks the <h:commandLink>, JSF calls the select() action listener. Seam
intercepts this call and injects the selected row data into the message attribute of the
messageManager component. The action listener fires, marking the selected Message as read.
At the end of the call, Seam outjects the selected Message to the context variable named
message. Next, the EJB container commits the transaction, and the change to the Message is
flushed to the database. Finally, the page is re-rendered, redisplaying the message list, and
displaying the selected message below it.

If the user clicks the <h:commandButton>, JSF calls the delete() action listener. Seam
intercepts this call and injects the selected row data into the message attribute of the
messageList component. The action listener fires, removing the selected Message from the list,
and also calling remove() on the EntityManager. At the end of the call, Seam refreshes the
messageList context variable and clears the context variable named message. The EJB
container commits the transaction, and deletes the Message from the database. Finally, the
page is re-rendered, redisplaying the message list.

4. Seam and jBPM: the todo list example

jBPM provides sophisticated functionality for workflow and task management. To get a small
taste of how jBPM integrates with Seam, we'll show you a simple "todo list" application. Since
managing lists of tasks is such core functionality for jBPM, there is hardly any Java code at all in

How it works

25

this example.

4.1. Understanding the code

The center of this example is the jBPM process definition. There are also two JSPs and two
trivial JavaBeans (There was no reason to use session beans, since they do not access the
database, or have any other transactional behavior). Let's start with the process definition:

<process-definition name="todo">

<start-state name="start">
<transition to="todo"/>

</start-state>

<task-node name="todo">
<task name="todo" description="#{todoList.description}">

<assignment actor-id="#{actor.id}"/>
</task>
<transition to="done"/>

</task-node>

<end-state name="done"/>

</process-definition>

1. The <start-state> node represents the logical start of the process. When the process
starts, it immediately transitions to the todo node.

Chapter 2. Seam Tutorial

26

2. The <task-node> node represents a wait state, where business process execution pauses,
waiting for one or more tasks to be performed.

3. The <task> element defines a task to be performed by a user. Since there is only one task
defined on this node, when it is complete, execution resumes, and we transition to the end
state. The task gets its description from a Seam component named todoList (one of the
JavaBeans).

4. Tasks need to be assigned to a user or group of users when they are created. In this case,
the task is assigned to the current user, which we get from a built-in Seam component named
actor. Any Seam component may be used to perform task assignment.

5. The <end-state> node defines the logical end of the business process. When execution
reaches this node, the process instance is destroyed.

Example 2.13.

If we view this process definition using the process definition editor provided by JBossIDE, this
is what it looks like:

This document defines our business process as a graph of nodes. This is the most trivial
possible business process: there is one task to be performed, and when that task is complete,
the business process ends.

Understanding the code

27

The first JavaBean handles the login screen login.jsp. Its job is just to initialize the jBPM actor
id using the actor component. (In a real application, it would also need to authenticate the
user.)

@Name("login")
public class Login {

@In
private Actor actor;

private String user;

public String getUser() {
return user;

}

public void setUser(String user) {
this.user = user;

}

public String login()
{

actor.setId(user);
return "/todo.jsp";

}
}

Example 2.14.

Here we see the use of @In to inject the built-in Actor component.

The JSP itself is trivial:

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h"%>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f"%>
<html>
<head>
<title>Login</title>
</head>
<body>
<h1>Login</h1>
<f:view>

<h:form>
<div>

<h:inputText value="#{login.user}"/>
<h:commandButton value="Login" action="#{login.login}"/>

</div>
</h:form>

</f:view>
</body>
</html>

Chapter 2. Seam Tutorial

28

Example 2.15.

The second JavaBean is responsible for starting business process instances, and ending tasks.

@Name("todoList")
public class TodoList {

private String description;

public String getDescription()
{

return description;
}

public void setDescription(String description) {
this.description = description;

}

@CreateProcess(definition="todo")
public void createTodo() {}

@StartTask @EndTask
public void done() {}

}

1. The description property accepts user input form the JSP page, and exposes it to the process
definition, allowing the task description to be set.

2. The Seam @CreateProcess annotation creates a new jBPM process instance for the named
process definition.

3. The Seam @StartTask annotation starts work on a task. The @EndTask ends the task, and
allows the business process execution to resume.

Example 2.16.

In a more realistic example, @StartTask and @EndTask would not appear on the same method,
because there is usually work to be done using the application in order to complete the task.

Finally, the meat of the application is in todo.jsp:

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>

Understanding the code

29

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<%@ taglib uri="http://jboss.com/products/seam/taglib" prefix="s" %>
<html>
<head>
<title>Todo List</title>
</head>
<body>
<h1>Todo List</h1>
<f:view>

<h:form id="list">
<div>

<h:outputText value="There are no todo items." rendered="#{empty
taskInstanceList}"/>

<h:dataTable value="#{taskInstanceList}" var="task" rendered="#{not
empty

taskInstanceList}">
<h:column>

<f:facet name="header">
<h:outputText value="Description"/>

</f:facet>
<h:inputText value="#{task.description}"/>

</h:column>
<h:column>

<f:facet name="header">
<h:outputText value="Created"/>

</f:facet>
<h:outputText

value="#{task.taskMgmtInstance.processInstance.start}">
<f:convertDateTime type="date"/>

</h:outputText>
</h:column>
<h:column>

<f:facet name="header">
<h:outputText value="Priority"/>

</f:facet>
<h:inputText value="#{task.priority}" style="width: 30"/>

</h:column>
<h:column>

<f:facet name="header">
<h:outputText value="Due Date"/>

</f:facet>
<h:inputText value="#{task.dueDate}" style="width: 100">

<f:convertDateTime type="date" dateStyle="short"/>
</h:inputText>

</h:column>
<h:column>

<s:button value="Done" action="#{todoList.done}"
taskInstance="#{task}"/>

</h:column>
</h:dataTable>

</div>
<div>
<h:messages/>
</div>
<div>

<h:commandButton value="Update Items" action="update"/>

Chapter 2. Seam Tutorial

30

</div>
</h:form>
<h:form id="new">

<div>
<h:inputText value="#{todoList.description}"/>
<h:commandButton value="Create New Item"

action="#{todoList.createTodo}"/>
</div>

</h:form>
</f:view>
</body>
</html>

Example 2.17.

Let's take this one piece at a time.

The page renders a list of tasks, which it gets from a built-in Seam component named
taskInstanceList. The list is defined inside a JSF form.

<h:form id="list">
<div>

<h:outputText value="There are no todo items." rendered="#{empty
taskInstanceList}"/>

<h:dataTable value="#{taskInstanceList}" var="task" rendered="#{not
empty taskInstanceList}">

...
</h:dataTable>

</div>
</h:form>

Each element of the list is an instance of the jBPM class TaskInstance. The following code
simply displays the interesting properties of each task in the list. For the description, priority and
due date, we use input controls, to allow the user to update these values.

<h:column>
<f:facet name="header">

<h:outputText value="Description"/>
</f:facet>
<h:inputText value="#{task.description}"/>

</h:column>
<h:column>

<f:facet name="header">
<h:outputText value="Created"/>

</f:facet>
<h:outputText value="#{task.taskMgmtInstance.processInstance.start}">

<f:convertDateTime type="date"/>
</h:outputText>

</h:column>
<h:column>

Understanding the code

31

<f:facet name="header">
<h:outputText value="Priority"/>

</f:facet>
<h:inputText value="#{task.priority}" style="width: 30"/>

</h:column>
<h:column>

<f:facet name="header">
<h:outputText value="Due Date"/>

</f:facet>
<h:inputText value="#{task.dueDate}" style="width: 100">

<f:convertDateTime type="date" dateStyle="short"/>
</h:inputText>

</h:column>

This button ends the task by calling the action method annotated @StartTask @EndTask. It
passes the task id to Seam as a request parameter:

<h:column>
<s:button value="Done" action="#{todoList.done}"

taskInstance="#{task}"/>
</h:column>

(Note that this is using a Seam <s:button> JSF control from the seam-ui.jar package.)

This button is used to update the properties of the tasks. When the form is submitted, Seam and
jBPM will make any changes to the tasks persistent. There is no need for any action listener
method:

<h:commandButton value="Update Items" action="update"/>

A second form on the page is used to create new items, by calling the action method annotated
@CreateProcess.

<h:form id="new">
<div>

<h:inputText value="#{todoList.description}"/>
<h:commandButton value="Create New Item"

action="#{todoList.createTodo}"/>
</div>

</h:form>

There are several other files needed for the example, but they are just standard jBPM and
Seam configuration and not very interesting.

4.2. How it works

TODO

Chapter 2. Seam Tutorial

32

5. Seam pageflow: the numberguess example

For Seam applications with relatively freeform (ad hoc) navigation, JSF/Seam navigation rules
are a perfectly good way to define the page flow. For applications with a more constrained style
of navigation, especially for user interfaces which are more stateful, navigation rules make it
difficult to really understand the flow of the system. To understand the flow, you need to piece it
together from the view pages, the actions and the navigation rules.

Seam allows you to use a jPDL process definition to define pageflow. The simple number
guessing example shows how this is done.

5.1. Understanding the code

The example is implemented using one JavaBean, three JSP pages and a jPDL pageflow
definition. Let's begin with the pageflow:

<pageflow-definition name="numberGuess">

<start-page name="displayGuess" view-id="/numberGuess.jsp">
<redirect/>
<transition name="guess" to="evaluateGuess">

<action expression="#{numberGuess.guess}" />
</transition>

</start-page>

<decision name="evaluateGuess" expression="#{numberGuess.correctGuess}">
<transition name="true" to="win"/>
<transition name="false" to="evaluateRemainingGuesses"/>

</decision>

<decision name="evaluateRemainingGuesses"
expression="#{numberGuess.lastGuess}">

<transition name="true" to="lose"/>
<transition name="false" to="displayGuess"/>

</decision>

<page name="win" view-id="/win.jsp">

Understanding the code

33

<redirect/>
<end-conversation />

</page>

<page name="lose" view-id="/lose.jsp">
<redirect/>
<end-conversation />

</page>

</pageflow-definition>

1. The <page> element defines a wait state where the system displays a particular JSF view
and waits for user input. The view-id is the same JSF view id used in plain JSF navigation
rules. The redirect attribute tells Seam to use post-then-redirect when navigating to the
page. (This results in friendly browser URLs.)

2. The <transition> element names a JSF outcome. The transition is triggered when a JSF
action results in that outcome. Execution will then proceed to the next node of the pageflow
graph, after invocation of any jBPM transition actions.

3. A transition <action> is just like a JSF action, except that it occurs when a jBPM transition
occurs. The transition action can invoke any Seam component.

4. A <decision> node branches the pageflow, and determines the next node to execute by
evaluating a JSF EL expression.

Example 2.18.

Here is what the pageflow looks like in the JBossIDE pageflow editor:

Chapter 2. Seam Tutorial

34

Now that we have seen the pageflow, it is very, very easy to understand the rest of the
application!

Here is the main page of the application, numberGuess.jsp:

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h"%>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f"%>
<html>
<head>
<title>Guess a number...</title>
</head>
<body>
<h1>Guess a number...</h1>
<f:view>

<h:form>
<h:outputText value="Higher!"

rendered="#{numberGuess.randomNumber>numberGuess.currentGuess}" />
<h:outputText value="Lower!"

rendered="#{numberGuess.randomNumber<numberGuess.currentGuess}" />

I'm thinking of a number between <h:outputText

value="#{numberGuess.smallest}" /> and
<h:outputText value="#{numberGuess.biggest}" />. You have
<h:outputText value="#{numberGuess.remainingGuesses}" /> guesses.

Your guess:
<h:inputText value="#{numberGuess.currentGuess}" id="guess"

required="true">
<f:validateLongRange

maximum="#{numberGuess.biggest}"
minimum="#{numberGuess.smallest}"/>

Understanding the code

35

</h:inputText>
<h:commandButton type="submit" value="Guess" action="guess" />

<h:message for="guess" style="color: red"/>

</h:form>
</f:view>
</body>
</html>

Example 2.19.

Notice how the command button names the guess transition instead of calling an action directly.

The win.jsp page is predictable:

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h"%>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f"%>
<html>
<head>
<title>You won!</title>
</head>
<body>
<h1>You won!</h1>
<f:view>

Yes, the answer was <h:outputText value="#{numberGuess.currentGuess}"
/>.

It took you <h:outputText value="#{numberGuess.guessCount}" /> guesses.
Would you like to play again?

</f:view>
</body>
</html>

Example 2.20.

As is lose.jsp (which I can't be bothered copy/pasting). Finally, the JavaBean Seam
component:

@Name("numberGuess")
@Scope(ScopeType.CONVERSATION)
public class NumberGuess {

private int randomNumber;
private Integer currentGuess;
private int biggest;
private int smallest;
private int guessCount;
private int maxGuesses;

Chapter 2. Seam Tutorial

36

@Create
@Begin(pageflow="numberGuess")
public void begin()
{

randomNumber = new Random().nextInt(100);
guessCount = 0;
biggest = 100;
smallest = 1;

}

public void setCurrentGuess(Integer guess)
{

this.currentGuess = guess;
}

public Integer getCurrentGuess()
{

return currentGuess;
}

public void guess()
{

if (currentGuess>randomNumber)
{

biggest = currentGuess - 1;
}
if (currentGuess<randomNumber)
{

smallest = currentGuess + 1;
}
guessCount ++;

}

public boolean isCorrectGuess()
{

return currentGuess==randomNumber;
}

public int getBiggest()
{

return biggest;
}

public int getSmallest()
{

return smallest;
}

public int getGuessCount()
{

return guessCount;
}

public boolean isLastGuess()
{

Understanding the code

37

return guessCount==maxGuesses;
}

public int getRemainingGuesses() {
return maxGuesses-guessCount;

}

public void setMaxGuesses(int maxGuesses) {
this.maxGuesses = maxGuesses;

}

public int getMaxGuesses() {
return maxGuesses;

}

public int getRandomNumber() {
return randomNumber;

}
}

1. The first time a JSP page asks for a numberGuess component, Seam will create a new one
for it, and the @Create method will be invoked, allowing the component to initialize itself.

2. The @Begin annotation starts a Seam conversation (much more about that later), and
specifies the pageflow definition to use for the conversation's page flow.

Example 2.21.

As you can see, this Seam component is pure business logic! It doesn't need to know anything
at all about the user interaction flow. This makes the component potentially more reuseable.

5.2. How it works

TODO

6. A complete Seam application: the Hotel Booking
example

6.1. Introduction

The booking application is a complete hotel room reservation system incorporating the following
features:

• User registration

Chapter 2. Seam Tutorial

38

• Login

• Logout

• Set password

• Hotel search

• Hotel selection

• Room reservation

• Reservation confirmation

• Existing reservation list

Introduction

39

Figure 2.1. Booking Example

The booking application uses JSF, EJB 3.0 and Seam, together with Facelets for the view.
There is also a port of this application to JSF, Facelets, Seam, JavaBeans and Hibernate3.

One of the things you'll notice if you play with this application for long enough is that it is
extremely robust. You can play with back buttons and browser refresh and opening multiple
windows and entering nonsensical data as much as you like and you will find it very difficult to
make the application crash. You might think that we spent weeks testing and fixing bugs to
achive this. Actually, this is not the case. Seam was designed to make it very straightforward to

Chapter 2. Seam Tutorial

40

build robust web applications and a lot of robustness that you are probably used to having to
code yourself comes naturally and automatically with Seam.

As you browse the sourcecode of the example application, and learn how the application works,
observe how the declarative state management and integrated validation has been used to
achieve this robustness.

6.2. Overview of the booking example

The project structure is identical to the previous one, to install and deploy this application,
please refer to Section 1, “Try the examples”. Once you've successfully started the application,
you can access it by pointing your browser to http://localhost:8080/seam-booking/

Just nine classes (plus six session beans local interfaces) where used to implement this
application. Six session bean action listeners contain all the business logic for the listed
features.

• BookingListAction retrieves existing bookings for the currently logged in user.

• ChangePasswordAction updates the password of the currently logged in user.

• HotelBookingAction implements the core functionality of the application: hotel room
searching, selection, booking and booking confirmation. This functionality is implemented as a
conversation, so this is the most interesting class in the application.

• RegisterAction registers a new system user.

Three entity beans implement the application's persistent domain model.

• Hotel is an entity bean that represents a hotel

• Booking is an entity bean that represents an existing booking

• User is an entity bean to represents a user who can make hotel bookings

6.3. Understanding Seam conversations

We encourage you browse the sourcecode at your pleasure. In this tutorial we'll concentrate
upon one particular piece of functionality: hotel search, selection, booking and confirmation.
From the point of view of the user, everything from selecting a hotel to confirming a booking is
one continuous unit of work, a conversation. Searching, however, is not part of the
conversation. The user can select multiple hotels from the same search results page, in different
browser tabs.

Most web application architectures have no first class construct to represent a conversation.
This causes enormous problems managing state associated with the conversation. Usually,
Java web applications use a combination of two techniques: first, some state is thrown into the

Overview of the booking example

41

http://localhost:8080/seam-booking/

HttpSession; second, persistable state is flushed to the database after every request, and
reconstructed from the database at the beginning of each new request.

Since the database is the least scalable tier, this often results in an utterly unacceptable lack of
scalability. Added latency is also a problem, due to the extra traffic to and from the database on
every request. To reduce this redundant traffic, Java applications often introduce a data
(second-level) cache that keeps commonly accessed data between requests. This cache is
necessarily inefficient, because invalidation is based upon an LRU policy instead of being based
upon when the user has finished working with the data. Furthermore, because the cache is
shared between many concurrent transactions, we've introduced a whole raft of problem's
associated with keeping the cached state consistent with the database.

Now consider the state held in the HttpSession. By very careful programming, we might be
able to control the size of the session data. This is a lot more difficult than it sounds, since web
browsers permit ad hoc non-linear navigation. But suppose we suddenly discover a system
requirement that says that a user is allowed to have mutiple concurrent conversations, halfway
through the development of the system (this has happened to me). Developing mechanisms to
isolate session state associated with different concurrent conversations, and incorporating
failsafes to ensure that conversation state is destroyed when the user aborts one of the
conversations by closing a browser window or tab is not for the faint hearted (I've implemented
this stuff twice so far, once for a client application, once for Seam, but I'm famously psychotic).

Now there is a better way.

Seam introduces the conversation context as a first class construct. You can safely keep
conversational state in this context, and be assured that it will have a well-defined lifecycle.
Even better, you won't need to be continually pushing data back and forth between the
application server and the database, since the conversation context is a natural cache of data
that the user is currently working with.

Usually, the components we keep in the conversation context are stateful session beans. (We
can also keep entity beans and JavaBeans in the conversation context.) There is an ancient
canard in the Java community that stateful session beans are a scalability killer. This may have
been true in 1998 when WebFoobar 1.0 was released. It is no longer true today. Application
servers like JBoss 4.0 have extremely sophisticated mechanisms for stateful session bean state
replication. (For example, the JBoss EJB3 container performs fine-grained replication,
replicating only those bean attribute values which actually changed.) Note that all the traditional
technical arguments for why stateful beans are inefficient apply equally to the HttpSession, so
the practice of shifting state from business tier stateful session bean components to the web
session to try and improve performance is unbelievably misguided. It is certainly possible to
write unscalable applications using stateful session beans, by using stateful beans incorrectly,
or by using them for the wrong thing. But that doesn't mean you should never use them.
Anyway, Seam guides you toward a safe usage model. Welcome to 2005.

OK, I'll stop ranting now, and get back to the tutorial.

The booking example application shows how stateful components with different scopes can
collaborate together to achieve complex behaviors. The main page of the booking application
allows the user to search for hotels. The search results are kept in the Seam session scope.

Chapter 2. Seam Tutorial

42

When the user navigates to one of these hotels, a conversation begins, and a conversation
scoped component calls back to the session scoped component to retrieve the selected hotel.

The booking example also demonstrates the use of Ajax4JSF to implement rich client behavior
without the use of handwritten JavaScript.

The search functionality is implemented using a session-scope stateful session bean, similar to
the one we saw in the message list example above.

@Stateful
@Name("hotelSearch")
@Scope(ScopeType.SESSION)
@Restrict("#{identity.loggedIn}")
public class HotelSearchingAction implements HotelSearching
{

@PersistenceContext
private EntityManager em;

private String searchString;
private int pageSize = 10;
private int page;

@DataModel
private List<Hotel> hotels;

public String find()
{

page = 0;
queryHotels();
return "main";

}

public String nextPage()
{

page++;
queryHotels();
return "main";

}

private void queryHotels()
{

String searchPattern = searchString==null ? "%" : '%' +
searchString.toLowerCase().replace('*', '%') + '%';

hotels = em.createQuery("select h from Hotel h where lower(h.name)
like

:search or lower(h.city) like :search
or lower(h.zip) like :search or lower(h.address) like :search")

.setParameter("search", searchPattern)

.setMaxResults(pageSize)

.setFirstResult(page * pageSize)

.getResultList();
}

public boolean isNextPageAvailable()

Understanding Seam conversations

43

{
return hotels!=null && hotels.size()==pageSize;

}

public int getPageSize() {
return pageSize;

}

public void setPageSize(int pageSize) {
this.pageSize = pageSize;

}

public String getSearchString()
{

return searchString;
}

public void setSearchString(String searchString)
{

this.searchString = searchString;
}

@Destroy @Remove
public void destroy() {}

}

1. The EJB standard @Stateful annotation identifies this class as a stateful session bean.
Stateful session beans are scoped to the conversation context by default.

2. The @Restrict annotation applies a security restriction to the component. It restricts access
to the component allowing only logged-in users. The security chapter explains more about
security in Seam.

3. The @DataModel annotation exposes a List as a JSF ListDataModel. This makes it easy to
implement clickable lists for search screens. In this case, the list of hotels is exposed to the
page as a ListDataModel in the conversation variable named hotels.

4. The EJB standard @Remove annotation specifies that a stateful session bean should be
removed and its state destroyed after invocation of the annotated method. In Seam, all
stateful session beans should define a method marked @Destroy @Remove. This is the EJB
remove method that will be called when Seam destroys the session context. Actually, the
@Destroy annotation is of more general usefulness, since it can be used for any kind of
cleanup that should happen when any Seam context ends. If you don't have an @Destroy

@Remove method, state will leak and you will suffer performance problems.

Example 2.22.

Chapter 2. Seam Tutorial

44

The main page of the application is a Facelets page. Let's look at the fragment which relates to
searching for hotels:

<div class="section">
<h:form>

<h:messages globalOnly="true"/>

<h1>Search Hotels</h1>
<fieldset>

<h:inputText value="#{hotelSearch.searchString}" style="width: 165px;">
<a:support event="onkeyup" actionListener="#{hotelSearch.find}"

reRender="searchResults" />
</h:inputText>

<a:commandButton value="Find Hotels" action="#{hotelSearch.find}"
styleClass="button" reRender="searchResults"/>

<a:status>
<f:facet name="start">

<h:graphicImage value="/img/spinner.gif"/>
</f:facet>

</a:status>

<h:outputLabel for="pageSize">Maximum results:</h:outputLabel>
<h:selectOneMenu value="#{hotelSearch.pageSize}" id="pageSize">

<f:selectItem itemLabel="5" itemValue="5"/>
<f:selectItem itemLabel="10" itemValue="10"/>
<f:selectItem itemLabel="20" itemValue="20"/>

</h:selectOneMenu>
</fieldset>

</h:form>
</div>

<a:outputPanel id="searchResults">
<div class="section">
<h:outputText value="No Hotels Found"

rendered="#{hotels != null and hotels.rowCount==0}"/>
<h:dataTable value="#{hotels}" var="hot" rendered="#{hotels.rowCount>0}">

<h:column>
<f:facet name="header">Name</f:facet>
#{hot.name}

</h:column>
<h:column>
<f:facet name="header">Address</f:facet>
#{hot.address}

</h:column>
<h:column>
<f:facet name="header">City, State</f:facet>
#{hot.city}, #{hot.state}, #{hot.country}

</h:column>
<h:column>

Understanding Seam conversations

45

<f:facet name="header">Zip</f:facet>
#{hot.zip}

</h:column>
<h:column>
<f:facet name="header">Action</f:facet>
<s:link value="View Hotel" action="#{hotelBooking.selectHotel(hot)}"/>

</h:column>
</h:dataTable>
<s:link value="More results" action="#{hotelSearch.nextPage}"

rendered="#{hotelSearch.nextPageAvailable}"/>
</div>

</a:outputPanel>

1. The Ajax4JSF <a:support> tag allows a JSF action event listener to be called by
asynchronous XMLHttpRequest when a JavaScript event like onkeyup occurs. Even better,
the reRender attribute lets us render a fragment of the JSF page and perform a partial page
update when the asynchronous response is received.

2. The Ajax4JSF <a:status> tag lets us display a cheesy annimated image while we wait for
asynchronous requests to return.

3. The Ajax4JSF <a:outputPanel> tag defines a region of the page which can be re-rendered
by an asynchronous request.

4. The Seam <s:link> tag lets us attach a JSF action listener to an ordinary (non-JavaScript)
HTML link. The advantage of this over the standard JSF <h:commandLink> is that it
preserves the operation of "open in new window" and "open in new tab". Also notice that we
use a method binding with a parameter: #{hotelBooking.selectHotel(hot)}. This is not
possible in the standard Unified EL, but Seam provides an extension to the EL that lets you
use parameters on any method binding expression.

Example 2.23.

This page displays the search results dynamically as we type, and lets us choose a hotel and
pass it to the selectHotel() method of the HotelBookingAction, which is where the really
interesting stuff is going to happen.

Now lets see how the booking example application uses a conversation-scoped stateful session
bean to achieve a natural cache of persistent data related to the conversation. The following
code example is pretty long. But if you think of it as a list of scripted actions that implement the
various steps of the conversation, it's understandable. Read the class from top to bottom, as if it
were a story.

@Stateful
@Name("hotelBooking")

Chapter 2. Seam Tutorial

46

@Restrict("#{identity.loggedIn}")
public class HotelBookingAction implements HotelBooking
{

@PersistenceContext(type=EXTENDED)
private EntityManager em;

@In
private User user;

@In(required=false) @Out
private Hotel hotel;

@In(required=false)
@Out(required=false)
private Booking booking;

@In
private FacesMessages facesMessages;

@In
private Events events;

@Logger
private Log log;

@Begin
public String selectHotel(Hotel selectedHotel)
{

hotel = em.merge(selectedHotel);
return "hotel";

}

public String bookHotel()
{

booking = new Booking(hotel, user);
Calendar calendar = Calendar.getInstance();
booking.setCheckinDate(calendar.getTime());
calendar.add(Calendar.DAY_OF_MONTH, 1);
booking.setCheckoutDate(calendar.getTime());

return "book";
}

public String setBookingDetails()
{

if (booking==null || hotel==null) return "main";
if (!booking.getCheckinDate().before(booking.getCheckoutDate()))
{

facesMessages.add("Check out date must be later than check in
date");

return null;
}
else
{

return "confirm";

Understanding Seam conversations

47

}
}

@End
public String confirm()
{

if (booking==null || hotel==null) return "main";
em.persist(booking);
facesMessages.add
("Thank you, #{user.name}, your confimation number for #{hotel.name}

is #{booking.id}");
log.info("New booking: #{booking.id} for #{user.username}");
events.raiseEvent("bookingConfirmed");
return "confirmed";

}

@End
public String cancel()
{

return "main";
}

@Destroy @Remove
public void destroy() {}

}

1. This bean uses an EJB3 extended persistence context, so that any entity instances remain
managed for the whole lifecycle of the stateful session bean.

2. The @Out annotation declares that an attribute value is outjected to a context variable after
method invocations. In this case, the context variable named hotel will be set to the value of
the hotel instance variable after every action listener invocation completes.

3. The @Begin annotation specifies that the annotated method begins a long-running
conversation, so the current conversation context will not be destroyed at the end of the
request. Instead, it will be reassociated with every request from the current window, and
destroyed either by timeout due to conversation inactivity or invocation of a matching @End

method.

4. The @End annotation specifies that the annotated method ends the current long-running
conversation, so the current conversation context will be destroyed at the end of the request.

5. This EJB remove method will be called when Seam destroys the conversation context. Don't
ever forget to define this method!

Example 2.24.

Chapter 2. Seam Tutorial

48

HotelBookingAction contains all the action listener methods that implement selection, booking
and booking confirmation, and holds state related to this work in its instance variables. We think
you'll agree that this code is much cleaner and simpler than getting and setting HttpSession

attributes.

Even better, a user can have multiple isolated conversations per login session. Try it! Log in, run
a search, and navigate to different hotel pages in multiple browser tabs. You'll be able to work
on creating two different hotel reservations at the same time. If you leave any one conversation
inactive for long enough, Seam will eventually time out that conversation and destroy its state.
If, after ending a conversation, you backbutton to a page of that conversation and try to perform
an action, Seam will detect that the conversation was already ended, and redirect you to the
search page.

6.4. The Seam UI control library

If you check inside the WAR file for the booking application, you'll find seam-ui.jar in the
WEB-INF/lib directory. This package contains a number of JSF custom controls that integrate
with Seam. The booking application uses the <s:link> control for navigation from the search
screen to the hotel page:

<s:link value="View Hotel" action="#{hotelBooking.selectHotel}"/>

The use of <s:link> here allows us to attach an action listener to a HTML link without breaking
the browser's "open in new window" feature. The standard JSF <h:commandLink> does not
work with "open in new window". We'll see later that <s:link> also offers a number of other
useful features, including conversation propagation rules.

The booking application uses some other Seam and Ajax4JSF controls, especially on the
/book.xhtml page. We won't get into the details of those controls here, but if you want to
understand this code, please refer to the chapter covering Seam's functionality for JSF form
validation.

6.5. The Seam Debug Page

The WAR also includes seam-debug.jar. If this jar is deployed in WEB-INF/lib, along with the
Facelets, and if you set the following Seam property in web.xml or seam.properties:

<context-param>
<param-name>org.jboss.seam.core.init.debug</param-name>
<param-value>true</param-value>

</context-param>

Then the Seam debug page will be available. This page lets you browse and inspect the Seam
components in any of the Seam contexts associated with your current login session. Just point
your browser at http://localhost:8080/seam-booking/debug.seam.

The Seam UI control library

49

http://localhost:8080/seam-booking/debug.seam

7. A complete application featuring Seam and jBPM: the
DVD Store example

The DVD Store demo application shows the practical usage of jBPM for both task management
and pageflow.

The user screens take advantage of a jPDL pageflow to implement searching and shopping cart
functionality.

Chapter 2. Seam Tutorial

50

The administration screens take use jBPM to manage the approval and shipping cycle for
orders. The business process may even be changed dynamically, by selecting a different
process definition!

A complete application featuring Seam and

51

TODO

Look in the dvdstore directory.

8. A complete application featuring Seam workspace
management: the Issue Tracker example

The Issue Tracker demo shows off Seam's workspace management functionality: the
conversation switcher, conversation list and breadcrumbs.

Note

To log into the Issue Tracker demo you must provide a username and password.
You can find this in the resources/import.sql file or use "gavin" and "foobar"
for username and password respectively.

Chapter 2. Seam Tutorial

52

TODO

Look in the issues directory.

9. An example of Seam with Hibernate: the Hibernate
Booking example

The Hibernate Booking demo is a straight port of the Booking demo to an alternative
architecture that uses Hibernate for persistence and JavaBeans instead of session beans.

TODO

Look in the hibernate directory.

10. A RESTful Seam application: the Blog example

Seam makes it very easy to implement applications which keep state on the server-side.
However, server-side state is not always appropriate, especially in for functionality that serves
up content. For this kind of problem we often need to let the user bookmark pages and have a
relatively stateless server, so that any page can be accessed at any time, via the bookmark.
The Blog example shows how to a implement RESTful application using Seam. Every page of
the application can be bookmarked, including the search results page.

jBPM: the DVD Store example

53

The Blog example demonstrates the use of "pull"-style MVC, where instead of using action
listener methods to retrieve data and prepare the data for the view, the view pulls data from
components as it is being rendered.

10.1. Using "pull"-style MVC

This snippet from the index.xhtml facelets page displays a list of recent blog entries:

<h:dataTable value="#{blog.recentBlogEntries}" var="blogEntry" rows="3">
<h:column>

<div class="blogEntry">
<h3>#{blogEntry.title}</h3>
<div>

<h:outputText escape="false"
value="#{blogEntry.excerpt==null ? blogEntry.body :

blogEntry.excerpt}"/>
</div>
<p>

<h:outputLink value="entry.seam"
rendered="#{blogEntry.excerpt!=null}">

<f:param name="blogEntryId" value="#{blogEntry.id}"/>
Read more...

</h:outputLink>
</p>

Chapter 2. Seam Tutorial

54

<p>
[Posted on
<h:outputText value="#{blogEntry.date}">

<f:convertDateTime timeZone="#{blog.timeZone}"
locale="#{blog.locale}"

type="both"/>
</h:outputText>]

<h:outputLink value="entry.seam">[Link]
<f:param name="blogEntryId" value="#{blogEntry.id}"/>

</h:outputLink>
</p>

</div>
</h:column>

</h:dataTable>

Example 2.25.

If we navigate to this page from a bookmark, how does the data used by the <h:dataTable>

actually get initialized? Well, what happens is that the Blog is retrieved lazily—"pulled"—when
needed, by a Seam component named blog. This is the opposite flow of control to what is usual
in traditional web action-based frameworks like Struts.

@Name("blog")
@Scope(ScopeType.STATELESS)
public class BlogService
{

@In
private EntityManager entityManager;

@Unwrap
public Blog getBlog()
{

return (Blog) entityManager.createQuery("from Blog b left join fetch
b.blogEntries")

.setHint("org.hibernate.cacheable", true)

.getSingleResult();
}

}

1. This component uses a seam-managed persistence context. Unlike the other examples
we've seen, this persistence context is managed by Seam, instead of by the EJB3 container.
The persistence context spans the entire web request, allowing us to avoid any exceptions
that occur when accessing unfetched associations in the view.

Using "pull"-style MVC

55

2. The @Unwrap annotation tells Seam to provide the return value of the method—the
Blog—instead of the actual BlogService component to clients. This is the Seam manager
component pattern.

Example 2.26.

This is good so far, but what about bookmarking the result of form submissions, such as a
search results page?

10.2. Bookmarkable search results page

The blog example has a tiny form in the top right of each page that allows the user to search for
blog entries. This is defined in a file, menu.xhtml, included by the facelets template,
template.xhtml:

<div id="search">
<h:form>

<h:inputText value="#{searchAction.searchPattern}"/>
<h:commandButton value="Search" action="/search.xhtml"/>

</h:form>
</div>

Example 2.27.

To implement a bookmarkable search results page, we need to perform a browser redirect after
processing the search form submission. Because we used the JSF view id as the action
outcome, Seam automatically redirects to the view id when the form is submitted. Alternatively,
we could have defined a navigation rule like this:

<navigation-rule>
<navigation-case>

<from-outcome>searchResults</from-outcome>
<to-view-id>/search.xhtml</to-view-id>
<redirect/>

</navigation-case>
</navigation-rule>

Example 2.28.

Then the form would have looked like this:

<div id="search">

Chapter 2. Seam Tutorial

56

<h:form>
<h:inputText value="#{searchAction.searchPattern}"/>
<h:commandButton value="Search" action="searchResults"/>

</h:form>
</div>

Example 2.29.

But when we redirect, we need to include the values submitted with the form as request
parameters, to get a bookmarkable URL like
http://localhost:8080/seam-blog/search.seam?searchPattern=seam. JSF does not
provide an easy way to do this, but Seam does. We use a Seam page parameter, defined in
WEB-INF/pages.xml:

<pages>
<page view-id="/search.xhtml">

<param name="searchPattern" value="#{searchService.searchPattern}"/>
</page>
...

</pages>

Example 2.30.

This tells Seam to include the value of #{searchService.searchPattern} as a request
parameter named searchPattern when redirecting to the page, and then re-apply the value of
that parameter to the model before rendering the page.

The redirect takes us to the search.xhtml page:

<h:dataTable value="#{searchResults}" var="blogEntry">
<h:column>

<div>
<h:outputLink value="entry.seam">

<f:param name="blogEntryId" value="#{blogEntry.id}"/>
#{blogEntry.title}

</h:outputLink>
posted on
<h:outputText value="#{blogEntry.date}">

<f:convertDateTime timeZone="#{blog.timeZone}"
locale="#{blog.locale}" type="both"/>

</h:outputText>
</div>

</h:column>
</h:dataTable>

Bookmarkable search results page

57

Example 2.31.

Which again uses "pull"-style MVC to retrieve the actual search results:

@Name("searchService")
public class SearchService
{

@In
private EntityManager entityManager;

private String searchPattern;

@Factory("searchResults")
public List<BlogEntry> getSearchResults()
{

if (searchPattern==null)
{

return null;
}
else
{

return entityManager.createQuery("select be from BlogEntry be where
lower(be.title)

like :searchPattern or lower(be.body) like
:searchPattern

order by be.date desc")
.setParameter("searchPattern", getSqlSearchPattern())
.setMaxResults(100)
.getResultList();

}
}

private String getSqlSearchPattern()
{

return searchPattern==null ? "" : '%' +
searchPattern.toLowerCase().replace('*', '%').replace('?', '_')

+ '%';
}

public String getSearchPattern()
{

return searchPattern;
}

public void setSearchPattern(String searchPattern)
{

this.searchPattern = searchPattern;
}

}

Chapter 2. Seam Tutorial

58

Example 2.32.

10.3. Using "push"-style MVC in a RESTful application

Very occasionally, it makes more sense to use push-style MVC for processing RESTful pages,
and so Seam provides the notion of a page action. The Blog example uses a page action for the
blog entry page, entry.xhtml. Note that this is a little bit contrived, it would have been easier to
use pull-style MVC here as well.

The entryAction component works much like an action class in a traditional push-MVC
action-oriented framework like Struts:

@Name("entryAction")
@Scope(STATELESS)
public class EntryAction
{

@In(create=true)
private Blog blog;

@Out
private BlogEntry blogEntry;

public void loadBlogEntry(String id) throws EntryNotFoundException
{

blogEntry = blog.getBlogEntry(id);
if (blogEntry==null) throw new EntryNotFoundException(id);

}

}

Example 2.33.

Page actions are also declared in pages.xml:

<pages>
...

<page view-id="/entry.xhtml"
action="#{entryAction.loadBlogEntry(blogEntry.id)}">

<param name="blogEntryId" value="#{blogEntry.id}"/>
</page>

<page view-id="/post.xhtml" action="#{loginAction.challenge}"/>

<page view-id="*" action="#{blog.hitCount.hit}"/>

</pages>

Using "push"-style MVC in a RESTful

59

Example 2.34.

Notice that the example is using page actions for some other functionality—the login challenge,
and the pageview counter. Also notice the use of a parameter in the page action method
binding. This is not a standard feature of JSF EL, but Seam lets you use it, not just for page
actions, but also in JSF method bindings.

When the entry.xhtml page is requested, Seam first binds the page parameter blogEntryId
to the model, then runs the page action, which retrieves the needed data—the blogEntry—and
places it in the Seam event context. Finally, the following is rendered:

<div class="blogEntry">
<h3>#{blogEntry.title}</h3>
<div>

<h:outputText escape="false" value="#{blogEntry.body}"/>
</div>
<p>

[Posted on
<h:outputText value="#{blogEntry.date}">

<f:convertDateTime timezone="#{blog.timeZone}"
locale="#{blog.locale}" type="both"/>

</h:outputText>]
</p>

</div>

Example 2.35.

If the blog entry is not found in the database, the EntryNotFoundException exception is
thrown. We want this exception to result in a 404 error, not a 505, so we annotate the exception
class:

@ApplicationException(rollback=true)
@HttpError(errorCode=HttpServletResponse.SC_NOT_FOUND)
public class EntryNotFoundException extends Exception
{

EntryNotFoundException(String id)
{

super("entry not found: " + id);
}

}

Example 2.36.

An alternative implementation of the example does not use the parameter in the method

Chapter 2. Seam Tutorial

60

binding:

@Name("entryAction")
@Scope(STATELESS)
public class EntryAction
{

@In(create=true)
private Blog blog;

@In @Out
private BlogEntry blogEntry;

public void loadBlogEntry() throws EntryNotFoundException
{

blogEntry = blog.getBlogEntry(blogEntry.getId());
if (blogEntry==null) throw new EntryNotFoundException(id);

}

}

<pages>
...

<page view-id="/entry.xhtml" action="#{entryAction.loadBlogEntry}">
<param name="blogEntryId" value="#{blogEntry.id}"/>

</page>

...
</pages>

Example 2.37.

It is a matter of taste which implementation you prefer.

application

61

62

The contextual component model
The two core concepts in Seam are the notion of a context and the notion of a component.
Components are stateful objects, usually EJBs, and an instance of a component is associated
with a context, and given a name in that context. Bijection provides a mechanism for aliasing
internal component names (instance variables) to contextual names, allowing component trees
to be dynamically assembled, and reassembled by Seam.

Let's start by describing the contexts built in to Seam.

1. Seam contexts

Seam contexts are created and destroyed by the framework. The application does not control
context demarcation via explicit Java API calls. Context are usually implicit. In some cases,
however, contexts are demarcated via annotations.

The basic Seam contexts are:

• Stateless context

• Event (or request) context

• Page context

• Conversation context

• Session context

• Business process context

• Application context

You will recognize some of these contexts from servlet and related specifications. However, two
of them might be new to you: conversation context, and business process context. One reason
state management in web applications is so fragile and error-prone is that the three built-in
contexts (request, session and application) are not especially meaningful from the point of view
of the business logic. A user login session, for example, is a fairly arbitrary construct in terms of
the actual application work flow. Therefore, most Seam components are scoped to the
conversation or business process contexts, since they are the contexts which are most
meaningful in terms of the application.

Let's look at each context in turn.

1.1. Stateless context

Components which are truly stateless (stateless session beans, primarily) always live in the
stateless context (this is really a non-context). Stateless components are not very interesting,
and are arguably not very object-oriented. Nevertheless, they are important and often useful.

Chapter 3.

63

1.2. Event context

The event context is the "narrowest" stateful context, and is a generalization of the notion of the
web request context to cover other kinds of events. Nevertheless, the event context associated
with the lifecycle of a JSF request is the most important example of an event context, and the
one you will work with most often. Components associated with the event context are destroyed
at the end of the request, but their state is available and well-defined for at least the lifecycle of
the request.

When you invoke a Seam component via RMI, or Seam Remoting, the event context is created
and destroyed just for the invocation.

1.3. Page context

The page context allows you to associate state with a particular instance of a rendered page.
You can initialize state in your event listener, or while actually rendering the page, and then
have access to it from any event that originates from that page. This is especially useful for
functionality like clickable lists, where the list is backed by changing data on the server side. The
state is actually serialized to the client, so this construct is extremely robust with respect to
multi-window operation and the back button.

1.4. Conversation context

The conversation context is a truly central concept in Seam. A conversation is a unit of work
from the point of view of the user. It might span several interactions with the user, several
requests, and several database transactions. But to the user, a conversation solves a single
problem. For example, "book hotel", "approve contract", "create order" are all conversations.
You might like to think of a conversation implementing a single "use case" or "user story", but
the relationship is not necessarily quite exact.

A conversation holds state associated with "what the user is doing now, in this window". A
single user may have multiple conversations in progress at any point in time, usually in multiple
windows. The conversation context allows us to ensure that state from the different
conversations does not collide and cause bugs.

It might take you some time to get used to thinking of applications in terms of conversations. But
once you get used to it, we think you'll love the notion, and never be able to not think in terms of
conversations again!

Some conversations last for just a single request. Conversations that span multiple requests
must be demarcated using annotations provided by Seam.

Some conversations are also tasks. A task is a conversation that is significant in terms of a
long-running business process, and has the potential to trigger a business process state
transition when it is successfully completed. Seam provides a special set of annotations for task
demarcation.

Conversations may be nested, with one conversation taking place "inside" a wider conversation.
This is an advanced feature.

Chapter 3. The contextual component model

64

Usually, conversation state is actually held by Seam in the servlet session between requests.
Seam implements configurable conversation timeout, automatically destroying inactive
conversations, and thus ensuring that the state held by a single user login session does not
grow without bound if the user abandons conversations.

Seam serializes processing of concurrent requests that take place in the same long-running
conversation context, in the same process.

Alternatively, Seam may be configured to keep conversational state in the client browser.

1.5. Session context

A session context holds state associated with the user login session. While there are some
cases where it is useful to share state between several conversations, we generally frown on
the use of session context for holding components other than global information about the
logged in user.

In a JSR-168 portal environment, the session context represents the portlet session.

1.6. Business process context

The business process context holds state associated with the long running business process.
This state is managed and made persistent by the BPM engine (JBoss jBPM). The business
process spans multiple interactions with multiple users, so this state is shared between multiple
users, but in a well-defined manner. The current task determines the current business process
instance, and the lifecycle of the business process is defined externally using a process
definition language, so there are no special annotations for business process demarcation.

1.7. Application context

The application context is the familiar servlet context from the servlet spec. Application context
is mainly useful for holding static information such as configuration data, reference data or
metamodels. For example, Seam stores its own configuration and metamodel in the application
context.

1.8. Context variables

A context defines a namespace, a set of context variables. These work much the same as
session or request attributes in the servlet spec. You may bind any value you like to a context
variable, but usually we bind Seam component instances to context variables.

So, within a context, a component instance is identified by the context variable name (this is
usually, but not always, the same as the component name). You may programatically access a
named component instance in a particular scope via the Contexts class, which provides access
to several thread-bound instances of the Context interface:

User user = (User) Contexts.getSessionContext().get("user");

Session context

65

You may also set or change the value associated with a name:

Contexts.getSessionContext().set("user", user);

Usually, however, we obtain components from a context via injection, and put component
instances into a context via outjection.

1.9. Context search priority

Sometimes, as above, component instances are obtained from a particular known scope. Other
times, all stateful scopes are searched, in priority order. The order is as follows:

• Event context

• Page context

• Conversation context

• Session context

• Business process context

• Application context

You can perform a priority search by calling Contexts.lookupInStatefulContexts().
Whenever you access a component by name from a JSF page, a priority search occurs.

1.10. Concurrency model

Neither the servlet nor EJB specifications define any facilities for managing concurrent requests
originating from the same client. The servlet container simply lets all threads run concurrently
and leaves enforcing threadsafeness to application code. The EJB container allows stateless
components to be accessed concurrently, and throws an exception if multiple threads access a
stateful session bean.

This behavior might have been okay in old-style web applications which were based around
fine-grained, synchronous requests. But for modern applications which make heavy use of
many fine-grained, asynchronous (AJAX) requests, concurrency is a fact of life, and must be
supported by the programming model. Seam weaves a concurrency management layer into its
context model.

The Seam session and application contexts are multithreaded. Seam will allow concurrent
requests in a context to be processed concurrently. The event and page contexts are by nature
single threaded. The business process context is strictly speaking multi-threaded, but in practice
concurrency is sufficiently rare that this fact may be disregarded most of the time. Finally, Seam
enforces a single thread per conversation per process model for the conversation context by
serializing concurrent requests in the same long-running conversation context.

Chapter 3. The contextual component model

66

Since the session context is multithreaded, and often contains volatile state, session scope
components are always protected by Seam from concurrent access. Seam serializes requests
to session scope session beans and JavaBeans by default (and detects and breaks any
deadlocks that occur). This is not the default behaviour for application scoped components
however, since application scoped components do not usually hold volatile state and because
synchronization at the global level is extremely expensive. However, you can force a serialized
threading model on any session bean or JavaBean component by adding the @Synchronized

annotation.

This concurrency model means that AJAX clients can safely use volatile session and
conversational state, without the need for any special work on the part of the developer.

2. Seam components

Seam components are POJOs (Plain Old Java Objects). In particular, they are JavaBeans or
EJB 3.0 enterprise beans. While Seam does not require that components be EJBs and can
even be used without an EJB 3.0 compliant container, Seam was designed with EJB 3.0 in mind
and includes deep integration with EJB 3.0. Seam supports the following component types.

• EJB 3.0 stateless session beans

• EJB 3.0 stateful session beans

• EJB 3.0 entity beans

• JavaBeans

• EJB 3.0 message-driven beans

2.1. Stateless session beans

Stateless session bean components are not able to hold state across multiple invocations.
Therefore, they usually work by operating upon the state of other components in the various
Seam contexts. They may be used as JSF action listeners, but cannot provide properties to JSF
components for display.

Stateless session beans always live in the stateless context.

Stateless session beans are the least interesting kind of Seam component.

2.2. Stateful session beans

Stateful session bean components are able to hold state not only across multiple invocations of
the bean, but also across multiple requests. Application state that does not belong in the
database should usually be held by stateful session beans. This is a major difference between
Seam and many other web application frameworks. Instead of sticking information about the
current conversation directly in the HttpSession, you should keep it in instance variables of a

Seam components

67

stateful session bean that is bound to the conversation context. This allows Seam to manage
the lifecycle of this state for you, and ensure that there are no collisions between state relating
to different concurrent conversations.

Stateful session beans are often used as JSF action listener, and as backing beans that provide
properties to JSF components for display or form submission.

By default, stateful session beans are bound to the conversation context. They may never be
bound to the page or stateless contexts.

Concurrent requests to session-scoped stateful session beans are always serialized by Seam.

2.3. Entity beans

Entity beans may be bound to a context variable and function as a seam component. Because
entities have a persistent identity in addition to their contextual identity, entity instances are
usually bound explicitly in Java code, rather than being instantiated implicitly by Seam.

Entity bean components do not support bijection or context demarcation. Nor does invocation of
an entity bean trigger validation.

Entity beans are not usually used as JSF action listeners, but do often function as backing
beans that provide properties to JSF components for display or form submission. In particular, it
is common to use an entity as a backing bean, together with a stateless session bean action
listener to implement create/update/delete type functionality.

By default, entity beans are bound to the conversation context. They may never be bound to the
stateless context.

Note that it in a clustered environment is somewhat less efficient to bind an entity bean directly
to a conversation or session scoped Seam context variable than it would be to hold a reference
to the entity bean in a stateful session bean. For this reason, not all Seam applications define
entity beans to be Seam components.

2.4. JavaBeans

Javabeans may be used just like a stateless or stateful session bean. However, they do not
provide the functionality of a session bean (declarative transaction demarcation, declarative
security, efficient clustered state replication, EJB 3.0 persistence, timeout methods, etc).

In a later chapter, we show you how to use Seam and Hibernate without an EJB container. In
this use case, components are JavaBeans instead of session beans. Note, however, that in
many application servers it is somewhat less efficient to cluster conversation or session scoped
Seam JavaBean components than it is to cluster stateful session bean components.

By default, JavaBeans are bound to the event context.

Concurrent requests to session-scoped JavaBeans are always serialized by Seam.

2.5. Message-driven beans

Chapter 3. The contextual component model

68

Message-driven beans may function as a seam component. However, message-driven beans
are called quite differently to other Seam components - instead of invoking them via the context
variable, they listen for messages sent to a JMS queue or topic.

Message-driven beans may not be bound to a Seam context. Nor do they have access to the
session or conversation state of their "caller". However, they do support bijection and some
other Seam functionality.

2.6. Interception

In order to perform its magic (bijection, context demarcation, validation, etc), Seam must
intercept component invocations. For JavaBeans, Seam is in full control of instantiation of the
component, and no special configuration is needed. For entity beans, interception is not
required since bijection and context demarcation are not defined. For session beans, we must
register an EJB interceptor for the session bean component. We could use an annotation, as
follows:

@Stateless
@Interceptors(SeamInterceptor.class)
public class LoginAction implements Login {

...
}

But a much better way is to define the interceptor in ejb-jar.xml.

<interceptors>
<interceptor>

<interceptor-class>org.jboss.seam.ejb.SeamInterceptor</interceptor-class>
</interceptor>

</interceptors>

<assembly-descriptor>
<interceptor-binding>

<ejb-name>*</ejb-name>
<interceptor-class>org.jboss.seam.ejb.SeamInterceptor</interceptor-class>

</interceptor-binding>
</assembly-descriptor>

2.7. Component names

All seam components need a name. We can assign a name to a component using the @Name

annotation:

@Name("loginAction")
@Stateless
public class LoginAction implements Login {

...
}

Interception

69

This name is the seam component name and is not related to any other name defined by the
EJB specification. However, seam component names work just like JSF managed bean names
and you can think of the two concepts as identical.

@Name is not the only way to define a component name, but we always need to specify the name
somewhere. If we don't, then none of the other Seam annotations will function.

Just like in JSF, a seam component instance is usually bound to a context variable with the
same name as the component name. So, for example, we would access the LoginAction using
Contexts.getStatelessContext().get("loginAction"). In particular, whenever Seam itself
instantiates a component, it binds the new instance to a variable with the component name.
However, again like JSF, it is possible for the application to bind a component to some other
context variable by programmatic API call. This is only useful if a particular component serves
more than one role in the system. For example, the currently logged in User might be bound to
the currentUser session context variable, while a User that is the subject of some
administration functionality might be bound to the user conversation context variable.

For very large applications, and for built-in seam components, qualified names are often used.

@Name("com.jboss.myapp.loginAction")
@Stateless
@Interceptors(SeamInterceptor.class)
public class LoginAction implements Login {

...
}

We may use the qualified component name both in Java code and in JSF's expression
language:

<h:commandButton type="submit" value="Login"
action="#{com.jboss.myapp.loginAction.login}"/>

Since this is noisy, Seam also provides a means of aliasing a qualified name to a simple name.
Add a line like this to the components.xml file:

<factory name="loginAction" scope="STATELESS"
value="#{com.jboss.myapp.loginAction}"/>

All of the built-in Seam components have qualified names, but most of them are aliased to a
simple name by the components.xml file included in the Seam jar.

2.8. Defining the component scope

We can override the default scope (context) of a component using the @Scope annotation. This
lets us define what context a component instance is bound to, when it is instantiated by Seam.

@Name("user")

Chapter 3. The contextual component model

70

@Entity
@Scope(SESSION)
public class User {

...
}

org.jboss.seam.ScopeType defines an enumeration of possible scopes.

2.9. Components with multiple roles

Some Seam component classes can fulfill more than one role in the system. For example, we
often have a User class which is usually used as a session-scoped component representing the
current user but is used in user administration screens as a conversation-scoped component.
The @Role annotation lets us define an additional named role for a component, with a different
scope—it lets us bind the same component class to different context variables. (Any Seam
component instance may be bound to multiple context variables, but this lets us do it at the
class level, and take advantage of auto-instantiation.)

@Name("user")
@Entity
@Scope(CONVERSATION)
@Role(name="currentUser", scope=SESSION)
public class User {

...
}

The @Roles annotation lets us specify as many additional roles as we like.

@Name("user")
@Entity
@Scope(CONVERSATION)
@Roles({@Role(name="currentUser", scope=SESSION)

@Role(name="tempUser", scope=EVENT)})
public class User {

...
}

2.10. Built-in components

Like many good frameworks, Seam eats its own dogfood and is implemented mostly as a set of
built-in Seam interceptors (see later) and Seam components. This makes it easy for applications
to interact with built-in components at runtime or even customize the basic functionality of Seam
by replacing the built-in components with custom implementations. The built-in components are
defined in the Seam namespace org.jboss.seam.core and the Java package of the same
name.

The built-in components may be injected, just like any Seam components, but they also provide

Components with multiple roles

71

convenient static instance() methods:

FacesMessages.instance().add("Welcome back, #{user.name}!");

Seam was designed to integrate tightly in a Java EE 5 environment. However, we understand
that there are many projects which are not running in a full EE environment. We also realize the
critical importance of easy unit and integration testing using frameworks such as TestNG and
JUnit. So, we've made it easy to run Seam in Java SE environments by allowing you to
boostrap certain critical infrastructure normally only found in EE environments by installing
built-in Seam components.

For example, you can run your EJB3 components in Tomcat or an integration test suite just by
installing the built-in component org.jboss.seam.core.ejb, which automatically bootstraps
the JBoss Embeddable EJB3 container and deploys your EJB components.

Or, if you're not quite ready for the Brave New World of EJB 3.0, you can write a Seam
application that uses only JavaBean components, together with Hibernate3 for persistence, by
installing a built-in component that manages a Hibernate SessionFactory. When using
Hibernate outside of a J2EE environment, you will also probably need a JTA transaction
manager and JNDI server, which are available via the built-in component
org.jboss.seam.core.microcontainer. This lets you use the bulletproof JTA/JCA pooling
datasource from JBoss application server in an SE environment like Tomcat!

3. Bijection

Dependency injection or inversion of control is by now a familiar concept to most Java
developers. Dependency injection allows a component to obtain a reference to another
component by having the container "inject" the other component to a setter method or instance
variable. In all dependency injection implementations that we have seen, injection occurs when
the component is constructed, and the reference does not subsequently change for the lifetime
of the component instance. For stateless components, this is reasonable. From the point of view
of a client, all instances of a particular stateless component are interchangeable. On the other
hand, Seam emphasizes the use of stateful components. So traditional dependency injection is
no longer a very useful construct. Seam introduces the notion of bijection as a generalization of
injection. In contrast to injection, bijection is:

• contextual - bijection is used to assemble stateful components from various different contexts
(a component from a "wider" context may even have a reference to a component from a
"narrower" context)

• bidirectional - values are injected from context variables into attributes of the component
being invoked, and also outjected from the component attributes back out to the context,
allowing the component being invoked to manipulate the values of contextual variables simply
by setting its own instance variables

• dynamic - since the value of contextual variables changes over time, and since Seam

Chapter 3. The contextual component model

72

components are stateful, bijection takes place every time a component is invoked

In essence, bijection lets you alias a context variable to a component instance variable, by
specifying that the value of the instance variable is injected, outjected, or both. Of course, we
use annotations to enable bijection.

The @In annotation specifies that a value should be injected, either into an instance variable:

@Name("loginAction")
@Stateless
@Interceptors(SeamInterceptor.class)
public class LoginAction implements Login {

@In User user;
...

}

or into a setter method:

@Name("loginAction")
@Stateless
@Interceptors(SeamInterceptor.class)
public class LoginAction implements Login {

User user;

@In
public void setUser(User user) {

this.user=user;
}

...
}

By default, Seam will do a priority search of all contexts, using the name of the property or
instance variable that is being injected. You may wish to specify the context variable name
explicitly, using, for example, @In("currentUser").

If you want Seam to create an instance of the component when there is no existing component
instance bound to the named context variable, you should specify @In(create=true). If the
value is optional (it can be null), specify @In(required=false).

For some components, it can be repetitive to have to specify @In(create=true) everywhere
they are used. In such cases, you can annotate the component @AutoCreate, and then it will
always be created, whenever needed, even without the explicit use of create=true.

You can even inject the value of an expression:

@Name("loginAction")
@Stateless
@Interceptors(SeamInterceptor.class)
public class LoginAction implements Login {

Bijection

73

@In("#{user.username}") String username;
...

}

(There is much more information about component lifecycle and injection in the next chapter.)

The @Out annotation specifies that an attribute should be outjected, either from an instance
variable:

@Name("loginAction")
@Stateless
@Interceptors(SeamInterceptor.class)
public class LoginAction implements Login {

@Out User user;
...

}

or from a getter method:

@Name("loginAction")
@Stateless
@Interceptors(SeamInterceptor.class)
public class LoginAction implements Login {

User user;

@Out
public User getUser() {

return user;
}

...
}

An attribute may be both injected and outjected:

@Name("loginAction")
@Stateless
@Interceptors(SeamInterceptor.class)
public class LoginAction implements Login {

@In @Out User user;
...

}

or:

@Name("loginAction")
@Stateless
@Interceptors(SeamInterceptor.class)
public class LoginAction implements Login {

User user;

Chapter 3. The contextual component model

74

@In
public void setUser(User user) {

this.user=user;
}

@Out
public User getUser() {

return user;
}

...
}

4. Lifecycle methods

Session bean and entity bean Seam components support all the usual EJB 3.0 lifecycle
callback (@PostConstruct, @PreDestroy, etc). Seam extends all of these callbacks except
@PreDestroy to JavaBean components. But Seam also defines its own component lifecycle
callbacks.

The @Create method is called every time Seam instantiates a component. Unlike the
@PostConstruct method, this method is called after the component is fully constructed by the
EJB container, and has access to all the usual Seam functionality (bijection, etc). Components
may define only one @Create method.

The @Destroy method is called when the context that the Seam component is bound to ends.
Components may define only one @Destroy method. Stateful session bean components must
define a method annotated @Destroy @Remove.

Finally, a related annotation is the @Startup annotation, which may be applied to any
application or session scoped component. The @Startup annotation tells Seam to instantiate
the component immediately, when the context begins, instead of waiting until it is first
referenced by a client. It is possible to control the order of instantiation of startup components
by specifying @Startup(depends={....}).

5. Conditional installation

The @Install annotation lets you control conditional installation of components that are
required in some deployment scenarios and not in others. This is useful if:

• You want to mock out some infrastructural component in tests.

• You want change the implementation of a component in certain deployment scenarios.

• You want to install some components only if their dependencies are available (useful for
framework authors).

Lifecycle methods

75

@Install works by letting you specify precedence and dependencies.

The precedence of a component is a number that Seam uses to decide which component to
install when there are multiple classes with the same component name in the classpath. Seam
will choose the component with the higher precendence. There are some predefined
precedence values (in ascending order):

1. BUILT_IN — the lowest precedece components are the components built in to Seam.

2. FRAMEWORK — components defined by third-party frameworks may override built-in
components, but are overridden by application components.

3. APPLICATION — the default precedence. This is appropriate for most application
components.

4. DEPLOYMENT — for application components which are deployment-specific.

5. MOCK — for mock objects used in testing.

Suppose we have a component named messageSender that talks to a JMS queue.

@Name("messageSender")
public class MessageSender {

public void sendMessage() {
//do something with JMS

}
}

In our unit tests, we don't have a JMS queue available, so we would like to stub out this method.
We'll create a mock component that exists in the classpath when unit tests are running, but is
never deployed with the application:

@Name("messageSender")
@Install(precedence=MOCK)
public class MockMessageSender extends MessageSender {

public void sendMessage() {
//do nothing!

}
}

The precedence helps Seam decide which version to use when it finds both components in the
classpath.

This is nice if we are able to control exactly which classes are in the classpath. But if I'm writing
a reusable framework with many dependecies, I don't want to have to break that framework
across many jars. I want to be able to decide which components to install depending upon what
other components are installed, and upon what classes are available in the classpath. The
@Install annotation also controls this functionality. Seam uses this mechanism internally to

Chapter 3. The contextual component model

76

enable conditional installation of many of the built-in components. However, you probably won't
need to use it in your application.

6. Logging

Who is not totally fed up with seeing noisy code like this?

private static final Log log = LogFactory.getLog(CreateOrderAction.class);

public Order createOrder(User user, Product product, int quantity) {
if (log.isDebugEnabled()) {

log.debug("Creating new order for user: " + user.username() +
" product: " + product.name()
+ " quantity: " + quantity);

}
return new Order(user, product, quantity);

}

It is difficult to imagine how the code for a simple log message could possibly be more verbose.
There is more lines of code tied up in logging than in the actual business logic! I remain totally
astonished that the Java community has not come up with anything better in 10 years.

Seam provides a logging API that simplifies this code significantly:

@Logger private Log log;

public Order createOrder(User user, Product product, int quantity) {
log.debug("Creating new order for user: #0 product: #1 quantity: #2",

user.username(),
product.name(), quantity);

return new Order(user, product, quantity);
}

It doesn't matter if you declare the log variable static or not—it will work either way, except for
entity bean components which require the log variable to be static.

Note that we don't need the noisy if (log.isDebugEnabled()) guard, since string
concatenation happens inside the debug() method. Note also that we don't usually need to
specify the log category explicitly, since Seam knows what component it is injecting the Log

into.

If User and Product are Seam components available in the current contexts, it gets even better:

@Logger private Log log;

public Order createOrder(User user, Product product, int quantity) {
log.debug("Creating new order for user: #{user.username} product:

#{product.name}
quantity: #0", quantity);

return new Order(user, product, quantity);
}

Logging

77

Seam logging automagically chooses whether to send output to log4j or JDK logging. If log4j is
in the classpath, Seam with use it. If it is not, Seam will use JDK logging.

7. The Mutable interface and @ReadOnly

Many application servers feature an amazingly broken implementation of HttpSession
clustering, where changes to the state of mutable objects bound to the session are only
replicated when the application calls setAttribute() explicitly. This is a source of bugs that
can not effectively be tested for at development time, since they will only manifest when failover
occurs. Furthermore, the actual replication message contains the entire serialized object graph
bound to the session attribute, which is inefficient.

Of course, EJB stateful session beans must perform automatic dirty checking and replication of
mutable state and a sophisticated EJB container can introduce optimizations such as
attribute-level replication. Unfortunately, not all Seam users have the good fortune to be working
in an environment that supports EJB 3.0. So, for session and conversation scoped JavaBean
and entity bean components, Seam provides an extra layer of cluster-safe state management
over the top of the web container session clustering.

For session or conversation scoped JavaBean components, Seam automatically forces
replication to occur by calling setAttribute() once in every request that the component was
invoked by the application. Of course, this strategy is inefficient for read-mostly components.
You can control this behavior by implementing the org.jboss.seam.core.Mutable interface,
or by extending org.jboss.seam.core.AbstractMutable, and writing your own dirty-checking
logic inside the component. For example,

@Name("account")
public class Account extends AbstractMutable
{

private BigDecimal balance;

public void setBalance(BigDecimal balance)
{

setDirty(this.balance, balance);
this.balance = balance;

}

public BigDecimal getBalance()
{

return balance;
}

...

}

Or, you can use the @ReadOnly annotation to achieve a similar effect:

Chapter 3. The contextual component model

78

@Name("account")
public class Account
{

private BigDecimal balance;

public void setBalance(BigDecimal balance)
{

this.balance = balance;
}

@ReadOnly
public BigDecimal getBalance()
{

return balance;
}

...

}

For session or conversation scoped entity bean components, Seam automatically forces
replication to occur by calling setAttribute() once in every request, unless the
(conversation-scoped) entity is currently associated with a Seam-managed persistence context,
in which case no replication is needed. This strategy is not necessarily efficient, so session or
conversation scope entity beans should be used with care. You can always write a stateful
session bean or JavaBean component to "manage" the entity bean instance. For example,

@Stateful
@Name("account")
public class AccountManager extends AbstractMutable
{

private Account account; // an entity bean

@Unwrap
public void getAccount()
{

return account;
}

...

}

Note that the EntityHome class in the Seam Application Framework provides a great example
of this pattern.

8. Factory and manager components

We often need to work with objects that are not Seam components. But we still want to be able
to inject them into our components using @In and use them in value and method binding

Factory and manager components

79

expressions, etc. Sometimes, we even need to tie them into the Seam context lifecycle
(@Destroy, for example). So the Seam contexts can contain objects which are not Seam
components, and Seam provides a couple of nice features that make it easier to work with
non-component objects bound to contexts.

The factory component pattern lets a Seam component act as the instantiator for a
non-component object. A factory method will be called when a context variable is referenced but
has no value bound to it. We define factory methods using the @Factory annotation. The factory
method binds a value to the context variable, and determines the scope of the bound value.
There are two styles of factory method. The first style returns a value, which is bound to the
context by Seam:

@Factory(scope=CONVERSATION)
public List<Customer> getCustomerList() {

return ... ;
}

The second style is a method of type void which binds the value to the context variable itself:

@DataModel List<Customer> customerList;

@Factory("customerList")
public void initCustomerList() {

customerList = ... ;
}

In both cases, the factory method is called when we reference the customerList context
variable and its value is null, and then has no further part to play in the lifecycle of the value. An
even more powerful pattern is the manager component pattern. In this case, we have a Seam
component that is bound to a context variable, that manages the value of the context variable,
while remaining invisible to clients.

A manager component is any component with an @Unwrap method. This method returns the
value that will be visable to clients, and is called every time a context variable is referenced.

@Name("customerList")
@Scope(CONVERSATION)
public class CustomerListManager
{

...

@Unwrap
public List<Customer> getCustomerList() {

return ... ;
}

}

This pattern is especially useful if we have some heavyweight object that needs a cleanup
operation when the context ends. In this case, the manager component may perform cleanup in

Chapter 3. The contextual component model

80

the @Destroy method.

Factory and manager components

81

82

Configuring Seam components
The philosophy of minimizing XML-based configuration is extremely strong in Seam.
Nevertheless, there are various reasons why we might want to configure a Seam component
using XML: to isolate deployment-specific information from the Java code, to enable the
creation of re-usable frameworks, to configure Seam's built-in functionality, etc. Seam provides
two basic approaches to configuring components: configuration via property settings in a
properties file or web.xml, and configuration via components.xml.

1. Configuring components via property settings

Seam components may be provided with configuration properties either via servlet context
parameters, or via a properties file named seam.properties in the root of the classpath.

The configurable Seam component must expose JavaBeans-style property setter methods for
the configurable attributes. If a seam component named com.jboss.myapp.settings has a
setter method named setLocale(), we can provide a property named
com.jboss.myapp.settings.locale in the seam.properties file or as a servlet context
parameter, and Seam will set the value of the locale attribute whenever it instantiates the
component.

The same mechanism is used to configure Seam itself. For example, to set the conversation
timeout, we provide a value for org.jboss.seam.core.manager.conversationTimeout in
web.xml or seam.properties. (There is a built-in Seam component named
org.jboss.seam.core.manager with a setter method named setConversationTimeout().)

2. Configuring components via components.xml

The components.xml file is a bit more powerful than property settings. It lets you:

• Configure components that have been installed automatically—including both built-in
components, and application components that have been annotated with the @Name

annotation and picked up by Seam's deployment scanner.

• Install classes with no @Name annotation as Seam components—this is most useful for certain
kinds of infrastructural components which can be installed multiple times different names (for
example Seam-managed persistence contexts).

• Install components that do have a @Name annotation but are not installed by default because
of an @Install annotation that indicates the component should not be installed.

• Override the scope of a component.

A components.xml file may appear in one of three different places:

• The WEB-INF directory of a war.

Chapter 4.

83

• The META-INF directory of a jar.

• Any directory of a jar that contains classes with an @Name annotation.

Usually, Seam components are installed when the deployment scanner discovers a class with a
@Name annotation sitting in an archive with a seam.properties file or a
META-INF/components.xml file. (Unless the component has an @Install annotation indicating
it should not be installed by default.) The components.xml file lets us handle special cases
where we need to override the annotations.

For example, the following components.xml file installs the JBoss Embeddable EJB3 container:

<components xmlns="http://jboss.com/products/seam/components"
xmlns:core="http://jboss.com/products/seam/core">

<core:ejb/>
</components>

This example does the same thing:

<components>
<component class="org.jboss.seam.core.Ejb"/>

</components>

This one installs and configures two different Seam-managed persistence contexts:

<components xmlns="http://jboss.com/products/seam/components"
xmlns:core="http://jboss.com/products/seam/core"

<core:managed-persistence-context name="customerDatabase"
persistence-unit-jndi-name="java:/customerEntityManagerFactory"/>

<core:managed-persistence-context name="accountingDatabase"
persistence-unit-jndi-name="java:/accountingEntityManagerFactory"/>

</components>

As does this one:

<components>
<component name="customerDatabase"

class="org.jboss.seam.core.ManagedPersistenceContext">
<property

name="persistenceUnitJndiName">java:/customerEntityManagerFactory</property>
</component>

<component name="accountingDatabase"
class="org.jboss.seam.core.ManagedPersistenceContext">

<property
name="persistenceUnitJndiName">java:/accountingEntityManagerFactory</property>

Chapter 4. Configuring Seam components

84

</component>
</components>

This example creates a session-scoped Seam-managed persistence context (this is not
recommended in practice):

<components xmlns="http://jboss.com/products/seam/components"
xmlns:core="http://jboss.com/products/seam/core"

<core:managed-persistence-context name="productDatabase"
scope="session"

persistence-unit-jndi-name="java:/productEntityManagerFactory"/>

</components>

<components>

<component name="productDatabase"
scope="session"
class="org.jboss.seam.core.ManagedPersistenceContext">

<property
name="persistenceUnitJndiName">java:/productEntityManagerFactory</property>

</component>

</components>

It is common to use the auto-create option for infrastructural objects like persistence contexts,
which saves you from having to explicitly specify create=true when you use the @In

annotation.

<components xmlns="http://jboss.com/products/seam/components"
xmlns:core="http://jboss.com/products/seam/core"

<core:managed-persistence-context name="productDatabase"
auto-create="true"

persistence-unit-jndi-name="java:/productEntityManagerFactory"/>

</components>

<components>

<component name="productDatabase"
auto-create="true"

class="org.jboss.seam.core.ManagedPersistenceContext">
<property

name="persistenceUnitJndiName">java:/productEntityManagerFactory</property>
</component>

</components>

Configuring components via

85

The <factory> declaration lets you specify a value or method binding expression that will be
evaluated to initialize the value of a context variable when it is first referenced.

<components>

<factory name="contact" method="#{contactManager.loadContact}"
scope="CONVERSATION"/>

</components>

You can create an "alias" (a second name) for a Seam component like so:

<components>

<factory name="user" value="#{actor}" scope="STATELESS"/>

</components>

You can even create an "alias" for a commonly used expression:

<components>

<factory name="contact" value="#{contactManager.contact}"
scope="STATELESS"/>

</components>

It is especially common to see the use of auto-create="true" with the <factory> declaration:

<components>

<factory name="session" value="#{entityManager.delegate}"
scope="STATELESS"

auto-create="true"/>

</components>

Sometimes we want to reuse the same components.xml file with minor changes during both
deployment and testing. Seam lets you place wildcards of the form @wildcard@ in the
components.xml file which can be replaced either by your Ant build script (at deployment time)
or by providing a file named components.properties in the classpath (at development time).
You'll see this approach used in the Seam examples.

3. Fine-grained configuration files

Chapter 4. Configuring Seam components

86

If you have a large number of components that need to be configured in XML, it makes much
more sense to split up the information in components.xml into many small files. Seam lets you
put configuration for a class named, for example, com.helloworld.Hello in a resource named
com/helloworld/Hello.component.xml. (You might be familiar with this pattern, since it is the
same one we use in Hibernate.) The root element of the file may be either a <components> or
<component> element.

The first option lets you define multiple components in the file:

<components>
<component class="com.helloworld.Hello" name="hello">

<property name="name">#{user.name}</property>
</component>
<factory name="message" value="#{hello.message}"/>

</components>

The second option only lets you define or configure one component, but is less noisy:

<component name="hello">
<property name="name">#{user.name}</property>

</component>

In the second option, the class name is implied by the file in which the component definition
appears.

Alternatively, you may put configuration for all classes in the com.helloworld package in
com/helloworld/components.xml.

4. Configurable property types

Properties of string, primitive or primitive wrapper type may be configured just as you would
expect:

org.jboss.seam.core.manager.conversationTimeout 60000

<core:manager conversation-timeout="60000"/>

<component name="org.jboss.seam.core.manager">
<property name="conversationTimeout">60000</property>

</component>

Arrays, sets and lists of strings or primitives are also supported:

org.jboss.seam.core.jbpm.processDefinitions order.jpdl.xml, return.jpdl.xml,
inventory.jpdl.xml

components.xml

87

<core:jbpm>
<core:process-definitions>

<value>order.jpdl.xml</value>
<value>return.jpdl.xml</value>
<value>inventory.jpdl.xml</value>

</core:process-definitions>
</core:jbpm>

<component name="org.jboss.seam.core.jbpm">
<property name="processDefinitions">

<value>order.jpdl.xml</value>
<value>return.jpdl.xml</value>
<value>inventory.jpdl.xml</value>

</property>
</component>

Even maps with String-valued keys and string or primitive values are supported:

<component name="issueEditor">
<property name="issueStatuses">

<key>open</key> <value>open issue</value>
<key>resolved</key> <value>issue resolved by developer</value>
<key>closed</key> <value>resolution accepted by user</value>

</property>
</component>

Finally, you may wire together components using a value-binding expression. Note that this is
quite different to injection using @In, since it happens at component instantiation time instead of
invocation time. It is therefore much more similar to the dependency injection facilities offered by
traditional IoC containers like JSF or Spring.

<drools:managed-working-memory name="policyPricingWorkingMemory"
rule-base="#{policyPricingRules}"/>

<component name="policyPricingWorkingMemory"
class="org.jboss.seam.drools.ManagedWorkingMemory">

<property name="ruleBase">#{policyPricingRules}</property>
</component>

5. Using XML Namespaces

Throughout the examples, there have been two competing ways of declaring components: with
and without the use of XML namespaces. The following shows a typical components.xml file
without namespaces. It uses the Seam Components DTD:

Chapter 4. Configuring Seam components

88

<?xml version="1.0" encoding="UTF-8">
<!DOCTYPE components PUBLIC "-//JBoss/Seam Component Configuration DTD
1.2//EN"
"http://jboss.com/products/seam/components-1.2.dtd">
<components>

<component class="org.jboss.seam.core.init">
<property name="debug">true</property>
<property name="jndiPattern">@jndiPattern@</property>

</component>

<component name="org.jboss.sean.core.ejb" installed="@embeddedEjb@" />

</components>

As you can see, this is somewhat verbose. Even worse, the component and attribute names
cannot be validated at development time.

The namespaced version looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<components xmlns="http://jboss.com/products/seam/components"

xmlns:core="http://jboss.com/products/seam/core"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation=

"http://jboss.com/products/seam/core
http://jboss.com/products/seam/core-1.2.xsd

http://jboss.com/products/seam/components
http://jboss.com/products/seam/components-1.2.xsd">

<core:init debug="true" jndi-pattern="@jndiPattern@"/>

<core:ejb installed="@embeddedEjb@"/>

</components>

Even though the schema declarations are verbose, the actual XML content is lean and easy to
understand. The schemas provide detailed information about each component and the
attributes available, allowing XML editors to offer intelligent autocomplete. The use of
namespaced elements makes generating and maintaining correct components.xml files much
simpler.

Now, this works great for the built-in Seam components, but what about user components?
There are two options. First, Seam supports mixing the two models, allowing the use of the
generic <component> declarations for user components, along with namespaced declarations
for built-in components. But even better, Seam allows you to quickly declare namespaces for
your own components.

Any Java package can be associated with an XML namespace by annotating the package with
the @Namespace annotation. (Package-level annotations are declared in a file named

Using XML Namespaces

89

package-info.java in the package directory.) Here is an example from the seampay demo:

@Namespace(value="http://jboss.com/products/seam/examples/seampay")
package org.jboss.seam.example.seampay;

import org.jboss.seam.annotations.Namespace;

That is all you need to do to use the namespaced style in components.xml! Now we can write:

<components xmlns="http://jboss.com/products/seam/components"
xmlns:pay="http://jboss.com/products/seam/examples/seampay"
... >

<pay:payment-home new-instance="#{newPayment}"
created-message="Created a new payment to

#{newPayment.payee}" />

<pay:payment name="newPayment"
payee="Somebody"
account="#{selectedAccount}"
payment-date="#{currentDatetime}"
created-date="#{currentDatetime}" />

...
</components>

Or:

<components xmlns="http://jboss.com/products/seam/components"
xmlns:pay="http://jboss.com/products/seam/examples/seampay"
... >

<pay:payment-home>
<pay:new-instance>"#{newPayment}"</pay:new-instance>
<pay:created-message>Created a new payment to

#{newPayment.payee}</pay:created-message>
</pay:payment-home>

<pay:payment name="newPayment">
<pay:payee>Somebody"</pay:payee>
<pay:account>#{selectedAccount}</pay:account>
<pay:payment-date>#{currentDatetime}</pay:payment-date>
<pay:created-date>#{currentDatetime}</pay:created-date>

</pay:payment>
...

</components>

These examples illustrate the two usage models of a namespaced element. In the first
declaration, the <pay:payment-home> references the paymentHome component:

package org.jboss.seam.example.seampay;
...
@Name("paymentHome")

Chapter 4. Configuring Seam components

90

public class PaymentController
extends EntityHome<Payment>

{
...

}

The element name is the hyphenated form of the component name. The attributes of the
element are the hyphenated form of the property names.

In the second declaration, the <pay:payment> element refers to the Payment class in the
org.jboss.seam.example.seampay package. In this case Payment is an entity that is being
declared as a Seam component:

package org.jboss.seam.example.seampay;
...
@Entity
public class Payment

implements Serializable
{

...
}

If we want validation and autocompletion to work for user-defined components, we will need a
schema. Seam does not yet provide a mechanism to automatically generate a schema for a set
of components, so it is necessary to generate one manually. The schema definitions for the
standard Seam packages can be used for guidance.

The following are the the namespaces used by Seam:

• components — http://jboss.com/products/seam/components

• core — http://jboss.com/products/seam/core

• drools — http://jboss.com/products/seam/drools

• framework — http://jboss.com/products/seam/framework

• jms — http://jboss.com/products/seam/jms

• remoting — http://jboss.com/products/seam/remoting

• theme — http://jboss.com/products/seam/theme

• security — http://jboss.com/products/seam/security

• mail — http://jboss.com/products/seam/mail

• web — http://jboss.com/products/seam/web

Using XML Namespaces

91

92

Events, interceptors and exception
handling
Complementing the contextual component model, there are two further basic concepts that
facilitate the extreme loose-coupling that is the distinctive feature of Seam applications. The first
is a strong event model where events may be mapped to event listeners via JSF-like method
binding expressions. The second is the pervasive use of annotations and interceptors to apply
cross-cutting concerns to components which implement business logic.

1. Seam events

The Seam component model was developed for use with event-driven applications, specifically
to enable the development of fine-grained, loosely-coupled components in a fine-grained
eventing model. Events in Seam come in several types, most of which we have already seen:

• JSF events

• jBPM transition events

• Seam page actions

• Seam component-driven events

• Seam contextual events

All of these various kinds of events are mapped to Seam components via JSF EL method
binding expressions. For a JSF event, this is defined in the JSF template:

<h:commandButton value="Click me!" action="#{helloWorld.sayHello}"/>

For a jBPM transition event, it is specified in the jBPM process definition or pageflow definition:

<start-page name="hello" view-id="/hello.jsp">
<transition to="hello">

<action expression="#{helloWorld.sayHello}"/>
</transition>

</start-page>

You can find out more information about JSF events and jBPM events elsewhere. Lets
concentrate for now upon the two additional kinds of events defined by Seam.

1.1. Page actions

A Seam page action is an event that occurs just before we render a page. We declare page

Chapter 5.

93

actions in WEB-INF/pages.xml. We can define a page action for either a particular JSF view id:

<pages>
<page view-id="/hello.jsp" action="#{helloWorld.sayHello}"/>

</pages>

Or we can use a wildcard to specify an action that applies to all view ids that match the pattern:

<pages>
<page view-id="/hello/*" action="#{helloWorld.sayHello}"/>

</pages>

If multiple wildcarded page actions match the current view-id, Seam will call all the actions, in
order of least-specific to most-specific.

The page action method can return a JSF outcome. If the outcome is non-null, Seam will use
the defined navigation rules to navigate to a view.

Furthermore, the view id mentioned in the <page> element need not correspond to a real JSP or
Facelets page! So, we can reproduce the functionality of a traditional action-oriented framework
like Struts or WebWork using page actions. For example:

TODO: translate struts action into page action

This is quite useful if you want to do complex things in response to non-faces requests (for
example, HTTP GET requests).

1.1.1. Page parameters

A JSF faces request (a form submission) encapsulates both an "action" (a method binding) and
"parameters" (input value bindings). A page action might also needs parameters!

Since GET requests are bookmarkable, page parameters are passed as human-readable
request parameters. (Unlike JSF form inputs, which are anything but!)

Seam lets us provide a value binding that maps a named request parameter to an attribute of a
model object.

<pages>
<page view-id="/hello.jsp" action="#{helloWorld.sayHello}">

<param name="firstName" value="#{person.firstName}"/>
<param name="lastName" value="#{person.lastName}"/>

</page>
</pages>

The <param> declaration is bidirectional, just like a value binding for a JSF input:

Chapter 5. Events, interceptors and exception handling

94

• When a non-faces (GET) request for the view id occurs, Seam sets the value of the named
request parameter onto the model object, after performing appropriate type conversions.

• Any <s:link> or <s:button> transparently includes the request parameter. The value of the
parameter is determined by evaluating the value binding during the render phase (when the
<s:link> is rendered).

• Any navigation rule with a <redirect/> to the view id transparently includes the request
parameter. The value of the parameter is determined by evaluating the value binding at the
end of the invoke application phase.

• The value is transparently propagated with any JSF form submission for the page with the
given view id. (This means that view parameters behave like PAGE-scoped context variables
for faces requests.

The essential idea behind all this is that however we get from any other page to /hello.jsp (or
from /hello.jsp back to /hello.jsp), the value of the model attribute referred to in the value
binding is "remembered", without the need for a conversation (or other server-side state).

This all sounds pretty complex, and you're probably wondering if such an exotic construct is
really worth the effort. Actually, the idea is very natural once you "get it". It is definitely worth
taking the time to understand this stuff. Page parameters are the most elegant way to propagate
state across a non-faces request. They are especially cool for problems like search screens with
bookmarkable results pages, where we would like to be able to write our application code to
handle both POST and GET requests with the same code. Page parameters eliminate repetitive
listing of request parameters in the view definition and make redirects much easier to code.

Note that you don't need an actual page action method binding to use a page parameter. The
following is perfectly valid:

<pages>
<page view-id="/hello.jsp">

<param name="firstName" value="#{person.firstName}"/>
<param name="lastName" value="#{person.lastName}"/>

</page>
</pages>

You can even specify a JSF converter:

<pages>
<page view-id="/calculator.jsp" action="#{calculator.calculate}">

<param name="x" value="#{calculator.lhs}"/>
<param name="y" value="#{calculator.rhs}"/>
<param name="op" converterId="com.my.calculator.OperatorConverter"

value="#{calculator.op}"/>
</page>

</pages>

Page actions

95

<pages>
<page view-id="/calculator.jsp" action="#{calculator.calculate}">

<param name="x" value="#{calculator.lhs}"/>
<param name="y" value="#{calculator.rhs}"/>
<param name="op" converter="#{operatorConverter}"

value="#{calculator.op}"/>
</page>

</pages>

1.1.2. Navigation

You can use standard JSF navigation rules defined in faces-config.xml in a Seam
application. However, JSF navigation rules have a number of annoying limitations:

• It is not possible to specify request parameters to be used when redirecting.

• It is not possible to begin or end conversations from a rule.

• Rules work by evaluating the return value of the action method; it is not possible to evaluate
an arbitrary EL expression.

A further problem is that "orchestration" logic gets scattered between pages.xml and
faces-config.xml. It's better to unify this logic into pages.xml.

This JSF navigation rule:

<navigation-rule>
<from-view-id>/editDocument.xhtml</from-view-id>

<navigation-case>
<from-action>#{documentEditor.update}</from-action>
<from-outcome>success</from-outcome>
<to-view-id>/viewDocument.xhtml</to-view-id>
<redirect/>

</navigation-case>

</navigation-rule>

Can be rewritten as follows:

<page view-id="/editDocument.xhtml">

<navigation from-action="#{documentEditor.update}">
<rule if-outcome="success">

<redirect view-id="/viewDocument.xhtml"/>
</rule>

</navigation>

</page>

Chapter 5. Events, interceptors and exception handling

96

But it would be even nicer if we didn't have to pollute our DocumentEditor component with
string-valued return values (the JSF outcomes). So Seam lets us write:

<page view-id="/editDocument.xhtml">

<navigation from-action="#{documentEditor.update}"
evaluate="#{documentEditor.errors.size}">

<rule if-outcome="0">
<redirect view-id="/viewDocument.xhtml"/>

</rule>
</navigation>

</page>

Or even:

<page view-id="/editDocument.xhtml">

<navigation from-action="#{documentEditor.update}">
<rule if="#{documentEditor.errors.empty}">

<redirect view-id="/viewDocument.xhtml"/>
</rule>

</navigation>

</page>

The first form evaluates a value binding to determine the outcome value to be used by the
subsequent rules. The second approach ignores the outcome and evaluates a value binding for
each possible rule.

Of course, when an update succeeds, we probably want to end the current conversation. We
can do that like this:

<page view-id="/editDocument.xhtml">

<navigation from-action="#{documentEditor.update}">
<rule if="#{documentEditor.errors.empty}">

<end-conversation/>
<redirect view-id="/viewDocument.xhtml"/>

</rule>
</navigation>

</page>

But ending the conversation loses any state associated with the conversation, including the
document we are currently interested in! One solution would be to use an immediate render
instead of a redirect:

<page view-id="/editDocument.xhtml">

Page actions

97

<navigation from-action="#{documentEditor.update}">
<rule if="#{documentEditor.errors.empty}">

<end-conversation/>
<render view-id="/viewDocument.xhtml"/>

</rule>
</navigation>

</page>

But the correct solution is to pass the document id as a request parameter:

<page view-id="/editDocument.xhtml">

<navigation from-action="#{documentEditor.update}">
<rule if="#{documentEditor.errors.empty}">

<end-conversation/>
<redirect view-id="/viewDocument.xhtml">

<param name="documentId"
value="#{documentEditor.documentId}"/>

</redirect>
</rule>

</navigation>

</page>

Null outcomes are a special case in JSF. The null outcome is interpreted to mean "redisplay the
page". The following navigation rule matches any non-null outcome, but not the null outcome:

<page view-id="/editDocument.xhtml">

<navigation from-action="#{documentEditor.update}">
<rule>

<render view-id="/viewDocument.xhtml"/>
</rule>

</navigation>

</page>

If you want to perform navigation when a null outcome occurs, use the following form instead:

<page view-id="/editDocument.xhtml">

<navigation from-action="#{documentEditor.update}">
<render view-id="/viewDocument.xhtml"/>

</navigation>

</page>

1.1.3. Fine-grained files for definition of navigation, page actions and

Chapter 5. Events, interceptors and exception handling

98

parameters

If you have a lot of different page actions and page parameters, or even just a lot of navigation
rules, you will almost certainly want to split the declarations up over multiple files. You can
define actions and parameters for a page with the view id /calc/calculator.jsp in a resource
named calc/calculator.page.xml. The root element in this case is the <page> element, and
the view id is implied:

<page action="#{calculator.calculate}">
<param name="x" value="#{calculator.lhs}"/>
<param name="y" value="#{calculator.rhs}"/>
<param name="op" converter="#{operatorConverter}"

value="#{calculator.op}"/>
</page>

1.2. Component-driven events

Seam components can interact by simply calling each others methods. Stateful components
may even implement the observer/observable pattern. But to enable components to interact in a
more loosely-coupled fashion than is possible when the components call each others methods
directly, Seam provides component-driven events.

We specify event listeners (observers) in components.xml.

<components>
<event type="hello">

<action expression="#{helloListener.sayHelloBack}"/>
<action expression="#{logger.logHello}"/>

</event>
</components>

Where the event type is just an arbitrary string.

When an event occurs, the actions registered for that event will be called in the order they
appear in components.xml. How does a component raise an event? Seam provides a built-in
component for this.

@Name("helloWorld")
public class HelloWorld {

public void sayHello() {
FacesMessages.instance().add("Hello World!");
Events.instance().raiseEvent("hello");

}
}

Or you can use an annotation.

@Name("helloWorld")

Component-driven events

99

public class HelloWorld {
@RaiseEvent("hello")
public void sayHello() {

FacesMessages.instance().add("Hello World!");
}

}

Notice that this event producer has no dependency upon event consumers. The event listener
may now be implemented with absolutely no dependency upon the producer:

@Name("helloListener")
public class HelloListener {

public void sayHelloBack() {
FacesMessages.instance().add("Hello to you too!");

}
}

The method binding defined in components.xml above takes care of mapping the event to the
consumer. If you don't like futzing about in the components.xml file, you can use an annotation
instead:

@Name("helloListener")
public class HelloListener {

@Observer("hello")
public void sayHelloBack() {

FacesMessages.instance().add("Hello to you too!");
}

}

You might wonder why I've not mentioned anything about event objects in this discussion. In
Seam, there is no need for an event object to propagate state between event producer and
listener. State is held in the Seam contexts, and is shared between components. However, if
you really want to pass an event object, you can:

@Name("helloWorld")
public class HelloWorld {

private String name;
public void sayHello() {

FacesMessages.instance().add("Hello World, my name is #0.", name);
Events.instance().raiseEvent("hello", name);

}
}

@Name("helloListener")
public class HelloListener {

@Observer("hello")
public void sayHelloBack(String name) {

FacesMessages.instance().add("Hello #0!", name);
}

Chapter 5. Events, interceptors and exception handling

100

}

1.3. Contextual events

Seam defines a number of built-in events that the application can use to perform special kinds
of framework integration. The events are:

• org.jboss.seam.validationFailed — called when JSF validation fails

• org.jboss.seam.noConversation — called when there is no long running conversation and
a long running conversation is required

• org.jboss.seam.preSetVariable.<name> — called when the context variable <name> is
set

• org.jboss.seam.postSetVariable.<name> — called when the context variable <name> is
set

• org.jboss.seam.preRemoveVariable.<name> — called when the context variable <name>
is unset

• org.jboss.seam.postRemoveVariable.<name> — called when the context variable <name>
is unset

• org.jboss.seam.preDestroyContext.<SCOPE> — called before the <SCOPE> context is
destroyed

• org.jboss.seam.postDestroyContext.<SCOPE> — called after the <SCOPE> context is
destroyed

• org.jboss.seam.beginConversation — called whenever a long-running conversation
begins

• org.jboss.seam.endConversation — called whenever a long-running conversation ends

• org.jboss.seam.beginPageflow.<name> — called when the pageflow <name> begins

• org.jboss.seam.endPageflow.<name> — called when the pageflow <name> ends

• org.jboss.seam.createProcess.<name> — called when the process <name> is created

• org.jboss.seam.endProcess.<name> — called when the process <name> ends

• org.jboss.seam.initProcess.<name> — called when the process <name> is associated
with the conversation

• org.jboss.seam.initTask.<name> — called when the task <name> is associated with the
conversation

Contextual events

101

• org.jboss.seam.startTask.<name> — called when the task <name> is started

• org.jboss.seam.endTask.<name> — called when the task <name> is ended

• org.jboss.seam.postCreate.<name> — called when the component <name> is created

• org.jboss.seam.preDestroy.<name> — called when the component <name> is destroyed

• org.jboss.seam.beforePhase — called before the start of a JSF phase

• org.jboss.seam.afterPhase — called after the end of a JSF phase

• org.jboss.seam.postAuthenticate.<name> — called after a user is authenticated

• org.jboss.seam.preAuthenticate.<name> — called before attempting to authenticate a
user

• org.jboss.seam.notLoggedIn — called there is no authenticated user and authentication is
required

• org.jboss.seam.rememberMe — occurs when Seam security detects the username in a
cookie

Seam components may observe any of these events in just the same way they observe any
other component-driven events.

2. Seam interceptors

EJB 3.0 introduced a standard interceptor model for session bean components. To add an
interceptor to a bean, you need to write a class with a method annotated @AroundInvoke and
annotate the bean with an @Interceptors annotation that specifies the name of the interceptor
class. For example, the following interceptor checks that the user is logged in before allowing
invoking an action listener method:

public class LoggedInInterceptor {

@AroundInvoke
public Object checkLoggedIn(InvocationContext invocation) throws

Exception {

boolean isLoggedIn =
Contexts.getSessionContext().get("loggedIn")!=null;

if (isLoggedIn) {
//the user is already logged in
return invocation.proceed();

}
else {

//the user is not logged in, fwd to login page
return "login";

}
}

Chapter 5. Events, interceptors and exception handling

102

}

To apply this interceptor to a session bean which acts as an action listener, we must annotate
the session bean @Interceptors(LoggedInInterceptor.class). This is a somewhat ugly
annotation. Seam builds upon the interceptor framework in EJB3 by allowing you to use
@Interceptors as a meta-annotation. In our example, we would create an @LoggedIn

annotation, as follows:

@Target(TYPE)
@Retention(RUNTIME)
@Interceptors(LoggedInInterceptor.class)
public @interface LoggedIn {}

We can now simply annotate our action listener bean with @LoggedIn to apply the interceptor.

@Stateless
@Name("changePasswordAction")
@LoggedIn
@Interceptors(SeamInterceptor.class)
public class ChangePasswordAction implements ChangePassword {

...

public String changePassword() { ... }

}

If interceptor ordering is important (it usually is), you can add @Interceptor annotations to your
interceptor classes to specify a partial order of interceptors.

@Interceptor(around={BijectionInterceptor.class,
ValidationInterceptor.class,
ConversationInterceptor.class},

within=RemoveInterceptor.class)
public class LoggedInInterceptor
{

...
}

You can even have a "client-side" interceptor, that runs around any of the built-in functionality of
EJB3:

@Interceptor(type=CLIENT)
public class LoggedInInterceptor
{

...
}

Seam interceptors

103

EJB interceptors are stateful, with a lifecycle that is the same as the component they intercept.
For interceptors which do not need to maintain state, Seam lets you get a performance
optimization by specifying @Interceptor(stateless=true).

Much of the functionality of Seam is implemented as a set of built-in Seam interceptors,
including the interceptors named in the previous example. You don't have to explicitly specify
these interceptors by annotating your components; they exist for all interceptable Seam
components.

You can even use Seam interceptors with JavaBean components, not just EJB3 beans!

EJB defines interception not only for business methods (using @AroundInvoke), but also for the
lifecycle methods @PostConstruct, @PreDestroy, @PrePassivate and @PostActive. Seam
supports all these lifecycle methods on both component and interceptor not only for EJB3
beans, but also for JavaBean components (except @PreDestroy which is not meaningful for
JavaBean components).

3. Managing exceptions

JSF is surprisingly limited when it comes to exception handling. As a partial workaround for this
problem, Seam lets you define how a particular class of exception is to be treated by annotating
the exception class, or declaring the exception class in an XML file. This facility is meant to be
combined with the EJB 3.0-standard @ApplicationException annotation which specifies
whether the exception should cause a transaction rollback.

3.1. Exceptions and transactions

EJB specifies well-defined rules that let us control whether an exception immediately marks the
current transaction for rollback when it is thrown by a business method of the bean: system
exceptions always cause a transaction rollback, application exceptions do not cause a rollback
by default, but they do if @ApplicationException(rollback=true) is specified. (An
application exception is any checked exception, or any unchecked exception annotated
@ApplicationException. A system exception is any unchecked exception without an
@ApplicationException annotation.)

Note that there is a difference between marking a transaction for rollback, and actually rolling it
back. The exception rules say that the transaction should be marked rollback only, but it may
still be active after the exception is thrown.

Seam applies the EJB 3.0 exception rollback rules also to Seam JavaBean components.

But these rules only apply in the Seam component layer. What about an exception that is
uncaught and propagates out of the Seam component layer, and out of the JSF layer? Well, it is
always wrong to leave a dangling transaction open, so Seam rolls back any active transaction
when an exception occurs and is uncaught in the Seam component layer.

3.2. Enabling Seam exception handling

Chapter 5. Events, interceptors and exception handling

104

To enable Seam's exception handling, we need to make sure we have the master servlet filter
declared in web.xml:

<filter>
<filter-name>Seam Filter</filter-name>
<filter-class>org.jboss.seam.servlet.SeamFilter</filter-class>

</filter>

<filter-mapping>
<filter-name>Seam Filter</filter-name>
<url-pattern>*.seam</url-pattern>

</filter-mapping>

You may also need to disable Facelets development mode in web.xml and Seam debug mode
in components.xml if you want your exception handlers to fire.

3.3. Using annotations for exception handling

The following exception results in a HTTP 404 error whenever it propagates out of the Seam
component layer. It does not roll back the current transaction immediately when thrown, but the
transaction will be rolled back if it the exception is not caught by another Seam component.

@HttpError(errorCode=404)
public class ApplicationException extends Exception { ... }

This exception results in a browser redirect whenever it propagates out of the Seam component
layer. It also ends the current conversation. It causes an immediate rollback of the current
transaction.

@Redirect(viewId="/failure.xhtml", end=true)
@ApplicationException(rollback=true)
public class UnrecoverableApplicationException extends RuntimeException {
... }

Note that @Redirect does not work for exceptions which occur during the render phase of the
JSF lifecycle.

This exception results in a redirect, along with a message to the user, when it propagates out of
the Seam component layer. It also immediately rolls back the current transaction.

@Redirect(viewId="/error.xhtml", message="Unexpected error")
public class SystemException extends RuntimeException { ... }

3.4. Using XML for exception handling

Since we can't add annotations to all the exception classes we are interested in, Seam also lets

Using annotations for exception handling

105

us specify this functionality in pages.xml.

<pages>

<exception class="javax.persistence.EntityNotFoundException">
<http-error error-code="404"/>

</exception>

<exception class="javax.persistence.PersistenceException">
<end-conversation/>
<redirect view-id="/error.xhtml">

<message>Database access failed</message>
</redirect>

</exception>

<exception>
<end-conversation/>
<redirect view-id="/error.xhtml">

<message>Unexpected failure</message>
</redirect>

</exception>

</pages>

The last <exception> declaration does not specify a class, and is a catch-all for any exception
for which handling is not otherwise specified via annotations or in pages.xml.

You can also access the handled exception instance through EL, Seam places it in the
conversation context, e.g. to access the message of the exception:

...
throw new AuthorizationException("You are not allowed to do this!");

<pages>

<exception class="org.jboss.seam.security.AuthorizationException">
<end-conversation/>
<redirect view-id="/error.xhtml">

<message severity="WARN">#{handledException.message}</message>
</redirect>

</exception>

</pages>

Chapter 5. Events, interceptors and exception handling

106

Conversations and workspace
management
It's time to understand Seam's conversation model in more detail.

Historically, the notion of a Seam "conversation" came about as a merger of three different
ideas:

• The idea of a workspace, which I encountered in a project for the Victorian government in
2002. In this project I was forced to implement workspace management on top of Struts, an
experience I pray never to repeat.

• The idea of an application transaction with optimistic semantics, and the realization that
existing frameworks based around a stateless architecture could not provide effective
management of extended persistence contexts. (The Hibernate team is truly fed up with
copping the blame for LazyInitializationExceptions, which are not really Hibernate's
fault, but rather the fault of the extremely limiting persistence context model supported by
stateless architectures such as the Spring framework or the traditional stateless session
facade (anti)pattern in J2EE.)

• The idea of a workflow task.

By unifying these ideas and providing deep support in the framework, we have a powerful
construct that lets us build richer and more efficient applications with less code than before.

1. Seam's conversation model

The examples we have seen so far make use of a very simple conversation model that follows
these rules:

• There is always a conversation context active during the apply request values, process
validations, update model values, invoke application and render response phases of the JSF
request lifecycle.

• At the end of the restore view phase of the JSF request lifecycle, Seam attempts to restore
any previous long-running conversation context. If none exists, Seam creates a new
temporary conversation context.

• When an @Begin method is encountered, the temporary conversation context is promoted to
a long running conversation.

• When an @End method is encountered, any long-running conversation context is demoted to a
temporary conversation.

• At the end of the render response phase of the JSF request lifecycle, Seam stores the

Chapter 6.

107

contents of a long running conversation context or destroys the contents of a temporary
conversation context.

• Any faces request (a JSF postback) will propagate the conversation context. By default,
non-faces requests (GET requests, for example) do not propagate the conversation context,
but see below for more information on this.

• If the JSF request lifecycle is foreshortened by a redirect, Seam transparently stores and
restores the current conversation context—unless the conversation was already ended via
@End(beforeRedirect=true).

Seam transparently propagates the conversation context across JSF postbacks and redirects. If
you don't do anything special, a non-faces request (a GET request for example) will not
propagate the conversation context and will be processed in a new temporary conversation.
This is usually - but not always - the desired behavior.

If you want to propagate a Seam conversation across a non-faces request, you need to
explicitly code the Seam conversation id as a request parameter:

Continue

Or, the more JSF-ish:

<h:outputLink value="main.jsf">
<f:param name="conversationId" value="#{conversation.id}"/>
<h:outputText value="Continue"/>

</h:outputLink>

If you use the Seam tag library, this is equivalent:

<h:outputLink value="main.jsf">
<s:conversationId/>
<h:outputText value="Continue"/>

</h:outputLink>

If you wish to disable propagation of the conversation context for a postback, a similar trick is
used:

<h:commandLink action="main" value="Exit">
<f:param name="conversationPropagation" value="none"/>

</h:commandLink>

If you use the Seam tag library, this is equivalent:

<h:commandLink action="main" value="Exit">
<s:conversationPropagation type="none"/>

Chapter 6. Conversations and workspace management

108

</h:commandLink>

Note that disabling conversation context propagation is absolutely not the same thing as ending
the conversation.

The conversationPropagation request parameter, or the <s:conversationPropagation> tag
may even be used to begin and end conversation, or begin a nested conversation.

<h:commandLink action="main" value="Exit">
<s:conversationPropagation type="end"/>

</h:commandLink>

<h:commandLink action="main" value="Select Child">
<s:conversationPropagation type="nested"/>

</h:commandLink>

<h:commandLink action="main" value="Select Hotel">
<s:conversationPropagation type="begin"/>

</h:commandLink>

<h:commandLink action="main" value="Select Hotel">
<s:conversationPropagation type="join"/>

</h:commandLink>

This conversation model makes it easy to build applications which behave correctly with respect
to multi-window operation. For many applications, this is all that is needed. Some complex
applications have either or both of the following additional requirements:

• A conversation spans many smaller units of user interaction, which execute serially or even
concurrently. The smaller nested conversations have their own isolated set of conversation
state, and also have access to the state of the outer conversation.

• The user is able to switch between many conversations within the same browser window.
This feature is called workspace management.

2. Nested conversations

A nested conversation is created by invoking a method marked @Begin(nested=true) inside
the scope of an existing conversation. A nested conversation has its own conversation context,
and also has read-only access to the context of the outer conversation. (It can read the outer
conversation's context variables, but not write to them.) When an @End is subsequently
encountered, the nested conversation will be destroyed, and the outer conversation will resume,
by "popping" the conversation stack. Conversations may be nested to any arbitrary depth.

Nested conversations

109

Certain user activity (workspace management, or the back button) can cause the outer
conversation to be resumed before the inner conversation is ended. In this case it is possible to
have multiple concurrent nested conversations belonging to the same outer conversation. If the
outer conversation ends before a nested conversation ends, Seam destroys all nested
conversation contexts along with the outer context.

A conversation may be thought of as a continuable state. Nested conversations allow the
application to capture a consistent continuable state at various points in a user interaction, thus
insuring truly correct behavior in the face of backbuttoning and workspace management.

TODO: an example to show how a nested conversation prevents bad stuff happening when you
backbutton.

Usually, if a component exists in a parent conversation of the current nested conversation, the
nested conversation will use the same instance. Occasionally, it is useful to have a different
instance in each nested conversation, so that the component instance that exists in the parent
conversation is invisible to its child conversations. You can achieve this behavior by annotating
the component @PerNestedConversation.

3. Starting conversations with GET requests

JSF does not define any kind of action listener that is triggered when a page is accessed via a
non-faces request (for example, a HTTP GET request). This can occur if the user bookmarks
the page, or if we navigate to the page via an <h:outputLink>.

Sometimes we want to begin a conversation immediately the page is accessed. Since there is
no JSF action method, we can't solve the problem in the usual way, by annotating the action
with @Begin.

A further problem arises if the page needs some state to be fetched into a context variable.
We've already seen two ways to solve this problem. If that state is held in a Seam component,
we can fetch the state in a @Create method. If not, we can define a @Factory method for the
context variable.

If none of these options works for you, Seam lets you define a page action in the pages.xml file.

<pages>
<page view-id="/messageList.jsp" action="#{messageManager.list}"/>
...

</pages>

This action method is called at the beginning of the render response phase, any time the page
is about to be rendered. If a page action returns a non-null outcome, Seam will process any
appropriate JSF and Seam navigation rules, possibly resulting in a completely different page
being rendered.

If all you want to do before rendering the page is begin a conversation, you could use a built-in
action method that does just that:

Chapter 6. Conversations and workspace management

110

<pages>
<page view-id="/messageList.jsp" action="#{conversation.begin}"/>
...

</pages>

Note that you can also call this built-in action from a JSF control, and, similarly, you can use
#{conversation.end} to end conversations.

If you want more control, to join existing conversations or begin a nested conversion, to begin a
pageflow or an atomic conversation, you should use the <begin-conversation> element.

<pages>
<page view-id="/messageList.jsp">

<begin-conversation nested="true" pageflow="AddItem"/>
<page>
...

</pages>

There is also an <end-conversation> element.

<pages>
<page view-id="/home.jsp">

<end-conversation/>
<page>
...

</pages>

To solve the first problem, we now have five options:

• Annotate the @Create method with @Begin

• Annotate the @Factory method with @Begin

• Annotate the Seam page action method with @Begin

• Use <begin-conversation> in pages.xml.

• Use #{conversation.begin} as the Seam page action method

4. Using <s:link> and <s:button>

JSF command links always perform a form submission via JavaScript, which breaks the web
browser's "open in new window" or "open in new tab" feature. In plain JSF, you need to use an
<h:outputLink> if you need this functionality. But there are two major limitations to
<h:outputLink>.

Using <s:link> and <s:button>

111

• JSF provides no way to attach an action listener to an <h:outputLink>.

• JSF does not propagate the selected row of a DataModel since there is no actual form
submission.

Seam provides the notion of a page action to help solve the first problem, but this does nothing
to help us with the second problem. We could work around this by using the RESTful approach
of passing a request parameter and requerying for the selected object on the server side. In
some cases—such as the Seam blog example application—this is indeed the best approach.
The RESTful style supports bookmarking, since it does not require server-side state. In other
cases, where we don't care about bookmarks, the use of @DataModel and
@DataModelSelection is just so convenient and transparent!

To fill in this missing functionality, and to make conversation propagation even simpler to
manage, Seam provides the <s:link> JSF tag.

The link may specify just the JSF view id:

<s:link view=“/login.xhtml” value=“Login”/>

Or, it may specify an action method (in which case the action outcome determines the page that
results):

<s:link action=“#{login.logout}” value=“Logout”/>

If you specify both a JSF view id and an action method, the 'view' will be used unless the action
method returns a non-null outcome:

<s:link view="/loggedOut.xhtml" action=“#{login.logout}” value=“Logout”/>

The link automatically propagates the selected row of a DataModel using inside
<h:dataTable>:

<s:link view=“/hotel.xhtml” action=“#{hotelSearch.selectHotel}”
value=“#{hotel.name}”/>

You can leave the scope of an existing conversation:

<s:link view=“/main.xhtml” propagation=“none”/>

You can begin, end, or nest conversations:

<s:link action=“#{issueEditor.viewComment}” propagation=“nest”/>

Chapter 6. Conversations and workspace management

112

If the link begins a conversation, you can even specify a pageflow to be used:

<s:link action=“#{documentEditor.getDocument}” propagation=“begin”
pageflow=“EditDocument”/>

The taskInstance attribute if for use in jBPM task lists:

<s:link action=“#{documentApproval.approveOrReject}”
taskInstance=“#{task}”/>

(See the DVD Store demo application for examples of this.)

Finally, if you need the "link" to be rendered as a button, use <s:button>:

<s:button action=“#{login.logout}” value=“Logout”/>

5. Success messages

It is quite common to display a message to the user indicating success or failure of an action. It
is convenient to use a JSF FacesMessage for this. Unfortunately, a successful action often
requires a browser redirect, and JSF does not propagate faces messages across redirects. This
makes it quite difficult to display success messages in plain JSF.

The built in conversation-scoped Seam component named facesMessages solves this problem.
(You must have the Seam redirect filter installed.)

@Name("editDocumentAction")
@Stateless
public class EditDocumentBean implements EditDocument {

@In EntityManager em;
@In Document document;
@In FacesMessages facesMessages;

public String update() {
em.merge(document);
facesMessages.add("Document updated");

}
}

Any message added to facesMessages is used in the very next render response phase for the
current conversation. This even works when there is no long-running conversation since Seam
preserves even temporary conversation contexts across redirects.

You can even include JSF EL expressions in a faces message summary:

facesMessages.add("Document #{document.title} was updated");

Success messages

113

You may display the messages in the usual way, for example:

<h:messages globalOnly="true"/>

6. Using an "explicit" conversation id

Ordinarily, Seam generates a meaningless unique id for each conversation in each session.
You can customize the id value when you begin the conversation.

This feature can be used to customize the conversation id generation algorithm like so:

@Begin(id="#{myConversationIdGenerator.nextId}")
public void editHotel() { ... }

Or it can be used to assign a meaningful conversation id:

@Begin(id="hotel#{hotel.id}")
public String editHotel() { ... }

@Begin(id="hotel#{hotelsDataModel.rowData.id}")
public String selectHotel() { ... }

@Begin(id="entry#{params['blogId']}")
public String viewBlogEntry() { ... }

@BeginTask(id="task#{taskInstance.id}")
public String approveDocument() { ... }

Clearly, these example result in the same conversation id every time a particular hotel, blog or
task is selected. So what happens if a conversation with the same conversation id already exists
when the new conversation begins? Well, Seam detects the existing conversation and redirects
to that conversation without running the @Begin method again. This feature helps control the
number of workspaces that are created when using workspace management.

7. Workspace management

Workspace management is the ability to "switch" conversations in a single window. Seam
makes workspace management completely transparent at the level of the Java code. To enable
workspace management, all you need to do is:

• Provide description text for each view id (when using JSF or Seam navigation rules) or page
node (when using jPDL pageflows). This description text is displayed to the user by the

Chapter 6. Conversations and workspace management

114

workspace switchers.

• Include one or more of the standard workspace switcher JSP or facelets fragments in your
pages. The standard fragments support workspace management via a drop down menu, a list
of conversations, or breadcrumbs.

7.1. Workspace management and JSF navigation

When you use JSF or Seam navigation rules, Seam switches to a conversation by restoring the
current view-id for that conversation. The descriptive text for the workspace is defined in a file
called pages.xml that Seam expects to find in the WEB-INF directory, right next to
faces-config.xml:

<pages>
<page view-id="/main.xhtml">Search hotels:

#{hotelBooking.searchString}</page>
<page view-id="/hotel.xhtml">View hotel: #{hotel.name}</page>
<page view-id="/book.xhtml">Book hotel: #{hotel.name}</page>
<page view-id="/confirm.xhtml">Confirm: #{booking.description}</page>

</pages>

Note that if this file is missing, the Seam application will continue to work perfectly! The only
missing functionality will be the ability to switch workspaces.

7.2. Workspace management and jPDL pageflow

When you use a jPDL pageflow definition, Seam switches to a conversation by restoring the
current jBPM process state. This is a more flexible model since it allows the same view-id to
have different descriptions depending upon the current <page> node. The description text is
defined by the <page> node:

<pageflow-definition name="shopping">

<start-state name="start">
<transition to="browse"/>

</start-state>

<page name="browse" view-id="/browse.xhtml">
<description>DVD Search: #{search.searchPattern}</description>
<transition to="browse"/>
<transition name="checkout" to="checkout"/>

</page>

<page name="checkout" view-id="/checkout.xhtml">
<description>Purchase: $#{cart.total}</description>
<transition to="checkout"/>
<transition name="complete" to="complete"/>

</page>

<page name="complete" view-id="/complete.xhtml">

Workspace management and JSF navigation

115

<end-conversation />
</page>

</pageflow-definition>

7.3. The conversation switcher

Include the following fragment in your JSP or facelets page to get a drop-down menu that lets
you switch to any current conversation, or to any other page of the application:

<h:selectOneMenu value="#{switcher.conversationIdOrOutcome}">
<f:selectItem itemLabel="Find Issues" itemValue="findIssue"/>
<f:selectItem itemLabel="Create Issue" itemValue="editIssue"/>
<f:selectItems value="#{switcher.selectItems}"/>

</h:selectOneMenu>
<h:commandButton action="#{switcher.select}" value="Switch"/>

In this example, we have a menu that includes an item for each conversation, together with two
additional items that let the user begin a new conversation.

7.4. The conversation list

The conversation list is very similar to the conversation switcher, except that it is displayed as a
table:

<h:dataTable value="#{conversationList}" var="entry"
rendered="#{not empty conversationList}">

<h:column>
<f:facet name="header">Workspace</f:facet>
<h:commandLink action="#{entry.select}"

value="#{entry.description}"/>
<h:outputText value="[current]" rendered="#{entry.current}"/>

</h:column>
<h:column>

<f:facet name="header">Activity</f:facet>
<h:outputText value="#{entry.startDatetime}">

Chapter 6. Conversations and workspace management

116

<f:convertDateTime type="time" pattern="hh:mm a"/>
</h:outputText>
<h:outputText value=" - "/>
<h:outputText value="#{entry.lastDatetime}">

<f:convertDateTime type="time" pattern="hh:mm a"/>
</h:outputText>

</h:column>
<h:column>

<f:facet name="header">Action</f:facet>
<h:commandButton action="#{entry.select}" value="#{msg.Switch}"/>
<h:commandButton action="#{entry.destroy}" value="#{msg.Destroy}"/>

</h:column>
</h:dataTable>

We imagine that you will want to customize this for your own application.

The conversation list is nice, but it takes up a lot of space on the page, so you probably don't
want to put it on every page.

Notice that the conversation list lets the user destroy workspaces.

7.5. Breadcrumbs

Breadcrumbs are useful in applications which use a nested conversation model. The
breadcrumbs are a list of links to conversations in the current conversation stack:

<t:dataList value="#{conversationStack}" var="entry">
<h:outputText value=" | "/>
<h:commandLink value="#{entry.description}" action="#{entry.select}"/>

</t:dataList>

Please refer to the Seam Issue Tracker demo to see all this functionality in action!

8. Conversational components and JSF component
bindings

Conversational components have one minor limitation: they cannot be used to hold bindings to
JSF components. (We generally prefer not to use this feature of JSF unless absolutely

Breadcrumbs

117

necessary, since it creates a hard dependency from application logic to the view.) On a
postback request, component bindings are updated during the Restore View phase, before the
Seam conversation context has been restored.

To work around this use an event scoped component to store the component bindings and
inject it into the conversation scoped component that requires it.

@Name("grid")
@Scope(ScopeType.EVENT)
public class Grid
{

private HtmlPanelGrid htmlPanelGrid;

// getters and setters
...

}

@Name("gridEditor")
@Scope(ScopeType.CONVERSATION)
public class GridEditor
{

@In(required=false)
private Grid grid;

...
}

Chapter 6. Conversations and workspace management

118

Pageflows and business processes
JBoss jBPM is a business process management engine for any Java SE or EE environment.
jBPM lets you represent a business process or user interaction as a graph of nodes
representing wait states, decisions, tasks, web pages, etc. The graph is defined using a simple,
very readable, XML dialect called jPDL, and may be edited and visualised graphically using an
eclipse plugin. jPDL is an extensible language, and is suitable for a range of problems, from
defining web application page flow, to traditional workflow management, all the way up to
orchestration of services in a SOA environment.

Seam applications use jBPM for two different problems:

• Defining the pageflow involved in complex user interactions. A jPDL process definition defines
the page flow for a single conversation. A Seam conversation is considered to be a relatively
short-running interaction with a single user.

• Defining the overarching business process. The business process may span multiple
conversations with multiple users. Its state is persistent in the jBPM database, so it is
considered long-running. Coordination of the activities of multiple users is a much more
complex problem than scripting an interaction with a single user, so jBPM offers sophisticated
facilities for task management and dealing with multiple concurrent paths of execution.

Don't get these two things confused ! They operate at very different levels or granularity.
Pageflow, conversation and task all refer to a single interaction with a single user. A business
process spans many tasks. Futhermore, the two applications of jBPM are totally orthogonal.
You can use them together or independently or not at all.

You don't have to know jDPL to use Seam. If you're perfectly happy defining pageflow using
JSF or Seam navigation rules, and if your application is more data-driven that process-driven,
you probably don't need jBPM. But we're finding that thinking of user interaction in terms of a
well-defined graphical representation is helping us build more robust applications.

1. Pageflow in Seam

There are two ways to define pageflow in Seam:

• Using JSF or Seam navigation rules - the stateless navigation model

• Using jPDL - the stateful navigation model

Very simple applications will only need the stateless navigation model. Very complex
applications will use both models in different places. Each model has its strengths and
weaknesses!

1.1. The two navigation models

Chapter 7.

119

The stateless model defines a mapping from a set of named, logical outcomes of an event
directly to the resulting page of the view. The navigation rules are entirely oblivious to any state
held by the application other than what page was the source of the event. This means that your
action listener methods must sometimes make decisions about the page flow, since only they
have access to the current state of the application.

Here is an example page flow definition using JSF navigation rules:

<navigation-rule>
<from-view-id>/numberGuess.jsp</from-view-id>

<navigation-case>
<from-outcome>guess</from-outcome>
<to-view-id>/numberGuess.jsp</to-view-id>
<redirect/>

</navigation-case>

<navigation-case>
<from-outcome>win</from-outcome>
<to-view-id>/win.jsp</to-view-id>
<redirect/>

</navigation-case>

<navigation-case>
<from-outcome>lose</from-outcome>
<to-view-id>/lose.jsp</to-view-id>
<redirect/>

</navigation-case>

</navigation-rule>

Here is the same example page flow definition using Seam navigation rules:

<page view-id="/numberGuess.jsp">

<navigation>
<rule if-outcome="guess">

<redirect view-id="/numberGuess.jsp"/>
</rule>
<rule if-outcome="win">

<redirect view-id="/win.jsp"/>
</rule>
<rule if-outcome="lose">

<redirect view-id="/lose.jsp"/>
</rule>

</navigation-case>

</navigation-rule>

If you find navigation rules overly verbose, you can return view ids directly from your action
listener methods:

Chapter 7. Pageflows and business processes

120

public String guess() {
if (guess==randomNumber) return "/win.jsp";
if (++guessCount==maxGuesses) return "/lose.jsp";
return null;

}

Note that this results in a redirect. You can even specify parameters to be used in the redirect:

public String search() {
return "/searchResults.jsp?searchPattern=#{searchAction.searchPattern}";

}

The stateful model defines a set of transitions between a set of named, logical application
states. In this model, it is possible to express the flow of any user interaction entirely in the jPDL
pageflow definition, and write action listener methods that are completely unaware of the flow of
the interaction.

Here is an example page flow definition using jPDL:

<pageflow-definition name="numberGuess">

<start-page name="displayGuess" view-id="/numberGuess.jsp">
<redirect/>
<transition name="guess" to="evaluateGuess">

<action expression="#{numberGuess.guess}" />
</transition>

</start-page>

<decision name="evaluateGuess" expression="#{numberGuess.correctGuess}">
<transition name="true" to="win"/>
<transition name="false" to="evaluateRemainingGuesses"/>

</decision>

<decision name="evaluateRemainingGuesses"
expression="#{numberGuess.lastGuess}">

<transition name="true" to="lose"/>
<transition name="false" to="displayGuess"/>

</decision>

<page name="win" view-id="/win.jsp">
<redirect/>
<end-conversation />

</page>

<page name="lose" view-id="/lose.jsp">
<redirect/>
<end-conversation />

</page>

</pageflow-definition>

The two navigation models

121

There are two things we notice immediately here:

• The JSF/Seam navigation rules are much simpler. (However, this obscures the fact that the
underlying Java code is more complex.)

• The jPDL makes the user interaction immediately understandable, without us needing to even
look at the JSP or Java code.

In addition, the stateful model is more constrained. For each logical state (each step in the page
flow), there are a constrained set of possible transitions to other states. The stateless model is
an ad hoc model which is suitable to relatively unconstrained, freeform navigation where the
user decides where he/she wants to go next, not the application.

The stateful/stateless navigation distinction is quite similar to the traditional view of
modal/modeless interaction. Now, Seam applications are not usually modal in the simple sense
of the word - indeed, avoiding application modal behavior is one of the main reasons for having
conversations! However, Seam applications can be, and often are, modal at the level of a
particular conversation. It is well-known that modal behavior is something to avoid as much as
possible; it is very difficult to predict the order in which your users are going to want to do things!
However, there is no doubt that the stateful model has its place.

The biggest contrast between the two models is the back-button behavior.

1.2. Seam and the back button

When JSF or Seam navigation rules are used, Seam lets the user freely navigate via the back,
forward and refresh buttons. It is the responsibility of the application to ensure that

Chapter 7. Pageflows and business processes

122

conversational state remains internally consistent when this occurs. Experience with the
combination of web application frameworks like Struts or WebWork - that do not support a
conversational model - and stateless component models like EJB stateless session beans or
the Spring framework has taught many developers that this is close to impossible to do!
However, our experience is that in the context of Seam, where there is a well-defined
conversational model, backed by stateful session beans, it is actually quite straightforward.
Usually it is as simple as combining the use of no-conversation-view-id with null checks at
the beginning of action listener methods. We consider support for freeform navigation to be
almost always desirable.

In this case, the no-conversation-view-id declaration goes in pages.xml. It tells Seam to
redirect to a different page if a request originates from a page rendered during a conversation,
and that conversation no longer exists:

<page view-id="/checkout.xhtml"
no-conversation-view-id="/main.xhtml"/>

On the other hand, in the stateful model, backbuttoning is interpreted as an undefined transition
back to a previous state. Since the stateful model enforces a defined set of transitions from the
current state, back buttoning is be default disallowed in the stateful model! Seam transparently
detects the use of the back button, and blocks any attempt to perform an action from a previous,
"stale" page, and simply redirects the user to the "current" page (and displays a faces
message). Whether you consider this a feature or a limitation of the stateful model depends
upon your point of view: as an application developer, it is a feature; as a user, it might be
frustrating! You can enable backbutton navigation from a particular page node by setting
back="enabled".

<page name="checkout"
view-id="/checkout.xhtml"
back="enabled">

<redirect/>
<transition to="checkout"/>
<transition name="complete" to="complete"/>

</page>

This allows backbuttoning from the checkout state to any previous state!

Of course, we still need to define what happens if a request originates from a page rendered
during a pageflow, and the conversation with the pageflow no longer exists. In this case, the
no-conversation-view-id declaration goes into the pageflow definition:

<page name="checkout"
view-id="/checkout.xhtml"
back="enabled"
no-conversation-view-id="/main.xhtml">

<redirect/>
<transition to="checkout"/>
<transition name="complete" to="complete"/>

Seam and the back button

123

</page>

In practice, both navigation models have their place, and you'll quickly learn to recognize when
to prefer one model over the other.

2. Using jPDL pageflows

2.1. Installing pageflows

We need to install the Seam jBPM-related components, and tell them where to find our
pageflow definition. We can specify this Seam configuration in components.xml.

<core:jbpm>
<core:pageflow-definitions>

<value>pageflow.jpdl.xml</value>
</core:pageflow-definitions>

</core:jbpm>

The first line installs jBPM, the second points to a jPDL-based pageflow definition.

2.2. Starting pageflows

We "start" a jPDL-based pageflow by specifying the name of the process definition using a
@Begin, @BeginTask or @StartTask annotation:

@Begin(pageflow="numberguess")
public void begin() { ... }

Alternatively we can start a pageflow using pages.xml:

<page>
<begin-conversation pageflow="numberguess"/>

</page>

If we are beginning the pageflow during the RENDER_RESPONSE phase—during a @Factory or
@Create method, for example—we consider ourselves to be already at the page being
rendered, and use a <start-page> node as the first node in the pageflow, as in the example
above.

But if the pageflow is begun as the result of an action listener invocation, the outcome of the
action listener determines which is the first page to be rendered. In this case, we use a
<start-state> as the first node in the pageflow, and declare a transition for each possible
outcome:

<pageflow-definition name="viewEditDocument">

Chapter 7. Pageflows and business processes

124

<start-state name="start">
<transition name="documentFound" to="displayDocument"/>
<transition name="documentNotFound" to="notFound"/>

</start-state>

<page name="displayDocument" view-id="/document.jsp">
<transition name="edit" to="editDocument"/>
<transition name="done" to="main"/>

</page>

...

<page name="notFound" view-id="/404.jsp">
<end-conversation/>

</page>

</pageflow-definition>

2.3. Page nodes and transitions

Each <page> node represents a state where the system is waiting for user input:

<page name="displayGuess" view-id="/numberGuess.jsp">
<redirect/>
<transition name="guess" to="evaluateGuess">

<action expression="#{numberGuess.guess}" />
</transition>

</page>

The view-id is the JSF view id. The <redirect/> element has the same effect as
<redirect/> in a JSF navigation rule: namely, a post-then-redirect behavior, to overcome
problems with the browser's refresh button. (Note that Seam propagates conversation contexts
over these browser redirects. So there is no need for a Ruby on Rails style "flash" construct in
Seam!)

The transition name is the name of a JSF outcome triggered by clicking a command button or
command link in numberGuess.jsp.

<h:commandButton type="submit" value="Guess" action="guess"/>

When the transition is triggered by clicking this button, jBPM will activate the transition action by
calling the guess() method of the numberGuess component. Notice that the syntax used for
specifying actions in the jPDL is just a familiar JSF EL expression, and that the transition action
handler is just a method of a Seam component in the current Seam contexts. So we have
exactly the same event model for jBPM events that we already have for JSF events! (The One
Kind of Stuff principle.)

Page nodes and transitions

125

In the case of a null outcome (for example, a command button with no action defined), Seam
will signal the transition with no name if one exists, or else simply redisplay the page if all
transitions have names. So we could slightly simplify our example pageflow and this button:

<h:commandButton type="submit" value="Guess"/>

Would fire the following un-named transition:

<page name="displayGuess" view-id="/numberGuess.jsp">
<redirect/>
<transition to="evaluateGuess">

<action expression="#{numberGuess.guess}" />
</transition>

</page>

It is even possible to have the button call an action method, in which case the action outcome
will determine the transition to be taken:

<h:commandButton type="submit" value="Guess" action="#{numberGuess.guess}"/>

<page name="displayGuess" view-id="/numberGuess.jsp">
<transition name="correctGuess" to="win"/>
<transition name="incorrectGuess" to="evaluateGuess"/>

</page>

However, this is considered an inferior style, since it moves responsibility for controlling the flow
out of the pageflow definition and back into the other components. It is much better to centralize
this concern in the pageflow itself.

2.4. Controlling the flow

Usually, we don't need the more powerful features of jPDL when defining pageflows. We do
need the <decision> node, however:

<decision name="evaluateGuess" expression="#{numberGuess.correctGuess}">
<transition name="true" to="win"/>
<transition name="false" to="evaluateRemainingGuesses"/>

</decision>

A decision is made by evaluating a JSF EL expression in the Seam contexts.

2.5. Ending the flow

We end the conversation using <end-conversation> or @End. (In fact, for readability, use of
both is encouraged.)

Chapter 7. Pageflows and business processes

126

<page name="win" view-id="/win.jsp">
<redirect/>
<end-conversation/>

</page>

Optionally, we can end a task, specify a jBPM transition name. In this case, Seam will signal
the end of the current task in the overarching business process.

<page name="win" view-id="/win.jsp">
<redirect/>
<end-task transition="success"/>

</page>

3. Business process management in Seam

A business process is a well-defined set of tasks that must be performed by users or software
systems according to well-defined rules about who can perform a task, and when it should be
performed. Seam's jBPM integration makes it easy to display lists of tasks to users and let them
manage their tasks. Seam also lets the application store state associated with the business
process in the BUSINESS_PROCESS context, and have that state made persistent via jBPM
variables.

A simple business process definition looks much the same as a page flow definition (One Kind
of Stuff), except that instead of <page> nodes, we have <task-node> nodes. In a long-running
business process, the wait states are where the system is waiting for some user to log in and
perform a task.

<process-definition name="todo">

<start-state name="start">
<transition to="todo"/>

</start-state>

<task-node name="todo">
<task name="todo" description="#{todoList.description}">

<assignment actor-id="#{actor.id}"/>
</task>
<transition to="done"/>

</task-node>

<end-state name="done"/>

</process-definition>

Business process management in Seam

127

It is perfectly possible that we might have both jPDL business process definitions and jPDL
pageflow definitions in the same project. If so, the relationship between the two is that a single
<task> in a business process corresponds to a whole pageflow <pageflow-definition>

4. Using jPDL business process definitions

4.1. Installing process definitions

We need to install jBPM, and tell it where to find the business process definitions:

<core:jbpm>
<core:process-definitions>

<value>todo.jpdl.xml</value>
</core:process-definitions>

</core:jbpm>

4.2. Initializing actor ids

We always need to know what user is currently logged in. jBPM "knows" users by their actor id
and group actor ids. We specify the current actor ids using the built in Seam component named
actor:

@In Actor actor;

public String login() {
...
actor.setId(user.getUserName());
actor.getGroupActorIds().addAll(user.getGroupNames());
...

}

Chapter 7. Pageflows and business processes

128

4.3. Initiating a business process

To initiate a business process instance, we use the @CreateProcess annotation:

@CreateProcess(definition="todo")
public void createTodo() { ... }

Alternatively we can initiate a business process using pages.xml:

<page>
<create-process definition="todo" />

</page>

4.4. Task assignment

When a process starts, task instances are created. These must be assigned to users or user
groups. We can either hardcode our actor ids, or delegate to a Seam component:

<task name="todo" description="#{todoList.description}">
<assignment actor-id="#{actor.id}"/>

</task>

In this case, we have simply assigned the task to the current user. We can also assign tasks to
a pool:

<task name="todo" description="#{todoList.description}">
<assignment pooled-actors="employees"/>

</task>

4.5. Task lists

Several built-in Seam components make it easy to display task lists. The
pooledTaskInstanceList is a list of pooled tasks that users may assign to themselves:

<h:dataTable value="#{pooledTaskInstanceList}" var="task">
<h:column>

<f:facet name="header">Description</f:facet>
<h:outputText value="#{task.description}"/>

</h:column>
<h:column>

<s:link action="#{pooledTask.assignToCurrentActor}" value="Assign"
taskInstance="#{task}"/>

</h:column>
</h:dataTable>

Note that instead of <s:link> we could have used a plain JSF <h:commandLink>:

Task assignment

129

<h:commandLink action="#{pooledTask.assignToCurrentActor}">
<f:param name="taskId" value="#{task.id}"/>

</h:commandLink>

The pooledTask component is a built-in component that simply assigns the task to the current
user.

The taskInstanceListForType component includes tasks of a particular type that are
assigned to the current user:

<h:dataTable value="#{taskInstanceListForType['todo']}" var="task">
<h:column>

<f:facet name="header">Description</f:facet>
<h:outputText value="#{task.description}"/>

</h:column>
<h:column>

<s:link action="#{todoList.start}" value="Start Work"
taskInstance="#{task}"/>

</h:column>
</h:dataTable>

4.6. Performing a task

To begin work on a task, we use either @StartTask or @BeginTask on the listener method:

@StartTask
public String start() { ... }

Alternatively we can begin work on a task using pages.xml:

<page>
<start-task />

</page>

These annotations begin a special kind of conversation that has significance in terms of the
overarching business process. Work done by this conversation has access to state held in the
business process context.

If we end the conversation using @EndTask, Seam will signal the completion of the task:

@EndTask(transition="completed")
public String completed() { ... }

Alternatively we can use pages.xml:

<page>

Chapter 7. Pageflows and business processes

130

<end-task transition="completed" />
</page>

(Alternatively, we could have used <end-conversation> as shown above.)

At this point, jBPM takes over and continues executing the business process definition. (In more
complex processes, several tasks might need to be completed before process execution can
resume.)

Please refer to the jBPM documentation for a more thorough overview of the sophisticated
features that jBPM provides for managing complex business processes.

Performing a task

131

132

Seam and Object/Relational Mapping
Seam provides extensive support for the two most popular persistence architectures for Java:
Hibernate3, and the Java Persistence API introduced with EJB 3.0. Seam's unique
state-management architecture allows the most sophisticated ORM integration of any web
application framework.

1. Introduction

Seam grew out of the frustration of the Hibernate team with the statelessness typical of the
previous generation of Java application architectures. The state management architecture of
Seam was originally designed to solve problems relating to persistence—in particular problems
associated with optimistic transaction processing. Scalable online applications always use
optimistic transactions. An atomic (database/JTA) level transaction should not span a user
interaction unless the application is designed to support only a very small number of concurrent
clients. But almost all interesting work involves first displaying data to a user, and then, slightly
later, updating the same data. So Hibernate was designed to support the idea of a persistence
context which spanned an optimistic transaction.

Unfortunately, the so-called "stateless" architectures that preceded Seam and EJB 3.0 had no
construct for representing an optimistic transaction. So, instead, these architectures provided
persistence contexts scoped to the atomic transaction. Of course, this resulted in many
problems for users, and is the cause of the number one user complaint about Hibernate: the
dreaded LazyInitializationException. What we need is a construct for representing an
optimistic transaction in the application tier.

EJB 3.0 recognizes this problem, and introduces the idea of a stateful component (a stateful
session bean) with an extended persistence context scoped to the lifetime of the component.
This is a partial solution to the problem (and is a useful construct in and of itself) however there
are two problems:

• The lifecycle of the stateful session bean must be managed manually via code in the web tier
(it turns out that this is a subtle problem and much more difficult in practice than it sounds).

• Propagation of the persistence context between stateful components in the same optimistic
transaction is possible, but tricky.

Seam solves the first problem by providing conversations, and stateful session bean
components scoped to the conversation. (Most conversations actually represent optimistic
transactions in the data layer.) This is sufficient for many simple applications (such as the Seam
booking demo) where persistence context propagation is not needed. For more complex
applications, with many loosly-interacting components in each conversation, propagation of the
persistence context across components becomes an important issue. So Seam extends the
persistence context management model of EJB 3.0, to provide conversation-scoped extended
persistence contexts.

Chapter 8.

133

2. Seam managed transactions

EJB session beans feature declarative transaction management. The EJB container is able to
start a transaction transparently when the bean is invoked, and end it when the invocation ends.
If we write a session bean method that acts as a JSF action listener, we can do all the work
associated with that action in one transaction, and be sure that it is committed or rolled back
when we finish processing the action. This is a great feature, and all that is needed by some
Seam applications.

However, there is a problem with this approach. A Seam application may not perform all data
access for a request from a single method call to a session bean.

• The request might require processing by several loosly-coupled components, each of which is
called independently from the web layer. It is common to see several or even many calls per
request from the web layer to EJB components in Seam.

• Rendering of the view might require lazy fetching of associations.

The more transactions per request, the more likely we are to encounter atomicity and isolation
problems when our application is processing many concurrent requests. Certainly, all write
operations should occur in the same transaction!

Hibernate users developed the "open session in view" pattern to work around this problem. In
the Hibernate community, "open session in view" was historically even more important because
frameworks like Spring use transaction-scoped persistence contexts. So rendering the view
would cause LazyInitializationExceptions when unfetched associations were accessed.

This pattern is usually implemented as a single transaction which spans the entire request.
There are several problems with this implementation, the most serious being that we can never
be sure that a transaction is successful until we commit it—but by the time the "open session in
view" transaction is committed, the view is fully rendered, and the rendered response may
already have been flushed to the client. How can we notify the user that their transaction was
unsuccessful?

Seam solves both the transaction isolation problem and the association fetching problem, while
working around the problems with "open session in view". The solution comes in two parts:

• use an extended persistence context that is scoped to the conversation, instead of to the
transaction

• use two transactions per request; the first spans the beginning of the update model values
phase until the end of the invoke application phase; the second spans the render response
phase

In the next section, we'll tell you how to set up a conversation-scope persistence context. But
first we need to tell you how to enable Seam transaction management. Note that you can use

Chapter 8. Seam and Object/Relational Mapping

134

conversation-scoped persistence contexts without Seam transaction management, and there
are good reasons to use Seam transaction management even when you're not using
Seam-managed persistence contexts. However, the two facilities were designed to work
together, and work best when used together.

2.1. Enabling Seam-managed transactions

To make use of Seam managed transactions, you need to use
TransactionalSeamPhaseListener in place of SeamPhaseListener.

<lifecycle>
<phase-listener>

org.jboss.seam.jsf.TransactionalSeamPhaseListener
</phase-listener>

</lifecycle>

Seam transaction management is useful even if you're using EJB 3.0 container-managed
persistence contexts. But it is especially useful if you use Seam outside a Java EE 5
environment, or in any other case where you would use a Seam-managed persistence context.

3. Seam-managed persistence contexts

If you're using Seam outside of a Java EE 5 environment, you can't rely upon the container to
manage the persistence context lifecycle for you. Even if you are in an EE 5 environment, you
might have a complex application with many loosly coupled components that collaborate
together in the scope of a single conversation, and in this case you might find that propagation
of the persistence context between component is tricky and error-prone.

In either case, you'll need to use a managed persistence context (for JPA) or a managed
session (for Hibernate) in your components. A Seam-managed persistence context is just a
built-in Seam component that manages an instance of EntityManager or Session in the
conversation context. You can inject it with @In.

Seam-managed persistence contexts are extremely efficient in a clustered environment. Seam
is able to perform an optimization that EJB 3.0 specification does not allow containers to use for
container-managed extended persistence contexts. Seam supports transparent failover of
extended persisence contexts, without the need to replicate any persistence context state
between nodes. (We hope to fix this oversight in the next revision of the EJB spec.)

3.1. Using a Seam-managed persistence context with JPA

Configuring a managed persistence context is easy. In components.xml, we can write:

<core:managed-persistence-context name="bookingDatabase"
auto-create="true"

persistence-unit-jndi-name="java:/EntityManagerFactories/bookingData"/>

Enabling Seam-managed transactions

135

This configuration creates a conversation-scoped Seam component named bookingDatabase

that manages the lifecycle of EntityManager instances for the persistence unit
(EntityManagerFactory instance) with JNDI name
java:/EntityManagerFactories/bookingData.

Of course, you need to make sure that you have bound the EntityManagerFactory into JNDI.
In JBoss, you can do this by adding the following property setting to persistence.xml.

<property name="jboss.entity.manager.factory.jndi.name"
value="java:/EntityManagerFactories/bookingData"/>

Now we can have our EntityManager injected using:

@In EntityManager bookingDatabase;

3.2. Using a Seam-managed Hibernate session

Seam-managed Hibernate sessions are similar. In components.xml:

<core:hibernate-session-factory name="hibernateSessionFactory"/>

<core:managed-hibernate-session name="bookingDatabase"
auto-create="true"

session-factory-jndi-name="java:/bookingSessionFactory"/>

Where java:/bookingSessionFactory is the name of the session factory specified in
hibernate.cfg.xml.

<session-factory name="java:/bookingSessionFactory">
<property name="transaction.flush_before_completion">true</property>
<property name="connection.release_mode">after_statement</property>
<property name="transaction.manager_lookup_class">

org.hibernate.transaction.JBossTransactionManagerLookup
</property>
<property name="transaction.factory_class">

org.hibernate.transaction.JTATransactionFactory
</property>
<property

name="connection.datasource">java:/bookingDatasource</property>
...

</session-factory>

Note that Seam does not flush the session, so you should always enable
hibernate.transaction.flush_before_completion to ensure that the session is
automatically flushed before the JTA transaction commits.

We can now have a managed Hibernate Session injected into our JavaBean components using

Chapter 8. Seam and Object/Relational Mapping

136

the following code:

@In Session bookingDatabase;

3.3. Seam-managed persistence contexts and atomic
conversations

Persistence contexts scoped to the conversation allows you to program optimistic transactions
that span multiple requests to the server without the need to use the merge() operation ,
without the need to re-load data at the beginning of each request, and without the need to
wrestle with the LazyInitializationException or NonUniqueObjectException.

As with any optimistic transaction management, transaction isolation and consistency can be
achieved via use of optimistic locking. Fortunately, both Hibernate and EJB 3.0 make it very
easy to use optimistic locking, by providing the @Version annotation.

By default, the persistence context is flushed (synchronized with the database) at the end of
each transaction. This is sometimes the desired behavior. But very often, we would prefer that
all changes are held in memory and only written to the database when the conversation ends
successfully. This allows for truly atomic conversations. As the result of a truly stupid and
shortsighted decision by certain non-JBoss, non-Sun and non-Sybase members of the EJB 3.0
expert group, there is currently no simple, usable and portable way to implement atomic
conversations using EJB 3.0 persistence. However, Hibernate provides this feature as a vendor
extension to the FlushModeTypes defined by the specification, and it is our expectation that
other vendors will soon provide a similar extension.

Seam lets you specify FlushModeType.MANUAL when beginning a conversation. Currently, this
works only when Hibernate is the underlying persistence provider, but we plan to support other
equivalent vendor extensions.

@In EntityManager em; //a Seam-managed persistence context

@Begin(flushMode=MANUAL)
public void beginClaimWizard() {

claim = em.find(Claim.class, claimId);
}

Now, the claim object remains managed by the persistence context for the rest ot the
conversation. We can make changes to the claim:

public void addPartyToClaim() {
Party party =;
claim.addParty(party);

}

But these changes will not be flushed to the database until we explicitly force the flush to occur:

Seam-managed persistence contexts and

137

@End
public void commitClaim() {

em.flush();
}

4. Using the JPA "delegate"

The EntityManager interface lets you access a vendor-specific API via the getDelegate()

method. Naturally, the most interesting vendor is Hibernate, and the most powerful delegate
interface is org.hibernate.Session. You'd be nuts to use anything else. Trust me, I'm not
biased at all.

But regardless of whether you're using Hibernate (genius!) or something else (masochist, or just
not very bright), you'll almost certainly want to use the delegate in your Seam components from
time to time. One approach would be the following:

@In EntityManager entityManager;

@Create
public void init() {

((Session) entityManager.getDelegate()
).enableFilter("currentVersions");
}

But typecasts are unquestionably the ugliest syntax in the Java language, so most people avoid
them whenever possible. Here's a different way to get at the delegate. First, add the following
line to components.xml:

<factory name="session"
scope="STATELESS"
auto-create="true"
value="#{entityManager.delegate}"/>

Now we can inject the session directly:

@In Session session;

@Create
public void init() {

session.enableFilter("currentVersions");
}

5. Using EL in EJB-QL/HQL

Seam proxies the EntityManager or Session object whenever you use a Seam-managed
persistence context or inject a container managed persistence context using

Chapter 8. Seam and Object/Relational Mapping

138

@PersistenceContext. This lets you use EL expressions in your query strings, safely and
efficiently. For example, this:

User user = em.createQuery("from User where username=#{user.username}")
.getSingleResult();

is equivalent to:

User user = em.createQuery("from User where username=:username")
.setParameter("username", user.getUsername())
.getSingleResult();

Of course, you should never, ever write it like this:

User user = em.createQuery("from User where username=" + user.getUsername())
//BAD!

.getSingleResult();

(It is inefficient and vulnerable to SQL injection attacks.)

6. Using Hibernate filters

The coolest, and most unique, feature of Hibernate is filters. Filters let you provide a restricted
view of the data in the database. You can find out more about filters in the Hibernate
documentation. But we thought we'd mention an easy way to incorporate filters into a Seam
application, one that works especially well with the Seam Application Framework.

Seam-managed persistence contexts may have a list of filters defined, which will be enabled
whenever an EntityManager or Hibernate Session is first created. (Of course, they may only
be used when Hibernate is the underlying persistence provider.)

<core:filter name="regionFilter">
<core:name>region</core:name>
<core:parameters>

<key>regionCode</key>
<value>#{region.code}</value>

</core:parameters>
</core:filter>

<core:filter name="currentFilter">
<core:name>current</core:name>
<core:parameters>

<key>date</key>
<value>#{currentDate}</value>

</core:parameters>
</core:filter>

<core:managed-persistence-context name="personDatabase"
persistence-unit-jndi-name="java:/EntityManagerFactories/personDatabase">

<core:filters>

atomic conversations

139

<value>#{regionFilter}</value>
<value>#{currentFilter}</value>

</core:filters>
</core:managed-persistence-context>

Chapter 8. Seam and Object/Relational Mapping

140

JSF form validation in Seam
In plain JSF, validation is defined in the view:

<h:form>
<h:messages/>

<div>
Country:
<h:inputText value="#{location.country}" required="true">

<my:validateCountry/>
</h:inputText>

</div>

<div>
Zip code:
<h:inputText value="#{location.zip}" required="true">

<my:validateZip/>
</h:inputText>

</div>

<h:commandButton/>
</h:form>

In practice, this approach usually violates DRY, since most "validation" actually enforces
constraints that are part of the data model, and exist all the way down to the database schema
definition. Seam provides support for model-based constraints defined using Hibernate
Validator.

Let's start by defining our constraints, on our Location class:

public class Location {
private String country;
private String zip;

@NotNull
@Length(max=30)
public String getCountry() { return country; }
public void setCountry(String c) { country = c; }

@NotNull
@Length(max=6)
@Pattern("^\d*$")
public String getZip() { return zip; }
public void setZip(String z) { zip = z; }

}

Well, that's a decent first cut, but in practice it might be more elegant to use custom constraints
instead of the ones built into Hibernate Validator:

public class Location {

Chapter 9.

141

private String country;
private String zip;

@NotNull
@Country
public String getCountry() { return country; }
public void setCountry(String c) { country = c; }

@NotNull
@ZipCode
public String getZip() { return zip; }
public void setZip(String z) { zip = z; }

}

Whichever route we take, we no longer need to specify the type of validation to be used in the
JSF page. Instead, we can use <s:validate> to validate against the constraint defined on the
model object.

<h:form>
<h:messages/>

<div>
Country:
<h:inputText value="#{location.country}" required="true">

<s:validate/>
</h:inputText>

</div>

<div>
Zip code:
<h:inputText value="#{location.zip}" required="true">

<s:validate/>
</h:inputText>

</div>

<h:commandButton/>

</h:form>

Note: specifying @NotNull on the model does not eliminate the requirement for
required="true" to appear on the control! This is due to a limitation of the JSF validation
architecture.

This approach defines constraints on the model, and presents constraint violations in the
view—a significantly better design.

However, it is not much less verbose than what we started with, so let's try <s:validateAll>:

<h:form>

<h:messages/>

Chapter 9. JSF form validation in Seam

142

<s:validateAll>

<div>
Country:
<h:inputText value="#{location.country}" required="true"/>

</div>

<div>
Zip code:
<h:inputText value="#{location.zip}" required="true"/>

</div>

<h:commandButton/>

</s:validateAll>

</h:form>

This tag simply adds an <s:validate> to every input in the form. For a large form, it can save a
lot of typing!

Now we need to do something about displaying feedback to the user when validation fails.
Currently we are displaying all messages at the top of the form. What we would really like to do
is display the message next to the field with the error (this is possible in plain JSF), highlight the
field and label (this is not possible) and, for good measure, display some image next the the
field (also not possible). We also want to display a little colored asterisk next to the label for
each required form field.

That's quite a lot of functionality we need for each field of our form. We wouldn't want to have to
specify higlighting and the layout of the image, message and input field for every field on the
form. So, instead, we'll specify the common layout in a facelets template:

<ui:composition xmlns="http://www.w3.org/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:s="http://jboss.com/products/seam/taglib">

<div>

<s:label styleClass="#{invalid?'error':''}">
<ui:insert name="label"/>
<s:span styleClass="required" rendered="#{required}">*</s:span>

</s:label>

<h:graphicImage src="img/error.gif" rendered="#{invalid}"/>
<s:validateAll>

<ui:insert/>
</s:validateAll>

<s:message styleClass="error"/>

143

</div>

</ui:composition>

We can include this template for each of our form fields using <s:decorate>.

<h:form>

<h:messages globalOnly="true"/>

<s:decorate template="edit.xhtml">
<ui:define name="label">Country:</ui:define>
<h:inputText value="#{location.country}" required="true"/>

</s:decorate>

<s:decorate template="edit.xhtml">
<ui:define name="label">Zip code:</ui:define>
<h:inputText value="#{location.zip}" required="true"/>

</s:decorate>

<h:commandButton/>

</h:form>

Finally, we can use Ajax4JSF to display validation messages as the user is navigating around
the form:

<h:form>

<h:messages globalOnly="true"/>

<s:decorate id="countryDecoration" template="edit.xhtml">
<ui:define name="label">Country:</ui:define>
<h:inputText value="#{location.country}" required="true">

<a:support event="onblur" reRender="countryDecoration"/>
</h:inputText>

</s:decorate>

<s:decorate id="zipDecoration" template="edit.xhtml">
<ui:define name="label">Zip code:</ui:define>
<h:inputText value="#{location.zip}" required="true">

<a:support event="onblur" reRender="zipDecoration"/>
</h:inputText>

</s:decorate>

<h:commandButton/>

</h:form>

As a final note, it's better style to define explicit ids for important controls on the page, especially

Chapter 9. JSF form validation in Seam

144

if you want to do automated testing for the UI, using some toolkit like Selenium. If you don't
provide explicit ids, JSF will generate them, but the generated values will change if you change
anything on the page.

<h:form id="form">

<h:messages globalOnly="true"/>

<s:decorate id="countryDecoration" template="edit.xhtml">
<ui:define name="label">Country:</ui:define>
<h:inputText id="country" value="#{location.country}"

required="true">
<a:support event="onblur" reRender="countryDecoration"/>

</h:inputText>
</s:decorate>

<s:decorate id="zipDecoration" template="edit.xhtml">
<ui:define name="label">Zip code:</ui:define>
<h:inputText id="zip" value="#{location.zip}" required="true">

<a:support event="onblur" reRender="zipDecoration"/>
</h:inputText>

</s:decorate>

<h:commandButton/>

</h:form>

145

146

The Seam Application Framework
Seam makes it really easy to create applications by writing plain Java classes with annotations,
which don't need to extend any special interfaces or superclasses. But we can simplify some
common programming tasks even further, by providing a set of pre-built components which can
be re-used either by configuration in components.xml (for very simple cases) or extension.

The Seam Application Framework can reduce the amount of code you need to write when doing
basic database access in a web application, using either Hibernate or JPA.

We should emphasize that the framework is extremely simple, just a handful of simple classes
that are easy to understand and extend. The "magic" is in Seam itself—the same magic you use
when creating any Seam application even without using this framework.

1. Introduction

The components provided by the Seam application framework may be used in one of two
different approaches. The first way is to install and configure an instance of the component in
components.xml, just like we have done with other kinds of built-in Seam components. For
example, the following fragment from components.xml installs a component which can perform
basic CRUD operations for a Contact entity:

<framework:entity-home name="personHome"
entity-class="eg.Person"
entity-manager="#{personDatabase}">

<framework:id>#{param.personId}</framework:id>
</framework:entity-home>

If that looks a bit too much like "programming in XML" for your taste, you can use extension
instead:

@Stateful
@Name("personHome")
public class PersonHome extends EntityHome<Person> implements
LocalPersonHome {

@RequestParameter String personId;
@In EntityManager personDatabase;

public Object getId() { return personId; }
public EntityManager getEntityManager() { return personDatabase; }

}

The second approach has one huge advantage: you can easily add extra functionality, and
override the built-in functionality (the framework classes were carefully designed for extension
and customization).

A second advantage is that your classes may be EJB stateful sessin beans, if you like. (They do

Chapter 10.

147

not have to be, they can be plain JavaBean components if you prefer.)

At this time, the Seam Application Framework provides just four built-in components:
EntityHome and HibernateEntityHome for CRUD, along with EntityQuery and
HibernateEntityQuery for queries.

The Home and Query components are written so that they can function with a scope of session,
event or conversation. Which scope you use depends upon the state model you wish to use in
your application.

The Seam Application Framework only works with Seam-managed persistence contexts. By
default, the components will look for a persistence context named entityManager.

2. Home objects

A Home object provides persistence operations for a particular entity class. Suppose we have
our trusty Person class:

@Entity
public class Person {

@Id private Long id;
private String firstName;
private String lastName;
private Country nationality;

//getters and setters...
}

We can define a personHome component either via configuration:

<framework:entity-home name="personHome" entity-class="eg.Person" />

Or via extension:

@Name("personHome")
public class PersonHome extends EntityHome<Person> {}

A Home object provides the following operations: persist(), remove(), update() and
getInstance(). Before you can call the remove(), or update() operations, you must first set
the identifier of the object you are interested in, using the setId() method.

We can use a Home directly from a JSF page, for example:

<h1>Create Person</h1>
<h:form>

<div>First name: <h:inputText
value="#{personHome.instance.firstName}"/></div>

<div>Last name: <h:inputText

Chapter 10. The Seam Application Framework

148

value="#{personHome.instance.lastName}"/></div>
<div>

<h:commandButton value="Create Person"
action="#{personHome.persist}"/>

</div>
</h:form>

Usually, it is much nicer to be able to refer to the Person merely as person, so let's make that
possible by adding a line to components.xml:

<factory name="person"
value="#{personHome.instance}"/>

<framework:entity-home name="personHome"
entity-class="eg.Person" />

(If we are using configuration.) Or by adding a @Factory method to PersonHome:

@Name("personHome")
public class PersonHome extends EntityHome<Person> {

@Factory("person")
public Person initPerson() { return getInstance(); }

}

(If we are using extension.) This change simplifies our JSF page to the following:

<h1>Create Person</h1>
<h:form>

<div>First name: <h:inputText value="#{person.firstName}"/></div>
<div>Last name: <h:inputText value="#{person.lastName}"/></div>
<div>

<h:commandButton value="Create Person"
action="#{personHome.persist}"/>

</div>
</h:form>

Well, that lets us create new Person entries. Yes, that is all the code that is required! Now, if we
want to be able to display, update and delete pre-existing Person entries in the database, we
need to be able to pass the entry identifier to the PersonHome. Page parameters are a great way
to do that:

<pages>
<page view-id="/editPerson.jsp">

<param name="personId" value="#{personHome.id}"/>
</page>

</pages>

Home objects

149

Now we can add the extra operations to our JSF page:

<h1>
<h:outputText rendered="#{!personHome.managed}" value="Create Person"/>
<h:outputText rendered="#{personHome.managed}" value="Edit Person"/>

</h1>
<h:form>

<div>First name: <h:inputText value="#{person.firstName}"/></div>
<div>Last name: <h:inputText value="#{person.lastName}"/></div>
<div>

<h:commandButton value="Create Person"
action="#{personHome.persist}"

rendered="#{!personHome.managed}"/>
<h:commandButton value="Update Person" action="#{personHome.update}"

rendered="#{personHome.managed}"/>
<h:commandButton value="Delete Person" action="#{personHome.remove}"

rendered="#{personHome.managed}"/>
</div>

</h:form>

When we link to the page with no request parameters, the page will be displayed as a "Create
Person" page. When we provide a value for the personId request parameter, it will be an "Edit
Person" page.

Suppose we need to create Person entries with their nationality initialized. We can do that
easily, via configuration:

<factory name="person"
value="#{personHome.instance}"/>

<framework:entity-home name="personHome"
entity-class="eg.Person"
new-instance="#{newPerson}"/>

<component name="newPerson"
class="eg.Person">

<property name="nationality">#{country}</property>
</component>

Or by extension:

@Name("personHome")
public class PersonHome extends EntityHome<Person> {

@In Country country;

@Factory("person")
public Person initPerson() { return getInstance(); }

protected Person createInstance() {
return new Person(country);

}

Chapter 10. The Seam Application Framework

150

}

Of course, the Country could be an object managed by another Home object, for example,
CountryHome.

To add more sophisticated operations (association management, etc), we can just add methods
to PersonHome.

@Name("personHome")
public class PersonHome extends EntityHome<Person> {

@In Country country;

@Factory("person")
public Person initPerson() { return getInstance(); }

protected Person createInstance() {
return new Person(country);

}

public void migrate()
{

getInstance().setCountry(country);
update();

}

}

The Home object automatically displays faces messages when an operation is successful. To
customize these messages we can, again, use configuration:

<factory name="person"
value="#{personHome.instance}"/>

<framework:entity-home name="personHome"
entity-class="eg.Person"
new-instance="#{newPerson}">

<framework:created-message>New person #{person.firstName}
#{person.lastName} created</framework:created-message>

<framework:deleted-message>Person #{person.firstName} #{person.lastName}
deleted</framework:deleted-message>

<framework:updated-message>Person #{person.firstName} #{person.lastName}
updated</framework:updated-message>
</framework:entity-home>

<component name="newPerson"
class="eg.Person">

<property name="nationality">#{country}</property>
</component>

Home objects

151

Or extension:

@Name("personHome")
public class PersonHome extends EntityHome<Person> {

@In Country country;

@Factory("person")
public Person initPerson() { return getInstance(); }

protected Person createInstance() {
return new Person(country);

}

protected String getCreatedMessage() { return "New person
#{person.firstName}

#{person.lastName} created"; }
protected String getUpdatedMessage() { return "Person

#{person.firstName}
#{person.lastName} updated"; }

protected String getDeletedMessage() { return "Person
#{person.firstName}

#{person.lastName} deleted"; }

}

But the best way to specify the messages is to put them in a resource bundle known to Seam
(the bundle named messages, by default).

Person_created=New person #{person.firstName} #{person.lastName} created
Person_deleted=Person #{person.firstName} #{person.lastName} deleted
Person_updated=Person #{person.firstName} #{person.lastName} updated

This enables internationalization, and keeps your code and configuration clean of presentation
concerns.

The final step is to add validation functionality to the page, using <s:validateAll> and
<s:decorate>, but I'll leave that for you to figure out.

3. Query objects

If we need a list of all Person instance in the database, we can use a Query object. For
example:

<framework:entity-query name="people"
ejbql="select p from Person p"/>

We can use it from a JSF page:

Chapter 10. The Seam Application Framework

152

<h1>List of people</h1>
<h:dataTable value="#{people.resultList}" var="person">

<h:column>
<s:link view="/editPerson.jsp" value="#{person.firstName}

#{person.lastName}">
<f:param name="personId" value="#{person.id}"/>

</s:link>
</h:column>

</h:dataTable>

We probably need to support pagination:

<framework:entity-query name="people"
ejbql="select p from Person p"
order="lastName"
max-results="20"/>

We'll use a page parameter to determine the page to display:

<pages>
<page view-id="/searchPerson.jsp">

<param name="firstResult" value="#{people.firstResult}"/>
</page>

</pages>

The JSF code for a pagination control is a bit verbose, but manageable:

<h1>Search for people</h1>
<h:dataTable value="#{people.resultList}" var="person">

<h:column>
<s:link view="/editPerson.jsp" value="#{person.firstName}

#{person.lastName}">
<f:param name="personId" value="#{person.id}"/>

</s:link>
</h:column>

</h:dataTable>

<s:link view="/search.xhtml" rendered="#{people.previousExists}"
value="First Page">

<f:param name="firstResult" value="0"/>
</s:link>

<s:link view="/search.xhtml" rendered="#{people.previousExists}"
value="Previous Page">

<f:param name="firstResult" value="#{people.previousFirstResult}"/>
</s:link>

<s:link view="/search.xhtml" rendered="#{people.nextExists}" value="Next
Page">

<f:param name="firstResult" value="#{people.nextFirstResult}"/>
</s:link>

Query objects

153

<s:link view="/search.xhtml" rendered="#{people.nextExists}" value="Last
Page">

<f:param name="firstResult" value="#{people.lastFirstResult}"/>
</s:link>

Real search screens let the user enter a bunch of optional search criteria to narrow the list of
results returned. The Query object lets you specify optional "restrictions" to support this
important usecase:

<component name="examplePerson" class="Person"/>

<framework:entity-query name="people"
ejbql="select p from Person p"
order="lastName"
max-results="20">

<framework:restrictions>
<value>lower(firstName) like lower(#{examplePerson.firstName} + '%'

)</value>
<value>lower(lastName) like lower(#{examplePerson.lastName} + '%'

)</value>
</framework:restrictions>

</framework:entity-query>

Notice the use of an "example" object.

<h1>Search for people</h1>
<h:form>

<div>First name: <h:inputText value="#{examplePerson.firstName}"/></div>
<div>Last name: <h:inputText value="#{examplePerson.lastName}"/></div>
<div><h:commandButton value="Search" action="/search.jsp"/></div>

</h:form>

<h:dataTable value="#{people.resultList}" var="person">
<h:column>

<s:link view="/editPerson.jsp" value="#{person.firstName}
#{person.lastName}">

<f:param name="personId" value="#{person.id}"/>
</s:link>

</h:column>
</h:dataTable>

The examples in this section have all shown reuse by configuration. However, reuse by
extension is equally possible for Query objects.

4. Controller objects

A totally optional part of the Seam Application Framework is the class Controller and its
subclasses EntityControllerHibernateEntityController and
BusinessProcessController. These classes provide nothing more than some convenience

Chapter 10. The Seam Application Framework

154

methods for access to commonly used built-in components and methods of built-in components.
They help save a few keystrokes (characters can add up!) and provide a great launchpad for
new users to explore the rich functionality built in to Seam.

For example, here is what RegisterAction from the Seam registration example would look like:

@Stateless
@Name("register")
public class RegisterAction extends EntityController implements Register
{

@In private User user;

public String register()
{

List existing = createQuery("select u.username from User u where
u.username=:username")

.setParameter("username", user.getUsername())

.getResultList();

if (existing.size()==0)
{

persist(user);
info("Registered new user #{user.username}");
return "/registered.jspx";

}
else
{

addFacesMessage("User #{user.username} already exists");
return null;

}
}

}

As you can see, its not an earthshattering improvement...

Controller objects

155

156

Seam and JBoss Rules
Seam makes it easy to call JBoss Rules (Drools) rulebases from Seam components or jBPM
process definitions.

1. Installing rules

The first step is to make an instance of org.drools.RuleBase available in a Seam context
variable. In most rules-driven applications, rules need to be dynamically deployable, so you will
need to implement some solution that allows you to deploy rules and make them available to
Seam (a future release of Drools will provide a Rule Server that solves this problem). For testing
purposes, Seam provides a built-in component that compiles a static set of rules from the
classpath. You can install this component via components.xml:

<drools:rule-base name="policyPricingRules">
<drools:rule-files>

<value>policyPricingRules</value>
</drools:rule-files>

</drools:rule-base>

This component compiles rules from a set of .drl files and caches an instance of
org.drools.RuleBase in the Seam APPLICATION context. Note that it is quite likely that you will
need to install multiple rule bases in a rule-driven application.

If you want to use a Drools DSL, you alse need to specify the DSL definition:

<drools:rule-base name="policyPricingRules" dsl-file="policyPricing.dsl">
<drools:rule-files>

<value>policyPricingRules</value>
</drools:rule-files>

</drools:rule-base>

Next, we need to make an instance of org.drools.WorkingMemory available to each
conversation. (Each WorkingMemory accumulates facts relating to the current conversation.)

<drools:managed-working-memory name="policyPricingWorkingMemory"
auto-create="true" rule-base="#{policyPricingRules}"/>

Notice that we gave the policyPricingWorkingMemory a reference back to our rule base via
the ruleBase configuration property.

2. Using rules from a Seam component

We can now inject our WorkingMemory into any Seam component, assert facts, and fire rules:

@In WorkingMemory policyPricingWorkingMemory;

Chapter 11.

157

@In Policy policy;
@In Customer customer;

public void pricePolicy() throws FactException
{

policyPricingWorkingMemory.assertObject(policy);
policyPricingWorkingMemory.assertObject(customer);
policyPricingWorkingMemory.fireAllRules();

}

3. Using rules from a jBPM process definition

You can even allow a rule base to act as a jBPM action handler, decision handler, or
assignment handler—in either a pageflow or business process definition.

<decision name="approval">

<handler class="org.jboss.seam.drools.DroolsDecisionHandler">
<workingMemoryName>orderApprovalRulesWorkingMemory</workingMemoryName>

<assertObjects>
<element>#{customer}</element>
<element>#{order}</element>
<element>#{order.lineItems}</element>

</assertObjects>
</handler>

<transition name="approved" to="ship">
<action class="org.jboss.seam.drools.DroolsActionHandler">

<workingMemoryName>shippingRulesWorkingMemory</workingMemoryName>
<assertObjects>

<element>#{customer}</element>
<element>#{order}</element>
<element>#{order.lineItems}</element>

</assertObjects>
</action>

</transition>

<transition name="rejected" to="cancelled"/>

</decision>

The <assertObjects> element specifies EL expressions that return an object or collection of
objects to be asserted as facts into the WorkingMemory.

There is also support for using Drools for jBPM task assignments:

<task-node name="review">
<task name="review" description="Review Order">

<assignment handler="org.jboss.seam.drools.DroolsAssignmentHandler">
<workingMemoryName>orderApprovalRulesWorkingMemory</workingMemoryName>

<assertObjects>

Chapter 11. Seam and JBoss Rules

158

<element>#{actor}</element>
<element>#{customer}</element>
<element>#{order}</element>
<element>#{order.lineItems}</element>

</assertObjects>
</assignment>

</task>
<transition name="rejected" to="cancelled"/>
<transition name="approved" to="approved"/>

</task-node>

Certain objects are available to the rules as Drools globals, namely the jBPM Assignable, as
assignable and a Seam Decision object, as decision. Rules which handle decisions should
call decision.setOutcome("result") to determine the result of the decision. Rules which
perform assignments should set the actor id using the Assignable.

package org.jboss.seam.examples.shop

import org.jboss.seam.drools.Decision

global Decision decision

rule "Approve Order For Loyal Customer"
when

Customer(loyaltyStatus == "GOLD")
Order(totalAmount <= 10000)

then
decision.setOutcome("approved");

end

package org.jboss.seam.examples.shop

import org.jbpm.taskmgmt.exe.Assignable

global Assignable assignable

rule "Assign Review For Small Order"
when

Order(totalAmount <= 100)
then

assignable.setPooledActors(new String[] {"reviewers"});
end

Using rules from a jBPM process definition

159

160

Security
The Seam Security API is an optional Seam feature that provides authentication and
authorization features for securing both domain and page resources within your Seam project.

1. Overview

Seam Security provides two different modes of operation:

• simplified mode - this mode supports authentication services and simple role-based security
checks.

• advanced mode - this mode supports all the same features as the simplified mode, plus it
offers rule-based security checks using JBoss Rules.

1.1. Which mode is right for my application?

That all depends on the requirements of your application. If you have minimal security
requirements, for example if you only wish to restrict certain pages and actions to users who are
logged in, or who belong to a certain role, then the simplified mode will probably be sufficient.
The advantages of this is a more simplified configuration, significantly less libraries to include,
and a smaller memory footprint.

If on the other hand, your application requires security checks based on contextual state or
complex business rules, then you will require the features provided by the advanced mode.

2. Requirements

If using the advanced mode features of Seam Security, the following jar files are required to be
configured as modules in application.xml. If you are using Seam Security in simplified mode,
these are not required:

• drools-compiler-3.0.5.jar

• drools-core-3.0.5.jar

• commons-jci-core-1.0-406301.jar

• commons-jci-janino-2.4.3.jar

• commons-lang-2.1.jar

• janino-2.4.3.jar

• stringtemplate-2.3b6.jar

• antlr-2.7.6.jar

Chapter 12.

161

• antlr-3.0ea8.jar

For web-based security, jboss-seam-ui.jar must also be included in the application's war file.
Also, to make use of the security EL functions, SeamFaceletViewHandler must be used.
Configure it in faces-config.xml like this:

<application>
<view-handler>org.jboss.seam.ui.facelet.SeamFaceletViewHandler</view-handler>
</application>

3. Authentication

The authentication features provided by Seam Security are built upon JAAS (Java
Authentication and Authorization Service), and as such provide a robust and highly configurable
API for handling user authentication. However, for less complex authentication requirements
Seam offers a much more simplified method of authentication that hides the complexity of
JAAS.

3.1. Configuration

The simplified authentication method uses a built-in JAAS login module, SeamLoginModule,
which delegates authentication to one of your own Seam components. This login module is
already configured inside Seam as part of a default application policy and as such does not
require any additional configuration files. It allows you to write an authentication method using
the entity classes that are provided by your own application. Configuring this simplified form of
authentication requires the identity component to be configured in components.xml:

<components xmlns="http://jboss.com/products/seam/components"
xmlns:core="http://jboss.com/products/seam/core"
xmlns:security="http://jboss.com/products/seam/security"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation=

"http://jboss.com/products/seam/core
http://jboss.com/products/seam/core-1.2.xsd

http://jboss.com/products/seam/components
http://jboss.com/products/seam/components-1.2.xsd

http://jboss.com/products/seam/drools
http://jboss.com/products/seam/drools-1.2.xsd"

http://jboss.com/products/seam/security
http://jboss.com/products/seam/security-1.2.xsd">

<security:identity authenticate-method="#{authenticator.authenticate}"/>

</components>

If you wish to use the advanced security features such as rule-based permission checks, all you
need to do is include the Drools (JBoss Rules) jars in your classpath, and add some additional
configuration, described later.

Chapter 12. Security

162

The EL expression #{authenticator.authenticate} is a method binding indicating that the
authenticate method of the authenticator component will be used to authenticate the user.

3.2. Writing an authentication method

The authenticate-method property specified for identity in components.xml specifies which
method will be used by SeamLoginModule to authenticate users. This method takes no
parameters, and is expected to return a boolean indicating whether authentication is successful
or not. The user's username and password can be obtained from
Identity.instance().getUsername() and Identity.instance().getPassword(),
respectively. Any roles that the user is a member of should be assigned using
Identity.instance().addRole(). Here's a complete example of an authentication method
inside a JavaBean component:

@Name("authenticator")
public class Authenticator {

@In EntityManager entityManager;

public boolean authenticate() {
try
{

User user = (User) entityManager.createQuery(
"from User where username = :username and password = :password")
.setParameter("username", Identity.instance().getUsername())
.setParameter("password", Identity.instance().getPassword())
.getSingleResult();

if (user.getRoles() != null)
{

for (UserRole mr : user.getRoles())
Identity.instance().addRole(mr.getName());

}

return true;
}
catch (NoResultException ex)
{

FacesMessages.instance().add("Invalid username/password");
return false;

}

}

}

In the above example, both User and UserRole are application-specific entity beans. The roles

parameter is populated with the roles that the user is a member of, which should be added to
the Set as literal string values, e.g. "admin", "user". In this case, if the user record is not found
and a NoResultException thrown, the authentication method returns false to indicate the
authentication failed.

Writing an authentication method

163

3.3. Writing a login form

The Identity component provides both username and password properties, catering for the
most common authentication scenario. These properties can be bound directly to the username
and password fields on a login form. Once these properties are set, calling the
identity.login() method will authenticate the user using the provided credentials. Here's an
example of a simple login form:

<div>
<h:outputLabel for="name" value="Username"/>
<h:inputText id="name" value="#{identity.username}"/>

</div>

<div>
<h:outputLabel for="password" value="Password"/>
<h:inputSecret id="password" value="#{identity.password}"/>

</div>

<div>
<h:commandButton value="Login" action="#{identity.login}"/>

</div>

Similarly, logging out the user is done by calling #{identity.logout}. Calling this action will
clear the security state of the currently authenticated user.

3.4. Simplified Configuration - Summary

So to sum up, there are the three easy steps to configure authentication:

• Configure an authentication method in components.xml.

• Write an authentication method.

• Write a login form so that the user can authenticate.

3.5. Handling Security Exceptions

To prevent users from receiving the default error page in response to a security error, it's
recommended that pages.xml is configured to redirect security errors to a more "pretty" page.
The two main types of exceptions thrown by the security API are:

• NotLoggedInException - This exception is thrown if the user attempts to access a restricted
action or page when they are not logged in.

• AuthorizationException - This exception is only thrown if the user is already logged in, and
they have attempted to access a restricted action or page for which they do not have the
necessary privileges.

Chapter 12. Security

164

In the case of a NotLoggedInException, it is recommended that the user is redirected to either
a login or registration page so that they can log in. For an AuthorizationException, it may be
useful to redirect the user to an error page. Here's an example of a pages.xml file that redirects
both of these security exceptions:

<pages>

...

<exception class="org.jboss.seam.security.NotLoggedInException">
<redirect view-id="/login.xhtml">

<message>You must be logged in to perform this action</message>
</redirect>

</exception>

<exception class="org.jboss.seam.security.AuthorizationException">
<end-conversation/>
<redirect view-id="/security_error.xhtml">

<message>
You do not have the necessary security

privileges to perform this action.
</message>

</redirect>
</exception>

</pages>

Most web applications require even more sophisticated handling of login redirection, so Seam
includes some special functionality for handling this problem.

3.6. Login Redirection

You can ask Seam to redirect the user to a login screen when an unauthenticated user tries to
access a particular view (or wildcarded view id) as follows:

<pages login-view-id="/login.xhtml">

<page view-id="/members/*" login-required="true"/>

...

</pages>

(This is less of a blunt instrument than the exception handler shown above, but should probably
be used in conjunction with it.)

After the user logs in, we want to automatically send them back where they came from, so they
can retry the action that required logging in. If you add the following event listeners to
components.xml, attempts to access a restricted view while not logged in will be remembered,
so that upon the user successfully logging in they will be redirected to the originally requested

Login Redirection

165

view, with any page parameters that existed in the original request.

<event type="org.jboss.seam.notLoggedIn">
<action expression="#{redirect.captureCurrentView}"/>

</event>

<event type="org.jboss.seam.postAuthenticate">
<action expression="#{redirect.returnToCapturedView}"/>

</event>

Note that login redirection is implemented as a conversation-scoped mechanism, so don't end
the conversation in your authenticate() method.

3.7. Advanced Authentication Features

This section explores some of the advanced features provided by the security API for
addressing more complex security requirements.

3.7.1. Using your container's JAAS configuration

If you would rather not use the simplified JAAS configuration provided by the Seam Security
API, you may instead delegate to the default system JAAS configuration by providing a
jaasConfigName property in components.xml. For example, if you are using JBoss AS and
wish to use the other policy (which uses the UsersRolesLoginModule login module provided
by JBoss AS), then the entry in components.xml would look like this:

<security:identity authenticate-method="#{authenticator.authenticate}"
jaas-config-name="other"/>

4. Error Messages

The security API produces a number of default faces messages for various security-related
events. The following table lists the message keys that can be used to override these messages
by specifying them in a message.properties resource file.

org.jboss.seam.loginSuccessfulThis message is produced when a user successfully logs in via the
security API.

org.jboss.seam.loginFailedThis message is produced when the login process fails, either
because the user provided an incorrect username or password, or
because authentication failed in some other way.

org.jboss.seam.NotLoggedInThis message is produced when a user attempts to perform an action
or access a page that requires a security check, and the user is not
currently authenticated.

Chapter 12. Security

166

Table 12.1. Security Message Keys

5. Authorization

There are a number of authorization features provided by the Seam Security API for securing
access to components, component methods, and pages. This section describes each of these.
An important thing to note is that if you wish to use any of the advanced features (such as
rule-based permissions) then your components.xml must be configured to support this - see the
Configuration section above.

5.1. Core concepts

Each of the authorization mechanisms provided by the Seam Security API are built upon the
concept of a user being granted roles and/or permissions. A role is a group, or type, of user that
may have been granted certain privileges for performing one or more specific actions within an
application. A permission on the other hand is a privilege (sometimes once-off) for performing a
single, specific action. It is entirely possible to build an application using nothing but
permissions, however roles offer a higher level of convenience when granting privileges to
groups of users.

Roles are simple, consisting of only a name such as "admin", "user", "customer", etc.
Permissions consist of both a name and an action, and are represented within this
documentation in the form name:action, for example customer:delete, or customer:insert.

5.2. Securing components

Let's start by examining the simplest form of authorization, component security, starting with the
@Restrict annotation.

5.2.1. The @Restrict annotation

Seam components may be secured either at the method or the class level, using the @Restrict

annotation. If both a method and it's declaring class are annotated with @Restrict, the method
restriction will take precedence (and the class restriction will not apply). If a method invocation
fails a security check, then an exception will be thrown as per the contract for
Identity.checkRestriction() (see Inline Restrictions). A @Restrict on just the component
class itself is equivalent to adding @Restrict to each of its methods.

An empty @Restrict implies a permission check of componentName:methodName. Take for
example the following component method:

@Name("account")
public class AccountAction {

@Restrict public void delete() {
...

}
}

Authorization

167

In this example, the implied permission required to call the delete() method is
account:delete. The equivalent of this would be to write
@Restrict("#{s:hasPermission('account','delete',null)}"). Now let's look at another
example:

@Restrict @Name("account")
public class AccountAction {

public void insert() {
...

}
@Restrict("#{s:hasRole('admin')}")
public void delete() {
...

}
}

This time, the component class itself is annotated with @Restrict. This means that any
methods without an overriding @Restrict annotation require an implicit permission check. In
the case of this example, the insert() method requires a permission of account:insert,
while the delete() method requires that the user is a member of the admin role.

Before we go any further, let's address the #{s:hasRole()} expression seen in the above
example. Both s:hasRole and s:hasPermission are EL functions, which delegate to the
correspondingly named methods of the Identity class. These functions can be used within any
EL expression throughout the entirety of the security API.

Being an EL expression, the value of the @Restrict annotation may reference any objects that
exist within a Seam context. This is extremely useful when performing permission checks for a
specific object instance. Look at this example:

@Name("account")
public class AccountAction {

@In Account selectedAccount;
@Restrict("#{s:hasPermission('account','modify',selectedAccount)}")
public void modify() {

selectedAccount.modify();
}

}

The interesting thing to note from this example is the reference to selectedAccount seen within
the hasPermission() function call. The value of this variable will be looked up from within the
Seam context, and passed to the hasPermission() method in Identity, which in this case
can then determine if the user has the required permission for modifying the specified Account

object.

5.2.2. Inline restrictions

Chapter 12. Security

168

Sometimes it might be desirable to perform a security check in code, without using the
@Restrict annotation. In this situation, simply use Identity.checkRestriction() to evaluate
a security expression, like this:

public void deleteCustomer() {
Identity.instance().checkRestriction("#{s:hasPermission('customer','delete',

selectedCustomer)}");
}

If the expression specified doesn't evaluate to true, either

• if the user is not logged in, a NotLoggedInException exception is thrown or

• if the user is logged in, an AuthorizationException exception is thrown.

It is also possible to call the hasRole() and hasPermission() methods directly from Java
code:

if (!Identity.instance().hasRole("admin"))
throw new AuthorizationException("Must be admin to perform this

action");

if (!Identity.instance().hasPermission("customer", "create", null))
throw new AuthorizationException("You may not create new customers");

5.3. Security in the user interface

One indication of a well designed user interface is that the user is not presented with options for
which they don't have the necessary privileges to use. Seam Security allows conditional
rendering of either 1) sections of a page or 2) individual controls, based upon the privileges of
the user, using the very same EL expressions that are used for component security.

Let's take a look at some examples of interface security. First of all, let's pretend that we have a
login form that should only be rendered if the user is not already logged in. Using the
identity.isLoggedIn() property, we can write this:

<h:form class="loginForm" rendered="#{not identity.loggedIn}">

If the user isn't logged in, then the login form will be rendered - very straight forward so far. Now
let's pretend there is a menu on the page that contains some actions which should only be
accessible to users in the manager role. Here's one way that these could be written:

<h:outputLink action="#{reports.listManagerReports}"
rendered="#{s:hasRole('manager')}">

Manager Reports
</h:outputLink>

Security in the user interface

169

This is also quite straight forward. If the user is not a member of the manager role, then the
outputLink will not be rendered. The rendered attribute can generally be used on the control
itself, or on a surrounding <s:div> or <s:span> control.

Now for something more complex. Let's say you have a h:dataTable control on a page listing
records for which you may or may not wish to render action links depending on the user's
privileges. The s:hasPermission EL function allows us to pass in an object parameter which
can be used to determine whether the user has the requested permission for that object or not.
Here's how a dataTable with secured links might look:

<h:dataTable value="#{clients}" var="cl">
<h:column>

<f:facet name="header">Name</f:facet>
#{cl.name}

</h:column>
<h:column>

<f:facet name="header">City</f:facet>
#{cl.city}

</h:column>
<h:column>

<f:facet name="header">Action</f:facet>
<s:link value="Modify Client" action="#{clientAction.modify}"

rendered="#{s:hasPermission('client','modify',cl)"/>
<s:link value="Delete Client" action="#{clientAction.delete}"

rendered="#{s:hasPermission('client','delete',cl)"/>
</h:column>

</h:dataTable>

5.4. Securing pages

Page security requires that the application is using a pages.xml file, however is extremely
simple to configure. Simply include a <restrict/> element within the page elements that you
wish to secure. By default, if a value is not provided for the restrict element, an implied
permission of {viewId}:render will be checked for whenever accessing that page. Otherwise
the value will be evaluated as a standard security expression. Here's a couple of examples:

<page view-id="/settings.xhtml">
<restrict/>

</page>

<page view-id="/reports.xhtml">
<restrict>#{s:hasRole('admin')}</restrict>

</page>

In the above example, the first page has an implied permission restriction of
/settings.xhtml:render, while the second one checks that the user is a member of the
admin role.

Chapter 12. Security

170

5.5. Securing Entities

Seam security also makes it possible to apply security restrictions to read, insert, update and
delete actions for entities.

To secure all actions for an entity class, add a @Restrict annotation on the class itself:

@Entity
@Name("customer")
@Restrict
public class Customer {
...

}

If no expression is specified in the @Restrict annotation, the default security check that is
performed is a permission check of entityName:action, where entityName is the Seam
component name of the entity (or the fully-qualified class name if no @Name is specified), and
the action is either read, insert, update or delete.

It is also possible to only restrict certain actions, by placing a @Restrict annotation on the
relevent entity lifecycle method (annotated as follows):

• @PostLoad - Called after an entity instance is loaded from the database. Use this method to
configure a read permission.

• @PrePersist - Called before a new instance of the entity is inserted. Use this method to
configure an insert permission.

• @PreUpdate - Called before an entity is updated. Use this method to configure an update

permission.

• @PreRemove - Called before an entity is deleted. Use this method to configure a delete

permission.

Here's an example of how an entity would be configured to perform a security check for any
insert operations. Please note that the method is not required to do anything, the only
important thing in regard to security is how it is annotated:

@PrePersist @Restrict
public void prePersist() {}

And here's an example of an entity permission rule that checks if the authenticated user is
allowed to insert a new MemberBlog record (from the seamspace example). The entity for which
the security check is being made is automatically asserted into the working memory (in this case
MemberBlog):

Securing Entities

171

rule InsertMemberBlog
no-loop
activation-group "permissions"

when
check: PermissionCheck(name == "memberBlog", action == "insert", granted

== false)
Principal(principalName : name)
MemberBlog(member : member ->

(member.getUsername().equals(principalName)))
then
check.grant();

end;

This rule will grant the permission memberBlog:insert if the currently authenticated user
(indicated by the Principal fact) has the same name as the member for which the blog entry is
being created. The "name : name" structure that can be seen in the Principal fact (and other
places) is a variable binding - it binds the name property of the Principal to a variable called
name. Variable bindings allow the value to be referred to in other places, such as the following
line which compares the member's username to the Principal name. For more details, please
refer to the JBoss Rules documentation.

Finally, we need to install a listener class that integrates Seam security with your JPA provider.

5.5.1. Entity security with JPA

Security checks for EJB3 entity beans are performed with an EntityListener. You can install
this listener by using the following META-INF/orm.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<entity-mappings xmlns="http://java.sun.com/xml/ns/persistence/orm"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence/orm
http://java.sun.com/xml/ns/persistence/orm_1_0.xsd"

version="1.0">

<persistence-unit-metadata>
<persistence-unit-defaults>

<entity-listeners>
<entity-listener

class="org.jboss.seam.security.EntitySecurityListener"/>
</entity-listeners>

</persistence-unit-defaults>
</persistence-unit-metadata>

</entity-mappings>

5.5.2. Entity security with Hibernate

If you are using a Hibernate SessionFactory configured via Seam, you don't need to do
anything special to use entity security.

Chapter 12. Security

172

6. Writing Security Rules

Up to this point there has been a lot of mention of permissions, but no information about how
permissions are actually defined or granted. This section completes the picture, by explaining
how permission checks are processed, and how to implement permission checks for a Seam
application.

6.1. Permissions Overview

So how does the security API know whether a user has the customer:modify permission for a
specific customer? Seam Security provides quite a novel method for determining user
permissions, based on JBoss Rules. A couple of the advantages of using a rule engine are 1) a
centralized location for the business logic that is behind each user permission, and 2) speed -
JBoss Rules uses very efficient algorithms for evaluating large numbers of complex rules
involving multiple conditions.

6.2. Configuring a rules file

Seam Security expects to find a RuleBase component called securityRules which it uses to
evaluate permission checks. This is configured in components.xml as follows:

<components xmlns="http://jboss.com/products/seam/components"
xmlns:core="http://jboss.com/products/seam/core"
xmlns:security="http://jboss.com/products/seam/security"
xmlns:drools="http://jboss.com/products/seam/drools"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation=

"http://jboss.com/products/seam/core
http://jboss.com/products/seam/core-1.2.xsd

http://jboss.com/products/seam/components
http://jboss.com/products/seam/components-1.2.xsd

http://jboss.com/products/seam/drools
http://jboss.com/products/seam/drools-1.2.xsd"

http://jboss.com/products/seam/security
http://jboss.com/products/seam/security-1.2.xsd">

<drools:rule-base name="securityRules">
<drools:rule-files>

<value>/META-INF/security.drl</value>
</drools:rule-files>

</drools:rule-base>

</components>

Once the RuleBase component is configured, it's time to write the security rules.

6.3. Creating a security rules file

For this step you need to create a file called security.drl in the /META-INF directory of your
application's jar file. In actual fact this file can be called anything you want, and exist in any

Permissions Overview

173

location as long as it is configured appropriately in components.xml.

So what should the security rules file contain? At this stage it might be a good idea to at least
skim through the JBoss Rules documentation, however to get started here's an extremely
simple example:

package MyApplicationPermissions;

import org.jboss.seam.security.PermissionCheck;
import org.jboss.seam.security.Role;

rule CanUserDeleteCustomers
when
c: PermissionCheck(name == "customer", action == "delete")
Role(name == "admin")

then
c.grant();

end;

Let's break this down. The first thing we see is the package declaration. A package in JBoss
Rules is essentially a collection of rules. The package name can be anything you want - it
doesn't relate to anything else outside the scope of the rule base.

The next thing we can notice is a couple of import statements for the PermissionCheck and
Role classes. These imports inform the rules engine that we'll be referencing these classes
within our rules.

Finally we have the code for the rule. Each rule within a package should be given a unique
name (usually describing the purpose of the rule). In this case our rule is called
CanUserDeleteCustomers and will be used to check whether a user is allowed to delete a
customer record.

Looking at the body of the rule definition we can notice two distinct sections. Rules have what is
known as a left hand side (LHS) and a right hand side (RHS). The LHS consists of the
conditional part of the rule, i.e. a list of conditions which must be satisfied for the rule to fire. The
LHS is represented by the when section. The RHS is the consequence, or action section of the
rule that will only be fired if all of the conditions in the LHS are met. The RHS is represented by
the then section. The end of the rule is denoted by the end; line.

If we look at the LHS of the rule, we see two conditions listed there. Let's examine the first
condition:

c: PermissionCheck(name == "customer", action == "delete")

In plain english, this condition is stating that there must exist a PermissionCheck object with a
name property equal to "customer", and an action property equal to "delete" within the working
memory. What is the working memory? It is a session-scoped object that contains the
contextual information that is required by the rules engine to make a decision about a
permission check. Each time the hasPermission() method is called, a temporary

Chapter 12. Security

174

PermissionCheck object, or Fact, is asserted into the working memory. This PermissionCheck

corresponds exactly to the permission that is being checked, so for example if you call
hasPermission("account", "create", null) then a PermissionCheck object with a name

equal to "account" and action equal to "create" will be asserted into the working memory for
the duration of the permission check.

So what else is in the working memory? Besides the short-lived temporary facts asserted during
a permission check, there are some longer-lived objects in the working memory that stay there
for the entire duration of a user being authenticated. These include any
java.security.Principal objects that are created as part of the authentication process, plus
a org.jboss.seam.security.Role object for each of the roles that the user is a member of. It
is also possible to assert additional long-lived facts into the working memory by calling
RuleBasedIdentity.instance().getSecurityContext().assertObject(), passing the
object as a parameter.

Getting back to our simple example, we can also notice that the first line of our LHS is prefixed
with c:. This is a variable binding, and is used to refer back to the object that is matched by the
condition. Moving onto the second line of our LHS, we see this:

Role(name == "admin")

This condition simply states that there must be a Role object with a name of "admin" within the
working memory. As mentioned, user roles are asserted into the working memory as long-lived
facts. So, putting both conditions together, this rule is essentially saying "I will fire if you are
checking for the customer:delete permission and the user is a member of the admin role".

So what is the consequence of the rule firing? Let's take a look at the RHS of the rule:

c.grant()

The RHS consists of Java code, and in this case is invoking the grant() method of the c

object, which as already mentioned is a variable binding for the PermissionCheck object.
Besides the name and action properties of the PermissionCheck object, there is also a
granted property which is initially set to false. Calling grant() on a PermissionCheck sets
the granted property to true, which means that the permission check was successful, allowing
the user to carry out whatever action the permission check was intended for.

6.3.1. Wildcard permission checks

It is possible to implement a wildcard permission check (which allows all actions for a given
permission name), by omitting the action constraint for the PermissionCheck in your rule, like
this:

rule CanDoAnythingToCustomersIfYouAreAnAdmin
when
c: PermissionCheck(name == "customer")
Role(name == "admin")

then

Creating a security rules file

175

c.grant();
end;

This rule allows users with the admin role to perform any action for any customer permission
check.

7. SSL Security

Seam includes basic support for serving sensitive pages via the HTTPS protocol. This is easily
configured by specifying a scheme for the page in pages.xml. The following example shows
how the view /login.xhtml is configured to use HTTPS:

<page view-id="/login.xhtml" scheme="https">

This configuration is automatically extended to both s:link and s:button JSF controls, which
(when specifying the view) will also render the link using the correct protocol. Based on the
previous example, the following link will use the HTTPS protocol because /login.xhtml is
configured to use it:

<s:link view="/login.xhtml" value="Login"/>

Browsing directly to a view when using the incorrect protocol will cause a redirect to the same
view using the correct protocol. For example, browsing to a page that has scheme="https"

using HTTP will cause a redirect to the same page using HTTPS.

It is also possible to configure a default scheme for all pages. This is actually quite important, as
you might only wish to use HTTPS for a few pages, and if no default scheme is specified then
the default behavior is to continue using the current scheme. What this means is that once you
enter a page with HTTPS, then HTTPS will continue to be used even if you navigate away to
other non-HTTPS pages (a bad thing!). So it is strongly recommended to include a default
scheme, by configuring it on the default ("*") view:

<page view-id="*" scheme="http">

Of course, if none of the pages in your application use HTTPS then it is not required to specify a
default scheme.

8. Implementing a Captcha Test

Though strictly not part of the security API, it might be useful in certain circumstances (such as
new user registrations, posting to a public blog or forum) to implement a Captcha (Completely
Automated Public Turing test to tell Computers and Humans Apart) to prevent automated bots
from interacting with your application. Seam provides seamless integration with JCaptcha, an

Chapter 12. Security

176

excellent library for generating Captcha challenges. If you wish to use the captcha feature in
your application you need to include the jcaptcha-* jar file from the Seam lib directory in your
project, and register it in application.xml as a java module.

8.1. Configuring the Captcha Servlet

To get up and running, it is necessary to configure the Seam Resource Servlet, which will
provide the Captcha challenge images to your pages. This requires the following entry in
web.xml:

<servlet>
<servlet-name>Seam Resource Servlet</servlet-name>
<servlet-class>org.jboss.seam.servlet.ResourceServlet</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>Seam Resource Servlet</servlet-name>
<url-pattern>/seam/resource/*</url-pattern>

</servlet-mapping>

8.2. Adding a Captcha to a page

Adding a captcha challenge to a page is extremely easy. Seam provides a page-scoped
component, captcha, which provides everything that is required, including built-in captcha
validation. Here's an example:

<div>
<h:graphicImage value="/seam/resource/captcha?#{captcha.id}"/>

</div>

<div>
<h:outputLabel for="verifyCaptcha">Enter the above

letters</h:outputLabel>
<h:inputText id="verifyCaptcha" value="#{captcha.response}"

required="true"/>
<div class="validationError"><h:message for="verifyCaptcha"/></div>

</div>

That's all there is to it. The graphicImage control displays the Captcha challenge, and the
inputText receives the user's response. The response is automatically validated against the
Captcha when the form is submitted.

Configuring the Captcha Servlet

177

178

Internationalization and themes
Seam makes it easy to build internationalized applications by providing several built-in
components for handling multi-language UI messages.

1. Locales

Each user login session has an associated instance of java.util.Locale (available to the
application as a session-scoped component named locale). Under normal circumstances, you
won't need to do any special configuration to set the locale. Seam just delegates to JSF to
determine the active locale:

• If there is a locale associated with the HTTP request (the browser locale), and that locale is in
the list of supported locales from faces-config.xml, use that locale for the rest of the
session.

• Otherwise, if a default locale was specified in the faces-config.xml, use that locale for the
rest of the session.

• Otherwise, use the default locale of the server.

It is possible to set the locale manually via the Seam configuration properties
org.jboss.seam.core.localeSelector.language,
org.jboss.seam.core.localeSelector.country and
org.jboss.seam.core.localeSelector.variant, but we can't think of any good reason to
ever do this.

It is, however, useful to allow the user to set the locale manually via the application user
interface. Seam provides built-in functionality for overriding the locale determined by the
algorithm above. All you have to do is add the following fragment to a form in your JSP or
Facelets page:

<h:selectOneMenu value="#{localeSelector.language}">
<f:selectItem itemLabel="English" itemValue="en"/>
<f:selectItem itemLabel="Deutsch" itemValue="de"/>
<f:selectItem itemLabel="Francais" itemValue="fr"/>

</h:selectOneMenu>
<h:commandButton action="#{localeSelector.select}"
value="#{messages['ChangeLanguage']}"/>

Or, if you want a list of all supported locales from faces-config.xml, just use:

<h:selectOneMenu value="#{localeSelector.localeString}">
<f:selectItems value="#{localeSelector.supportedLocales}"/>

</h:selectOneMenu>
<h:commandButton action="#{localeSelector.select}"
value="#{messages['ChangeLanguage']}"/>

Chapter 13.

179

When this use selects an item from the drop-down, and clicks the button, the Seam and JSF
locales will be overridden for the rest of the session.

2. Labels

JSF supports internationalization of user interface labels and descriptive text via the use of
<f:loadBundle />. You can use this approach in Seam applications. Alternatively, you can
take advantage of the Seam messages component to display templated labels with embedded
EL expressions.

2.1. Defining labels

Each login session has an associated instance of java.util.ResourceBundle (available to the
application as a session-scoped component named org.jboss.seam.core.resourceBundle).
You'll need to make your internationalized labels available via this special resource bundle. By
default, the resource bundle used by Seam is named messages and so you'll need to define
your labels in files named messages.properties, messages_en.properties,
messages_en_AU.properties, etc. These files usually belong in the WEB-INF/classes

directory.

So, in messages_en.properties:

Hello=Hello

And in messages_en_AU.properties:

Hello=G'day

You can select a different name for the resource bundle by setting the Seam configuration
property named org.jboss.seam.core.resourceBundle.bundleNames. You can even specify
a list of resource bundle names to be searched (depth first) for messages.

<core:resource-bundle>
<core:bundle-names>

<value>mycompany_messages</value>
<value>standard_messages</value>

</core:bundle-names>
</core:resource-bundle>

If you want to define a message just for a particular page, you can specify it in a resource
bundle with the same name as the JSF view id, with the leading / and trailing file extension
removed. So we could put our message in welcome/hello_en.properties if we only needed
to display the message on /welcome/hello.jsp.

Chapter 13. Internationalization and themes

180

You can even specify an explicit bundle name in pages.xml:

<page view-id="/welcome/hello.jsp" bundle="HelloMessages"/>

Then we could use messages defined in HelloMessages.properties on
/welcome/hello.jsp.

2.2. Displaying labels

If you define your labels using the Seam resource bundle, you'll be able to use them without
having to type <f:loadBundle ... /> on every page. Instead, you can simply type:

<h:outputText value="#{messages['Hello']}"/>

or:

<h:outputText value="#{messages.Hello}"/>

Even better, the messages themselves may contain EL expressions:

Hello=Hello, #{user.firstName} #{user.lastName}

Hello=G'day, #{user.firstName}

You can even use the messages in your code:

@In private Map<String, String> messages;

@In("#{messages['Hello']}") private String helloMessage;

2.3. Faces messages

The facesMessages component is a super-convenient way to display success or failure
messages to the user. The functionality we just described also works for faces messages:

@Name("hello")
@Stateless
public class HelloBean implements Hello {

@In FacesMessages facesMessages;

public String sayIt() {
facesMessages.addFromResourceBundle("Hello");

}

Displaying labels

181

}

This will display Hello, Gavin King or G'day, Gavin, depending upon the user's locale.

3. Timezones

There is also a session-scoped instance of java.util.Timezone, named
org.jboss.seam.core.timezone, and a Seam component for changing the timezone named
org.jboss.seam.core.timezoneSelector. By default, the timezone is the default timezone of
the server. Unfortunately, the JSF specification says that all dates and times should be
assumed to be UTC, and displayed as UTC, unless a timezone is explicitly specified using
<f:convertDateTime>. This is an extremely inconvenient default behavior.

Seam overrides this behavior, and defaults all dates and times to the Seam timezone. In
addition, Seam provides the <s:convertDateTime> tag which always performs conversions in
the Seam timezone.

4. Themes

Seam applications are also very easily skinnable. The theme API is very similar to the
localization API, but of course these two concerns are orthogonal, and some applications
support both localization and themes.

First, configure the set of supported themes:

<theme:theme-selector cookie-enabled="true">
<theme:available-themes>

<value>default</value>
<value>accessible</value>
<value>printable</value>

</theme:available-themes>
</theme:theme-selector>

Note that the first theme listed is the default theme.

Themes are defined in a properties file with the same name as the theme. For example, the
default theme is defined as a set of entries in default.properties. For example,
default.properties might define:

css ../screen.css
template template.xhtml

Usually the entries in a theme resource bundle will be paths to CSS styles or images and
names of facelets templates (unlike localization resource bundles which are usually text).

Now we can use these entries in our JSP or facelets pages. For example, to theme the

Chapter 13. Internationalization and themes

182

stylesheet in a facelets page:

<link href="#{theme.css}" rel="stylesheet" type="text/css" />

Most powerfully, facelets lets us theme the template used by a <ui:composition>:

<ui:composition xmlns="http://www.w3.org/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:f="http://java.sun.com/jsf/core"
template="#{theme.template}">

Just like the locale selector, there is a built-in theme selector to allow the user to freely switch
themes:

<h:selectOneMenu value="#{themeSelector.theme}">
<f:selectItems value="#{themeSelector.themes}"/>

</h:selectOneMenu>
<h:commandButton action="#{themeSelector.select}" value="Select Theme"/>

5. Persisting locale and theme preferences via cookies

The locale selector, theme selector and timezone selector all support persistence of locale and
theme preference to a cookie. Simply set the cookie-enabled configuration property:

<theme:theme-selector cookie-enabled="true">
<theme:available-themes>

<value>default</value>
<value>accessible</value>
<value>printable</value>

</theme:available-themes>
</theme:theme-selector>

<core:locale-selector cookie-enabled="true"/>

Persisting locale and theme preferences via

183

184

Seam Text
Collaboration-oriented websites require a human-friendly markup language for easy entry of
formatted text in forum posts, wiki pages, blogs, comments, etc. Seam provides the
<s:formattedText/> control for display of formatted text that conforms to the Seam Text
language. Seam Text is implemented using an ANTLR-based parser. You don't need to know
anything about ANTLR to use it, however.

1. Basic fomatting

Here is a simple example:

It's easy to make *bold text*, /italic text/, |monospace|,
~deleted text~, super^scripts^ or _underlines_.

If we display this using <s:formattedText/>, we will get the following HTML produced:

<p>
It's easy to make bold text, <i>italic text</i>, <tt>monospace</tt>
deleted text, super^{scripts} or <u>underlines</u>.
</p>

We can use a blank line to indicate a new paragraph, and + to indicate a heading:

+This is a big heading
You /must/ have some text following a heading!

++This is a smaller heading
This is the first paragraph. We can split it across multiple
lines, but we must end it with a blank line.

This is the second paragraph.

(Note that a simple newline is ignored, you need an additional blank line to wrap text into a new
paragraph.) This is the HTML that results:

<h1>This is a big heading</h1>
<p>
You <i>must</i> have some text following a heading!
</p>

<h2>This is a smaller heading</h2>
<p>
This is the first paragraph. We can split it across multiple
lines, but we must end it with a blank line.
</p>

<p>

Chapter 14.

185

This is the second paragraph.
</p>

Ordered lists are created using the # character. Unordered lists use the = character:

An ordered list:

#first item
#second item
#and even the /third/ item

An unordered list:

=an item
=another item

<p>
An ordered list:
</p>

first item
second item
and even the <i>third</i> item

<p>
An unordered list:
</p>

an item
another item

Quoted sections should be surrounded in double quotes:

The other guy said:

"Nyeah nyeah-nee
/nyeah/ nyeah!"

But what do you think he means by "nyeah-nee"?

<p>
The other guy said:
</p>

<q>Nyeah nyeah-nee
<i>nyeah</i> nyeah!</q>

Chapter 14. Seam Text

186

<p>
But what do you think he means by <q>nyeah-nee</q>?
</p>

2. Entering code and text with special characters

Special characters such as *, | and #, along with HTML characters such as <, > and & may be
escaped using \:

You can write down equations like 2*3\=6 and HTML tags
like \<body\> using the escape character: \\.

<p>
You can write down equations like 2*3=6 and HTML tags
like <body> using the escape character: \.
</p>

And we can quote code blocks using backticks:

My code doesn't work:

`for (int i=0; i<100; i--)
{

doSomething();
}`

Any ideas?

<p>
My code doesn't work:
</p>

<pre>for (int i=0; i<100; i--)
{

doSomething();
}</pre>

<p>
Any ideas?
</p>

3. Links

A link may be created using the following syntax:

Entering code and text with special

187

Go to the Seam website at [=>http://jboss.com/products/seam].

Or, if you want to specify the text of the link:

Go to [the Seam website=>http://jboss.com/products/seam].

For advanced users, it is even possible to customize the Seam Text parser to understand
wikiword links written using this syntax.

4. Entering HTML

Text may even include a certain limited subset of HTML (don't worry, the subset is chosen to be
safe from cross-site scripting attacks). This is useful for creating links:

You might want to link to something
cool, or even include an image:

And for creating tables:

<table>
<tr><td>First name:</td><td>Gavin</td></tr>
<tr><td>Last name:</td><td>King</td></tr>

</table>

But you can do much more if you want!

Chapter 14. Seam Text

188

iText PDF generation
Seam now includes an component set for generating documents using iText. The primary focus
of Seam's iText document support is for the generation of PDF doucuments, but Seam also
offers basic support for RTF document generation.

1. Using PDF Support

iText support is provided by jboss-seam-pdf.jar. This JAR contains the iText JSF controls,
which are used to construct views that can render to PDF, and the DocumentStore component,
which serves the rendered documents to the user. To include PDF support in your application,
included jboss-seam-pdf.jar in your WEB-INF/lib directory along with the iText JAR file.
There is no further configuration needed to use Seam's iText support.

The Seam iText module requires the use of Facelets as the view technology. Future versions of
the library may also support the use of JSP. Additionally, it requires the use of the seam-ui
package.

The examples/itext project contains an example of the PDF support in action. It demonstrates
proper deployment packaging, and it contains a number examples that demonstrate the key
PDF generation features current supported.

2. Creating a document

Documents are generated by facelets documents using tags in the
http://jboss.com/products/seam/pdf namespace. Documents should always have the
document tag at the root of the document. The document tag prepares Seam to generate a
document into the DocumentStore and renders an HTML redirect to that stored content. The
following is a a small PDF document consisting only a single line of text:

<p:document xmlns:p="http://jboss.com/products/seam/pdf">
The document goes here.

</p:document>

2.1. p:document

The p:document tag supports the following attributes:

type

The type of the document to be produced. Valid values are PDF, RTF and HTML modes.
Seam defaults to PDF generation, and many of the features only work correctly when
generating PDF documents.

pageSize

Chapter 15.

189

The size of the page to be generate. The most commonly used values would be LETTER and
A4. A full list of supported pages sizes can be found in com.lowagie.text.PageSize class.
Alternatively, pageSize can provide the width and height of the page directly. The value
"612 792", for example, is equizalent to the LETTER page size.

orientation

The orientation of the page. Valid values are portrait and landscape. In landscape mode,
the height and width page size values are reversed.

margins

The left, right, top and bottom margin values.

marginMirroring

Indicates that margin settings should be reversed an alternating pages.

Document metadata is also set as attributes of the document tag. The following metadata fields
are supported:

title

subject

keywords

author

creator

3. Basic Text Elements

Useful documents will need to contain more than just text; however, the standard UI
components are geared towards HTML generation and are not useful for generating PDF
content. Instead, Seam provides a special UI components for generating suitable PDF content.
Tags like <p:image> and <p:paragraph> are the basic foundations of simple documents. Tags
like <p:font> provide style information to all the content surrounging them.

<p:document xmlns:p="http://jboss.com/products/seam/pdf">
<p:image alignment="right" wrap="true" resource="/logo.jpg" />
<p:font size="24">

<p:paragraph spacingAfter="50">My First Document</p:paragraph>
</p:font>

<p:paragraph alignment="justify">
This is a simple document. It isn't very fancy.

</p:paragraph>
</p:document>

Chapter 15. iText PDF generation

190

3.1. p:paragraph

Most uses of text should be sectioned into paragraphs so that text fragments can be flowed,
formatted and styled in logical groups.

firstLineIndent

extraParagraphSpace

leading

multipliedLeading

spacingBefore

The blank space to be inserted before the element.

spacingAfter

The blank space to be inserted after the element.

indentationLeft

indentationRight

keepTogether

3.2. p:text

The text tag allows text fragments to be produced from application data using normal JSF
converter mechanisms. It is very similar to the outputText tag used when rendering HTML
documents. Here is an example:

<p:paragraph>
The item costs <p:text value="#{product.price}">

<f:convertNumber type="currency" currencySymbol="$"/>
</p:text>

</p:paragraph>

value

The value to be displayed. This will typically be a value binding expression.

3.3. p:font

Font declarations have no direct

familyName

p:text

191

The font family. One of: COURIER, HELVETICA, TIMES-ROMAN, SYMBOL or ZAPFDINGBATS.

size

The point size of the font.

style

The font styles. Any combination of : NORMAL, BOLD, ITALIC, OBLIQUE, UNDERLINE,
LINE-THROUGH

3.4. p:newPage

p:newPage inserts a page break.

3.5. p:image

p:image inserts an image into the document. Images can be be loaded from the classpath or
from the web application context using the resource attribute.

<p:image resource="/jboss.jpg" />

Resources can also be dynamically generated by application code. The imageData attribute can
specify a value binding expression whose value is a java.awt.Image object.

<p:image imageData="#{images.chart}" />

resource

The location of the image resource to be included. Resources should be relative to the
document root of the web application.

imageData

A method expression binding to an application-generated image.

rotation

The rotation of the image in degrees.

height

The height of the image.

width

The width of the image.

alignment

The alignment of the image. (see Section 8.2, “Alignment Values” for possible values)

alt

Alternative text representation for the image.

Chapter 15. iText PDF generation

192

indentationLeft

indentationRight

spacingBefore

The blank space to be inserted before the element.

spacingAfter

The blank space to be inserted after the element.

widthPercentage

initialRotation

dpi

scalePercent

The scaling factor (as a percentage) to use for the image. This can be expressed as a
single percentage value or as two percentage values representing separate x and y scaling
percentages.

wrap

underlying

3.6. p:anchor

p:anchor defines clickable links from a document. It supports the following attributes:

name

The name of an in-document anchor destination.

reference

The destination the link refers to. Links to other points in the document should begin with a
"#". For example, "#link1" to refer to an anchor postion with a name of link1. Links may also
be a full URL to point to a resource outside of the document.

4. Headers and Footers

4.1. p:header and p:footer

The p:header and p:footer components provide the ability to place header and footer text on
each page of a generated document, with the exception of the first page. Header and footer
declarations should appear near the top of a document.

alignment

The alignment of the header/footer box section. (see Section 8.2, “Alignment Values” for

p:anchor

193

alignment values)

backgroundColor

The background color of the header/footer box. (see Section 8.1, “Color Values” for color
values)

borderColor

The border color of the header/footer box. Individual border sides can be set using
borderColorLeft, borderColorRight, borderColorTop and borderColorBottom.(see
Section 8.1, “Color Values” for color values)

borderWidth

The width of the border. Inidvidual border sides can be specified using borderWidthLeft,
borderWidthRight, borderWidthTop and borderWidthBottom.

4.2. p:pageNumber

The current page number can be placed inside of a header or footer using the p:pageNumber

tag. The page number tag can only be used in the context of a header or footer and can only be
used once.

5. Chapters and Sections

If the generated document follows a book/article structure, the p:chapter and p:section tags
can be used to provide the necessary structure. Sections can only be used inside of chapters,
but they may be nested arbitrarily deep. Most PDF viewers provide easy navigation between
chapters and sections in a document.

<p:document xmlns:p="http://jboss.com/products/seam/pdf"
title="Hello">

<p:chapter number="1">
<p:title><p:paragraph>Hello</p:paragraph></p:title>
<p:paragraph>Hello #{user.name}!</p:paragraph>

</p:chapter>

<p:chapter number="2">
<p:title><p:paragraph>Goodbye</p:paragraph></p:title>
<p:paragraph>Goodbye #{user.name}.</p:paragraph>

</p:chapter>

</p:document>

5.1. p:chapter and p:section

number

Chapter 15. iText PDF generation

194

The chapter number. Every chapter should be assigned a chapter number.

numberDepth

The depth of numbering for section. All sections are numbered relative to their surrounding
chapter/sections. The fourth section of of the first section of chapter three would be section
3.1.4, if displayed at the default number depth of three. To omit the chapter number, a
number depth of 2 should be used. In that case, the section number would be displayed as
1.4.

5.2. p:title

Any chapter or section can contain a p:title. The title will be displayed next to the
chapter/section number. The body of the title may contain raw text or may be a p:paragraph.

6. Lists

List structures can be displayed using the p:list and p:listItem tags. Lists may contain
arbitrarily-nested sublists. List items may not be used outside of a list. he following document
uses the ui:repeat tag to to display a list of values retrieved from a Seam component.

<p:document xmlns:p="http://jboss.com/products/seam/pdf"
xmlns:ui="http://java.sun.com/jsf/facelets"
title="Hello">

<p:list style="numbered">
<ui:repeat value="#{documents}" var="doc">

<p:listItem>#{doc.name}</p:listItem>
</ui:repeat>

</p:list>
</p:document>

6.1. p:list

p:list supports the following attributes:

style

The ordering/bulleting style of list. One of: NUMBERED, LETTERED, GREEK, ROMAN,
ZAPFDINGBATS, ZAPFDINGBATS_NUMBER. If no style is given, the list items are bulleted.

listSymbol

For bulleted lists, specifies the bullet symbol.

indent

The indentation level of the list.

lowerCase

For list styles using letters, indicates whether the letters should be lower case.

p:title

195

charNumber

For ZAPFDINGBATS, indicates the character code of the bullet character.

numberType

For ZAPFDINGBATS_NUMBER, indicates the numbering style.

6.2. p:listItem

p:listItem supports the following attributes:

alignment

The alignment of the list item. (See Section 8.2, “Alignment Values” for possible values)

indentationLeft

The left indentation amount.

indentationRight

The right indentation amount.

listSymbol

Overrides the default list symbol for this list item.

7. Tables

Table structures can be created using the p:table and p:cell tags. Unlike many table
structures, there is no explicit row declaration. If a table has 3 columns, then every 3 cells will
automatically form a row. Header and footer rows can be declared, and the headers and footers
will be repeated in the event a table structure spans multiple pages.

<p:document xmlns:p="http://jboss.com/products/seam/pdf"
xmlns:ui="http://java.sun.com/jsf/facelets"
title="Hello">

<p:table columns="3" headerRows="1">
<p:cell>name</p:cell>
<p:cell>owner</p:cell>
<p:cell>size</p:cell>
<ui:repeat value="#{documents}" var="doc">

<p:cell>#{doc.name}</p:cell>
<p:cell>#{doc.user.name}</p:cell>
<p:cell>#{doc.size}</p:cell>

</ui:repeat>
</p:table>

</p:document>

7.1. p:table

Chapter 15. iText PDF generation

196

p:table supports the following attributes.

columns

The number of columns (cells) that make up a table row.

widths

The relative widths of each column. There should be one value for each column. For
example: widths="2 1 1" would indicate that there are 3 columns and the first column should
be twice the size of the second and third column.

headerRows

The initial number of rows which are considered to be headers or footer rows and should be
repeated if the table spans multiple pages.

footerRows

The number of rows that are considered to be footer rows. This value is subtracted from the
headerRows value. If document has 2 rows which make up the header and one row that
makes up the footer, headerRows should be set to 3 and footerRows should be set to 1

widthPercentage

The percentage of the page width that the table spans.

horizontalAlignment

The horizontal alignment of the table. (See Section 8.2, “Alignment Values” for possible
values)

skipFirstHeader

runDirection

lockedWidth

splitRows

spacingBefore

The blank space to be inserted before the element.

spacingAfter

The blank space to be inserted after the element.

extendLastRow

headersInEvent

splitLate

keepTogether

7.2. p:cell

p:cell

197

p:cell supports the following attributes.

colspan

Cells can span more than one column by declaring a colspan greater than 1. Tables do not
have the ability to span across multiple rows.

horizontalAlignment

The horizontal alignment of the cell. (see Section 8.2, “Alignment Values” for possible
values)

verticalAlignment

The vertical alignment of the cell. (see Section 8.2, “Alignment Values” for possible values)

padding

Padding on a given side can also be specified using paddingLeft, paddingRight,
paddingTop and paddingBottom.

useBorderPadding

leading

multipliedLeading

indent

verticalAlignment

extraParagraphSpace

fixedHeight

noWrap

minimumHeight

followingIndent

rightIndent

spaceCharRatio

runDirection

arabicOptions

useAscender

grayFill

rotation

Chapter 15. iText PDF generation

198

8. Document Constants

This section documents some of the constants shared by attributes on multiple tags.

8.1. Color Values

Seam documents do not yet support a full color specification. Currently, only named colors are
supported. They are: white, gray, lightgray, darkgray, black, red, pink, yellow, green,
magenta, cyan and blue.

8.2. Alignment Values

Where alignment values are used, the Seam PDF supports the following horizontal alignment
values: left, right, center, justify and justifyall. The vertical alignment values are top,
middle, bottom, and baseline.

9. Configuring iText

Document generation works out of the box with no additional configuration needed. However,
there are a few points of configuration that are needed for more serious applications.

The default implementation serves PDF documents from a generic URL, /seam-doc.seam.
Many browsers (and users) would prefer to see URLs that contain the actual PDF name like
/myDocument.pdf. This capability requires some configuration. To serve PDF files, all *.pdf
resources should be mapped to the Seam Servlet Filter and to the DocumentStoreServlet:

<filter>
<filter-name>Seam Servlet Filter</filter-name>
<filter-class>org.jboss.seam.servlet.SeamServletFilter</filter-class>

</filter>

<filter-mapping>
<filter-name>Seam Servlet Filter</filter-name>
<url-pattern>*.pdf</url-pattern>

</filter-mapping>

<servlet>
<servlet-name>Document Store Servlet</servlet-name>
<servlet-class>org.jboss.seam.pdf.DocumentStoreServlet</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>Document Store Servlet</servlet-name>
<url-pattern>*.pdf</url-pattern>

</servlet-mapping>

The useExtensions option on the document store component completes the functionality by
instructing the document store to generate URLs with the correct filename extension for the
document type being generated.

Color Values

199

1 http://www.lowagie.com/iText/
2 http://www.manning.com/lowagie/

<components xmlns="http://jboss.com/products/seam/components"
xmlns:pdf="http://jboss.com/products/seam/pdf">

<pdf:documentStore useExtensions="true" />
</components>

Generated documents are stored in conversation scope and will expire when the conversation
ends. At that point, references to the document will be invalid. To You can specify a default view
to be shown when a document does not exist using the errorPage property of the
documentStore.

<pdf:documentStore useExtensions="true" errorPage="/pdfMissing.seam" />

10. iText links

For further information on iText, see:

• iText Home Page1

• iText in Action2

Chapter 15. iText PDF generation

200

http://www.lowagie.com/iText/
http://www.lowagie.com/iText/
http://www.manning.com/lowagie/
http://www.manning.com/lowagie/

Email
Seam now includes an optional components for templating and sending emails.

Email support is provided by jboss-seam-mail.jar. This JAR contains the mail JSF controls,
which are used to construct emails, and the mailSession manager component.

The examples/mail project contains an example of the email support in action. It demonstrates
proper packaging, and it contains a number of example that demonstrate the key features
currently supported.

1. Creating a message

You don't need to learn a whole new templating language to use Seam Mail—an email is just
facelet!

<m:message xmlns="http://www.w3.org/1999/xhtml"
xmlns:m="http://jboss.com/products/seam/mail"
xmlns:h="http://java.sun.com/jsf/html">

<m:from name="Peter" address="peter@example.com" />
<m:to name="#{person.firstname}

#{person.lastname}">#{person.address}</m:to>
<m:subject>Try out Seam!</m:subject>

<m:body>
<p><h:outputText value="Dear #{person.firstname}" />,</p>
<p>You can try out Seam by visiting
http://labs.jboss.com/jbossseam.</p>
<p>Regards,</p>
<p>Peter</p>

</m:body>

</m:message>

The <m:message> tag wraps the whole message, and tells Seam to start rendering an email.
Inside the <m:message> tag we use an <m:from> tag to set who the message is from, a <m:to>

tag to specify a sender (notice how we use EL as we would in a normal facelet), and a
<m:subject> tag.

The <m:body> tag wraps the body of the email. You can use regular HTML tags inside the body
as well as JSF components.

So, now you have your email template, how do you go about sending it? Well, at the end of
rendering the m:message the mailSession is called to send the email, so all you have to do is
ask Seam to render the view:

@In(create=true)
private Renderer renderer;

Chapter 16.

201

public void send() {
try {

renderer.render("/simple.xhtml");
facesMessages.add("Email sent successfully");

}
catch (Exception e) {

facesMessages.add("Email sending failed: " + e.getMessage());
}

}

If, for example, you entered an invalid email address, then an exception would be thrown, which
is caught and then displayed to the user.

1.1. Attachments

Seam makes it easy to attach files to an email. It supports most of the standard java types used
when working with files.

If you wanted to email the jboss-seam-mail.jar:

<m:attachment value="/WEB-INF/lib/jboss-seam-mail.jar"/>

Seam will load the file from the classpath, and attach it to the email. By default it would be
attached as jboss-seam-mail.jar; if you wanted it to have another name you would just add
the fileName attribute:

<m:attachment value="/WEB-INF/lib/jboss-seam-mail.jar"
fileName="this-is-so-cool.jar"/>

You could also attach a java.io.File, a java.net.URL:

<m:attachment value="#{numbers}"/>

Or a byte[] or a java.io.InputStream:

<m:attachment value="#{person.photo}" contentType="image/png"/>

You'll notice that for a byte[] and a java.io.InputStream you need to specify the MIME type
of the attachment (as that information is not carried as part of the file).

And it gets even better, you can attach a Seam generated PDF, or any standard JSF view, just
by wrapping a <m:attachment> around the normal tags you would use:

<m:attachment fileName="tiny.pdf">
<p:document>

Chapter 16. Email

202

A very tiny PDF
</p:document>

</m:attachment>

If you had a set of files you wanted to attach (for example a set of pictures loaded from a
database) you can just use a <ui:repeat>:

<ui:repeat value="#{people}" var="person">
<m:attachment value="#{person.photo}" contentType="image/jpeg"
fileName="#{person.firstname}_#{person.lastname}.jpg"/>

</ui:repeat>

1.2. HTML/Text alternative part

Whilst most mail readers nowadays support HTML, some don't, so you can add a plain text
alternative to your email body:

<m:body>
<f:facet name="alternative">Sorry, your email reader can't show our

fancy email,
please go to http://labs.jboss.com/jbossseam to explore Seam.</f:facet>
</m:body>

1.3. Multiple recipients

Often you'll want to send an email to a group of recipients (for example your users). All of the
recipient mail tags can be placed inside a <ui:repeat>:

<ui:repeat value="#{allUsers} var="user">
<m:to name="#{user.firstname} #{user.lastname}"

address="#{user.emailAddress}" />
</ui:repeat>

1.4. Multiple messages

Sometimes, however, you need to send a slightly different message to each recipient (e.g. a
password reset). The best way to do this is to place the whole message inside a <ui:repeat>:

<ui:repeat value="#{people}" var="p">
<m:message>

<m:from name="#{person.firstname}
#{person.lastname}">#{person.address}</m:from>

<m:to name="#{p.firstname}">#{p.address}</m:to>
...

</m:message>
</ui:repeat>

HTML/Text alternative part

203

1.5. Templating

The mail templating example shows that facelets templating Just Works with the Seam mail
tags.

Our template.xhtml contains:

<m:message>
<m:from name="Seam" address="do-not-reply@jboss.com" />
<m:to name="#{person.firstname}

#{person.lastname}">#{person.address}</m:to>
<m:subject>#{subject}</m:subject>
<m:body>

<html>
<body>

<ui:insert name="body">This is the default body, specified by
the template.

</ui:insert>
</body>

</html>
</m:body>

</m:message>

Our templating.xhtml contains:

<ui:param name="subject" value="Templating with Seam Mail"/>
<ui:define name="body">

<p>This example demonstrates that you can easily use <i>facelets
templating</i> in email!</p>
</ui:define>

1.6. Internationalisation

Seam supports sending internationalised messages. By default, the encoding provided by JSF
is used, but this can be overridden on the template:

<m:message charset="UTF-8">
...

</m:message>

The body, subject and recipient (and from) name will be encoded. You'll need to make sure
facelets uses the correct charset for parsing your pages by setting encoding of the template:

<?xml version="1.0" encoding="UTF-8"?>

1.7. Other Headers

Sometimes you'll want to add other headers to your email. Seam provides support for some

Chapter 16. Email

204

(see Section 4, “Tags”). For example, we can set the importance of the email, and ask for a
read receipt:

<m:message xmlns:m="http://jboss.com/products/seam/mail"
importance="low"
requestReadReceipt="true"/>

Otherise you can add any header to the message using the <m:header> tag:

<m:header name="X-Sent-From" value="JBoss Seam"/>

2. Receiving emails

If you are using EJB then you can use a MDB (Message Driven Bean) to receive email. Seam
comes with an improved version of mail-ra.rar as distributed in JBoss AS; until the
improvements make there way into a released version of JBoss AS, replacing the default rar
with the one distributed with Seam is recommended.

You can configure it like this:

@MessageDriven(activationConfig={
@ActivationConfigProperty(propertyName="mailServer",

propertyValue="localhost"),
@ActivationConfigProperty(propertyName="mailFolder",

propertyValue="INBOX"),
@ActivationConfigProperty(propertyName="storeProtocol",

propertyValue="pop3"),
@ActivationConfigProperty(propertyName="userName",

propertyValue="seam"),
@ActivationConfigProperty(propertyName="password",

propertyValue="seam")
})
@ResourceAdapter("mail-ra.rar")
@Name("mailListener")
public class MailListenerMDB implements MailListener {

@In(create=true)
private OrderProcessor orderProcessor;

public void onMessage(Message message) {
// Process the message
orderProcessor.process(message.getSubject());

}

}

Each message received will cause onMessage(Message message) to be called. Most seam
annotations will work inside a MDB but you musn't access the persistence context.

Receiving emails

205

You can find more information on the default mail-ra.rar at
http://wiki.jboss.org/wiki/Wiki.jsp?page=InboundJavaMail. The version distributed with Seam
also includes a debug property to enable JavaMail debugging, a flush property (by default true)
to disable flushing a POP3 mailbox after successfullying delivering a message to your MDB and
a port property to override the default TCP port. Beware that the api for this may be altered as
changes make there way into JBoss AS.

If you aren't using JBoss AS you can still use mail-ra.rar (included with Seam in the mail
directory), or you may find your application server includes a similar adapter.

3. Configuration

To include Email support in your application, include jboss-seam-mail.jar in your
WEB-INF/lib directory. If you are using JBoss AS there is no further configuration needed to use
Seam's email support. Otherwise you need to make sure you have the JavaMail API, an
implementation of the JavaMail API present (the API and impl used in JBoss AS are distributed
with seam as lib/mail.jar), and a copy of the Java Activation Framework (distributed with
seam as lib/activation.jar.

The Seam Email module requires the use of Facelets as the view technology. Future versions of
the library may also support the use of JSP. Additionally, it requires the use of the seam-ui
package.

The mailSession component uses JavaMail to talk to a 'real' SMTP server.

3.1. mailSession

A JavaMail Session may be available via a JNDI lookup if you are working in an JEE
environment or you can use a Seam configured Session.

The mailSession component's properties are described in more detail in Section 8, “Mail-related
components”.

3.1.1. JNDI lookup in JBoss AS

The JBossAS deploy/mail-service.xml configures a JavaMail session binding into JNDI.
The default service configuration will need altering for your network.
http://wiki.jboss.org/wiki/Wiki.jsp?page=JavaMail describes the service in more detail.

<components xmlns="http://jboss.com/products/seam/components"
xmlns:core="http://jboss.com/products/seam/core"
xmlns:mail="http://jboss.com/products/seam/mail">

<mail:mail-session session-jndi-name="java:/Mail"/>

</components>

Here we tell Seam to get the mail session bound to java:/Mail from JNDI.

Chapter 16. Email

206

http://wiki.jboss.org/wiki/Wiki.jsp?page=InboundJavaMail
http://wiki.jboss.org/wiki/Wiki.jsp?page=JavaMail

3.1.2. Seam configured Session

A mail session can be configured via components.xml. Here we tell Seam to use
smtp.example.com as the smtp server,

<components xmlns="http://jboss.com/products/seam/components"
xmlns:core="http://jboss.com/products/seam/core"
xmlns:mail="http://jboss.com/products/seam/mail">

<mail:mail-session host="smtp.example.com"/>

</components>

4. Tags

Emails are generated using tags in the http://jboss.com/products/seam/mail namespace.
Documents should always have the message tag at the root of the message. The message tag
prepares Seam to generate an email.

The standard templating tags of facelets can be used as normal. Inside the body you can use
any JSF tag which doesn't require access to external resources (stylesheets, javascript).

<m:message>
Root tag of a mail message

• importance — low, normal or high. By default normal, this sets the importance of the
mail message.

• precedence — sets the precedence of the message (e.g. bulk).

• requestReadReceipt — by default false, if set, a read receipt will be request will be
added, with the read receipt being sent to the From: address.

• urlBase — If set, the value is prepended to the requestContextPath allowing you to
use components such as <h:graphicImage> in your emails.

<m:from>
Set's the From: address for the email. You can only have one of these per email.

• name — the name the email should come from.

• address — the email address the email should come from.

<m:replyTo>
Set's the Reply-to: address for the email. You can only have one of these per email.

• address — the email address the email should come from.

<m:to>

Tags

207

Add a recipient to the email. Use multiple <m:to> tags for multiple recipients. This tag can
be safely placed inside a repeat tag such as <ui:repeat>.

• name — the name of the recipient.

• address — the email address of the recipient.

<m:cc>
Add a cc recipient to the email. Use multiple <m:cc> tags for multiple ccs. This tag can be
safely placed inside a repeat tag such as <ui:repeat>.

• name — the name of the recipient.

• address — the email address of the recipient.

<m:bcc>
Add a bcc recipient to the email. Use multiple <m:bcc> tags for multiple bccs. This tag can
be safely placed inside a repeat tag such as <ui:repeat>.

• name — the name of the recipient.

• address — the email address of the recipient.

<m:header>
Add a header to the email (e.g. X-Sent-From: JBoss Seam

• name — The name of the header to add (e.g. X-Sent-From).

• value — The value of the header to add (e.g. JBoss Seam).

<m:attachment>
Add an attachment to the email.

• value — The file to attach:

• String — A String is interpreted as a path to file within the classpath

• java.io.File — An EL expression can reference a File object

• java.net.URL — An EL expression can reference a URL object

• java.io.InputStream — An EL expression can reference an InputStream. In this
case both a fileName and a contentType must be specified.

• byte[] — An EL expression can reference an byte[]. In this case both a fileName

and a contentType must be specified.

If the value attribute is ommitted:

• If this tag contains a <p:document> tag, the document described will be generated and
attached to the email. A fileName should be specfied.

• If this tag contains other JSF tags a HTML document will be generated from them and

Chapter 16. Email

208

attached to the email. A fileName should be specfied.

• fileName — Specify the file name to use for the attached file.

• contentType — Specify the MIME type of the attached file

<m:subject>
Set's the subject for the email.

<m:body>
Set's the body for the email. Supports an alternative facet which, if an HTML email is
generated can contain alternative text for a mail reader which doesn't support html.

• type — If set to plain then a plain text email will be generated otherwise an HTML email
is generated.

Tags

209

210

Asynchronicity and messaging
Seam makes it very easy to perform work asynchronously from a web request. When most
people think of asynchronicity in Java EE, they think of using JMS. This is certainly one way to
approach the problem in Seam, and is the right way when you have strict and well-defined
quality of service requirements. Seam makes it easy to send and recieve JMS messages using
Seam components.

But for many usecases, JMS is overkill. Seam layers a simple asynchronous method and event
facility over the EJB 3.0 timer service.

1. Asynchronicity

Asynchronous events and method calls have the same quality of service expectations as the
container's EJB timer service. If you're not familiar with the Timer service, don't worry, you don't
need to interact with it directly if you want to use asynchronous methods in Seam.

To use asynchronous methods and events, you need to add the following line to
components.xml:

<core:dispatcher/>

Note that this functionality is not available in environments which do not support EJB 3.0.

1.1. Asynchronous methods

In simplest form, an asynchronous call just lets a method call be processed asynchronously (in
a different thread) from the caller. We usually use an asynchronous call when we want to return
an immediate response to the client, and let some expensive work be processed in the
background. This pattern works very well in applications which use AJAX, where the client can
automatically poll the server for the result of the work.

For EJB components, we annotate the local interface to specify that a method is processed
asynchronously.

@Local
public interface PaymentHandler
{

@Asynchronous
public void processPayment(Payment payment);

}

(For JavaBean components we can annotate the component implementation class if we like.)

The use of asynchronicity is transparent to the bean class:

@Stateless

Chapter 17.

211

@Name("paymentHandler")
public class PaymentHandlerBean implements PaymentHandler
{

public void processPayment(Payment payment)
{

//do some work!
}

}

And also transparent to the client:

@Stateful
@Name("paymentAction")
public class CreatePaymentAction
{

@In(create=true) PaymentHandler paymentHandler;
@In Bill bill;

public String pay()
{

paymentHandler.processPayment(new Payment(bill));
return "success";

}
}

The asynchronous method is processed in a completely new event context and does not have
access to the session or conversation context state of the caller. However, the business process
context is propagated.

Asynchronous method calls may be scheduled for later execution using the @Duration,
@Expiration and @IntervalDuration annotations.

@Local
public interface PaymentHandler
{

@Asynchronous
public void processScheduledPayment(Payment payment, @Expiration Date

date);

@Asynchronous
public void processRecurringPayment(Payment payment, @Expiration Date

date,
@IntervalDuration Long interval)'

}

@Stateful
@Name("paymentAction")
public class CreatePaymentAction
{

@In(create=true) PaymentHandler paymentHandler;
@In Bill bill;

Chapter 17. Asynchronicity and messaging

212

public String schedulePayment()
{

paymentHandler.processScheduledPayment(new Payment(bill),
bill.getDueDate());

return "success";
}

public String scheduleRecurringPayment()
{

paymentHandler.processRecurringPayment(new Payment(bill),
bill.getDueDate(), ONE_MONTH);

return "success";
}

}

Both client and server may access the Timer object associated with the invocation.

@Local
public interface PaymentHandler
{

@Asynchronous
public Timer processScheduledPayment(Payment payment, @Expiration Date

date);
}

@Stateless
@Name("paymentHandler")
public class PaymentHandlerBean implements PaymentHandler
{

@In Timer timer;

public Timer processScheduledPayment(Payment payment, @Expiration Date
date)

{
//do some work!

return timer; //note that return value is completely ignored
}

}

@Stateful
@Name("paymentAction")
public class CreatePaymentAction
{

@In(create=true) PaymentHandler paymentHandler;
@In Bill bill;

public String schedulePayment()
{

Timer timer = paymentHandler.processScheduledPayment(new

Asynchronous methods

213

Payment(bill), bill.getDueDate());
return "success";

}
}

Asynchronous methods cannot return any other value to the caller.

1.2. Asynchronous events

Component-driven events may also be asynchronous. To raise an event for asynchronous
processing, simply call the raiseAsynchronousEvent() methods of the Events class. To
schedule a timed event, call one of the raiseTimedEvent() methods. Components may
observe asynchronous events in the usual way, but remember that only the business process
context is propagated to the asynchronous thread.

2. Messaging in Seam

Seam makes it easy to send and receive JMS messages to and from Seam components.

2.1. Configuration

To configure Seam's infrastructure for sending JMS messages, you need to tell Seam about any
topics and queues you want to send messages to, and also tell Seam where to find the
QueueConnectionFactory and/or TopicConnectionFactory.

Seam defaults to using UIL2ConnectionFactory which is the usual connection factory for use
with JBossMQ. If you are using some other JMS provider, you need to set one or both of
queueConnection.queueConnectionFactoryJndiName and
topicConnection.topicConnectionFactoryJndiName in seam.properties, web.xml or
components.xml.

You also need to list topics and queues in components.xml to install Seam managed
TopicPublishers and QueueSenders:

<jms:managed-topic-publisher name="stockTickerPublisher"
auto-create="true

topic-jndi-name="topic/stockTickerTopic"/>

<jms:managed-queue-sender name="paymentQueueSender" auto-create="true"
queue-jndi-name="queue/paymentQueue"/>

Using JBoss Messaging.
For using JBoss Messaging which comes with JBoss Enterprise Application Platform 4.3, you
should first set the value of the properties
'queueConnection.queueConnectionFactoryJndiName' and

Chapter 17. Asynchronicity and messaging

214

topicConnection.topicConnectionFactoryJndiName' to 'ConnectionFactory' which is the
default connection factory for JBoss Messaging. Then set the value of the
'connectionProvider' property to
'org.jboss.seam.remoting.messaging.JBossMessagingConnectionProvider' on the class
component 'org.jboss.seam.remoting.messaging.SubscriptionRegistry', which creates
topic connections for jboss messaging.

<component name="org.jboss.seam.jms.topicConnection">
<property name="topicConnectionFactoryJndiName">
ConnectionFactory
</property>

</component>
<component class="org.jboss.seam.remoting.messaging.SubscriptionRegistry"
installed="true">

<property name="allowedTopics">
chatroomTopic
</property>
<property name="connectionProvider">
org.jboss.seam.remoting.messaging.JBossMessagingConnectionProvider
</property>

</component>

You also need to update the topics to use JBoss Messaging as shown in the code fragment
below.

<server>
<mbean code="org.jboss.jms.server.destination.TopicService"

name="jboss.messaging.destination:service=Topic,name=chatroomTopic"
xmbean-dd="xmdesc/Topic-xmbean.xml">

<depends optional-attribute-name="ServerPeer">
jboss.messaging:service=ServerPeer
</depends>
<depends>
jboss.messaging:service=PostOffice
</depends>
<attribute name="SecurityConfig">

<security>
<role name="guest" read="true" write="true"/>
<role name="publisher" read="true" write="true"

create="false"/>
<role name="durpublisher" read="true" write="true"

create="true"/>
</security>

</attribute>
</mbean>

</server>

2.2. Sending messages

Now, you can inject a JMS TopicPublisher and TopicSession into any component:

Sending messages

215

@In
private TopicPublisher stockTickerPublisher;
@In
private TopicSession topicSession;

public void publish(StockPrice price) {
try
{

topicPublisher.publish(topicSession.createObjectMessage(price));
}
catch (Exception ex)
{

throw new RuntimeException(ex);
}

}

Or, for working with a queue:

@In
private QueueSender paymentQueueSender;
@In
private QueueSession queueSession;

public void publish(Payment payment) {
try
{

paymentQueueSender.send(queueSession.createObjectMessage(payment)
);

}
catch (Exception ex)
{

throw new RuntimeException(ex);
}

}

2.3. Receiving messages using a message-driven bean

You can process messages using any EJB3 message driven bean. Message-driven beans may
even be Seam components, in which case it is possible to inject other event and application
scoped Seam components.

2.4. Receiving messages in the client

Seam Remoting lets you subscribe to a JMS topic from client-side JavaScript. This is described
in the next chapter.

Chapter 17. Asynchronicity and messaging

216

Caching
In almost all enterprise applications, the database is the primary bottleneck, and the least
scalable tier of the runtime environment. People from a PHP/Ruby environment will try to tell
you that so-called "shared nothing" architectures scale well. While that may be literally true, I
don't know of many interesting multi-user applications which can be implemented with no
sharing of resources between different nodes of the cluster. What these silly people are really
thinking of is a "share nothing except for the database" architecture. Of course, sharing the
database is the primary problem with scaling a multi-user application—so the claim that this
architecture is highly scalable is absurd, and tells you a lot about the kind of applications that
these folks spend most of their time working on.

Almost anything we can possibly do to share the database less often is worth doing.

This calls for a cache. Well, not just one cache. A well designed Seam application will feature a
rich, multi-layered caching strategy that impacts every layer of the application:

• The database, of course, has its own cache. This is super-important, but can't scale like a
cache in the application tier.

• Your ORM solution (Hibernate, or some other JPA implementation) has a second-level cache
of data from the database. This is a very powerful capability, but is often misused. In a
clustered environment, keeping the data in the cache transactionally consistent across the
whole cluster, and with the database, is quite expensive. It makes most sense for data which
is shared between many users, and is updated rarely. In traditional stateless architectures,
people often try to use the second-level cache for conversational state. This is always bad,
and is especially wrong in Seam.

• The Seam conversation context is a cache of conversational state. Components you put into
the conversation context can hold and cache state relating to the current user interaction.

• In particular, the Seam-managed persistence context (or an extended EJB
container-managed persistence context associated with a conversation-scoped stateful
session bean) acts as a cache of data that has been read in the current conversation. This
cache tends to have a pretty high hitrate! Seam optimizes the replication of Seam-managed
persistence contexts in a clustered environment, and there is no requirement for transactional
consistency with the database (optimistic locking is sufficient) so you don't need to worry too
much about the performance implications of this cache, unless you read thousands of objects
into a single persistence context.

• The application can cache non-transactional state in the Seam application context. State kept
in the application context is of course not visible to other nodes in the cluster.

• The application can cache transactional state using the Seam pojoCache component, which
integrates JBossCache into the Seam environment. This state will be visible to other nodes if
you run JBoss cache in a clustered mode.

Chapter 18.

217

• Finally, Seam lets you cache rendered fragments of a JSF page. Unlike the ORM
second-level cache, this cache is not automatically invalidated when data changes, so you
need to write application code to perform explicit invalidation, or set appropriate expiration
policies.

For more information about the second-level cache, you'll need to refer to the documentation of
your ORM solution, since this is an extremely complex topic. In this section we'll discuss the use
of JBossCache directly, via the pojoCache component, or as the page fragment cache, via the
<s:cache> control.

1. Using JBossCache in Seam

The built-in pojoCache component manages an instance of org.jboss.cache.aop.PojoCache.
You can safely put any immutable Java object in the cache, and it will be replicated across the
cluster (assuming that replication is enabled). If you want to keep mutable objects in the cache,
you'll need to run the JBossCache bytecode preprocessor to ensure that changes to the objects
will be automatically detected and replicated.

To use pojoCache, all you need to do is put the JBossCache jars in the classpath, and provide
a resource named treecache.xml with an appropriate cache configuration. JBossCache has
many scary and confusing configuration settings, so we won't discuss them here. Please refer
to the JBossCache documentation for more information.

For an EAR depoyment of Seam, we recommend that the JBossCache jars and configuration
go directly into the EAR. Make sure you declare the jars in application.xml.

Now you can inject the cache into any Seam component:

@Name("chatroom")
public class Chatroom {

@In PojoCache pojoCache;

public void join(String username) {
try
{

Set<String> userList = (Set<String>) pojoCache.get("chatroom",
"userList");

if (userList==null)
{

userList = new HashSet<String>();
pojoCache.put("chatroom", "userList", userList);

}
userList.put(username);

}
catch (CacheException ce)
{

throw new RuntimeException(ce);
}

}
}

Chapter 18. Caching

218

If you want to have multiple JBossCache configurations in your application, use
components.xml:

<core:pojo-cache name="myCache" cfg-resource-name="myown/cache.xml"/>

2. Page fragment caching

The most interesting user of JBossCache is the <s:cache> tag, Seam's solution to the problem
of page fragment caching in JSF. <s:cache> uses pojoCache internally, so you need to follow
the steps listed above before you can use it. (Put the jars in the EAR, wade through the scary
configuration options, etc.)

<s:cache> is used for caching some rendered content which changes rarely. For example, the
welcome page of our blog displays the recent blog entries:

<s:cache key="recentEntries-#{blog.id}" region="welcomePageFragments">
<h:dataTable value="#{blog.recentEntries}" var="blogEntry">

<h:column>
<h3>#{blogEntry.title}</h3>
<div>

<s:formattedText value="#{blogEntry.body}"/>
</div>

</h:column>
</h:dataTable>

</s:cache>

The key let's you have multiple cached versions of each page fragment. In this case, there is
one cached version per blog. The region determines the JBossCache node that all version will
be stored in. Different nodes may have different expiry policies. (That's the stuff you set up
using the aforementioned scary configuration options.)

Of course, the big problem with <s:cache> is that it is too stupid to know when the underlying
data changes (for example, when the blogger posts a new entry). So you need to evict the
cached fragment manually:

public void post() {
...
entityManager.persist(blogEntry);
pojoCache.remove("welcomePageFragments", "recentEntries-" + blog.getId()

);
}

Alternatively, if it is not critical that changes are immediately visible to the user, you could set a
short expiry time on the JbossCache node.

Page fragment caching

219

220

Remoting
Seam provides a convenient method of remotely accessing components from a web page,
using AJAX (Asynchronous Javascript and XML). The framework for this functionality is
provided with almost no up-front development effort - your components only require simple
annotating to become accessible via AJAX. This chapter describes the steps required to build
an AJAX-enabled web page, then goes on to explain the features of the Seam Remoting
framework in more detail.

1. Configuration

To use remoting, the Seam Resource servlet must first be configured in your web.xml file:

<servlet>
<servlet-name>Seam Resource Servlet</servlet-name>
<servlet-class>org.jboss.seam.servlet.ResourceServlet</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>Seam Resource Servlet</servlet-name>
<url-pattern>/seam/resource/*</url-pattern>

</servlet-mapping>

The next step is to import the necessary Javascript into your web page. There are a minimum of
two scripts that must be imported. The first one contains all the client-side framework code that
enables remoting functionality:

<script type="text/javascript"
src="seam/resource/remoting/resource/remote.js"></script>

The second script contains the stubs and type definitions for the components you wish to call. It
is generated dynamically based on the local interface of your components, and includes type
definitions for all of the classes that can be used to call the remotable methods of the interface.
The name of the script reflects the name of your component. For example, if you have a
stateless session bean annotated with @Name("customerAction"), then your script tag should
look like this:

<script type="text/javascript"

Chapter 19.

221

src="seam/resource/remoting/interface.js?customerAction">
</script>

If you wish to access more than one component from the same page, then include them all as
parameters of your script tag:

<script type="text/javascript"
src="seam/resource/remoting/interface.js?customerAction&accountAction">

</script>

2. The "Seam" object

Client-side interaction with your components is all performed via the Seam Javascript object.
This object is defined in remote.js, and you'll be using it to make asynchronous calls against
your component. It is split into two areas of functionality; Seam.Component contains methods for
working with components and Seam.Remoting contains methods for executing remote requests.
The easiest way to become familiar with this object is to start with a simple example.

2.1. A Hello World example

Let's step through a simple example to see how the Seam object works. First of all, let's create a
new Seam component called helloAction.

@Stateless
@Name("helloAction")
public class HelloAction implements HelloLocal {

public String sayHello(String name) {
return "Hello, " + name;

}
}

You also need to create a local interface for our new component - take special note of the
@WebRemote annotation, as it's required to make our method accessible via remoting:

@Local
public interface HelloLocal {

Chapter 19. Remoting

222

@WebRemote
public String sayHello(String name);

}

That's all the server-side code we need to write. Now for our web page - create a new page and
import the following scripts:

<script type="text/javascript"
src="seam/resource/remoting/resource/remote.js"></script>
<script type="text/javascript"

src="seam/resource/remoting/interface.js?helloAction"></script>

To make this a fully interactive user experience, let's add a button to our page:

<button onclick="javascript:sayHello()">Say Hello</button>

We'll also need to add some more script to make our button actually do something when it's
clicked:

<script type="text/javascript">
//<![CDATA[

function sayHello() {
var name = prompt("What is your name?");
Seam.Component.getInstance("helloAction").sayHello(name,

sayHelloCallback);
}

function sayHelloCallback(result) {
alert(result);

}

//]]>
</script>

A Hello World example

223

We're done! Deploy your application and browse to your page. Click the button, and enter a
name when prompted. A message box will display the hello message confirming that the call
was successful. If you want to save some time, you'll find the full source code for this Hello
World example in Seam's /examples/remoting/helloworld directory.

So what does the code of our script actually do? Let's break it down into smaller pieces. To start
with, you can see from the Javascript code listing that we have implemented two methods - the
first method is responsible for prompting the user for their name and then making a remote
request. Take a look at the following line:

Seam.Component.getInstance("helloAction").sayHello(name,
sayHelloCallback);

The first section of this line, Seam.Component.getInstance("helloAction") returns a proxy,
or "stub" for our helloAction component. We can invoke the methods of our component
against this stub, which is exactly what happens with the remainder of the line: sayHello(name,
sayHelloCallback);.

What this line of code in its completeness does, is invoke the sayHello method of our
component, passing in name as a parameter. The second parameter, sayHelloCallback isn't a
parameter of our component's sayHello method, instead it tells the Seam Remoting framework
that once it receives the response to our request, it should pass it to the sayHelloCallback

Javascript method. This callback parameter is entirely optional, so feel free to leave it out if
you're calling a method with a void return type or if you don't care about the result.

The sayHelloCallback method, once receiving the response to our remote request then pops
up an alert message displaying the result of our method call.

2.2. Seam.Component

The Seam.Component Javascript object provides a number of client-side methods for working
with your Seam components. The two main methods, newInstance() and getInstance() are
documented in the following sections however their main difference is that newInstance() will
always create a new instance of a component type, and getInstance() will return a singleton
instance.

2.2.1. Seam.Component.newInstance()

Use this method to create a new instance of an entity or Javabean component. The object
returned by this method will have the same getter/setter methods as its server-side counterpart,
or alternatively if you wish you can access its fields directly. Take the following Seam entity
component for example:

@Name("customer")
@Entity

Chapter 19. Remoting

224

public class Customer implements Serializable
{

private Integer customerId;
private String firstName;
private String lastName;

@Column public Integer getCustomerId() {
return customerId;

}

public void setCustomerId(Integer customerId} {
this.customerId = customerId;

}

@Column public String getFirstName() {
return firstName;

}

public void setFirstName(String firstName) {
this.firstName = firstName;

}

@Column public String getLastName() {
return lastName;

}

public void setLastName(String lastName) {
this.lastName = lastName;

}
}

To create a client-side Customer you would write the following code:

var customer = Seam.Component.newInstance("customer");

Then from here you can set the fields of the customer object:

customer.setFirstName("John");
// Or you can set the fields directly
customer.lastName = "Smith";

2.2.2. Seam.Component.getInstance()

The getInstance() method is used to get a reference to a Seam session bean component
stub, which can then be used to remotely execute methods against your component. This

Seam.Component

225

method returns a singleton for the specified component, so calling it twice in a row with the
same component name will return the same instance of the component.

To continue our example from before, if we have created a new customer and we now wish to
save it, we would pass it to the saveCustomer() method of our customerAction component:

Seam.Component.getInstance("customerAction").saveCustomer(customer);

2.2.3. Seam.Component.getComponentName()

Passing an object into this method will return its component name if it is a component, or null if
it is not.

if (Seam.Component.getComponentName(instance) == "customer")
alert("Customer");

else if (Seam.Component.getComponentName(instance) == "staff")
alert("Staff member");

2.3. Seam.Remoting

Most of the client side functionality for Seam Remoting is contained within the Seam.Remoting

object. While you shouldn't need to directly call most of its methods, there are a couple of
important ones worth mentioning.

2.3.1. Seam.Remoting.createType()

If your application contains or uses Javabean classes that aren't Seam components, you may
need to create these types on the client side to pass as parameters into your component
method. Use the createType() method to create an instance of your type. Pass in the fully
qualified Java class name as a parameter:

var widget = Seam.Remoting.createType("com.acme.widgets.MyWidget");

2.3.2. Seam.Remoting.getTypeName()

This method is the equivalent of Seam.Component.getComponentName() but for
non-component types. It will return the name of the type for an object instance, or null if the
type is not known. The name is the fully qualified name of the type's Java class.

3. Client Interfaces

Chapter 19. Remoting

226

In the configuration section above, the interface, or "stub" for our component is imported into our
page via seam/resource/remoting/interface.js:

<script type="text/javascript"
src="seam/resource/remoting/interface.js?customerAction">
</script>

By including this script in our page, the interface definitions for our component, plus any other
components or types that are required to execute the methods of our component are generated
and made available for the remoting framework to use.

There are two types of client stub that can be generated, "executable" stubs and "type" stubs.
Executable stubs are behavioural, and are used to execute methods against your session bean
components, while type stubs contain state and represent the types that can be passed in as
parameters or returned as a result.

The type of client stub that is generated depends on the type of your Seam component. If the
component is a session bean, then an executable stub will be generated, otherwise if it's an
entity or JavaBean, then a type stub will be generated. There is one exception to this rule; if
your component is a JavaBean (ie it is not a session bean nor an entity bean) and any of its
methods are annotated with @WebRemote, then an executable stub will be generated for it
instead of a type stub. This allows you to use remoting to call methods of your JavaBean
components in a non-EJB environment where you don't have access to session beans.

4. The Context

The Seam Remoting Context contains additional information which is sent and received as part
of a remoting request/response cycle. At this stage it only contains the conversation ID but may
be expanded in the future.

4.1. Setting and reading the Conversation ID

If you intend on using remote calls within the scope of a conversation then you need to be able
to read or set the conversation ID in the Seam Remoting Context. To read the conversation ID
after making a remote request call Seam.Remoting.getContext().getConversationId(). To
set the conversation ID before making a request, call
Seam.Remoting.getContext().setConversationId().

If the conversation ID hasn't been explicitly set with
Seam.Remoting.getContext().setConversationId(), then it will be automatically assigned
the first valid conversation ID that is returned by any remoting call. If you are working with
multiple conversations within your page, then you may need to explicitly set the conversation ID
before each call. If you are working with just a single conversation, then you don't need to do

The Context

227

anything special.

5. Batch Requests

Seam Remoting allows multiple component calls to be executed within a single request. It is
recommended that this feature is used wherever it is appropriate to reduce network traffic.

The method Seam.Remoting.startBatch() will start a new batch, and any component calls
executed after starting a batch are queued, rather than being sent immediately. When all the
desired component calls have been added to the batch, the Seam.Remoting.executeBatch()

method will send a single request containing all of the queued calls to the server, where they will
be executed in order. After the calls have been executed, a single response containining all
return values will be returned to the client and the callback functions (if provided) triggered in the
same order as execution.

If you start a new batch via the startBatch() method but then decide you don't want to send it,
the Seam.Remoting.cancelBatch() method will discard any calls that were queued and exit
the batch mode.

To see an example of a batch being used, take a look at /examples/remoting/chatroom.

6. Working with Data types

6.1. Primitives / Basic Types

This section describes the support for basic data types. On the server side these values are
generally compatible with either their primitive type or their corresponding wrapper class.

6.1.1. String

Simply use Javascript String objects when setting String parameter values.

6.1.2. Number

There is support for all number types supported by Java. On the client side, number values are
always serialized as their String representation and then on the server side they are converted
to the correct destination type. Conversion into either a primitive or wrapper type is supported
for Byte, Double, Float, Integer, Long and Short types.

6.1.3. Boolean

Booleans are represented client side by Javascript Boolean values, and server side by a Java
boolean.

6.2. JavaBeans

In general these will be either Seam entity or JavaBean components, or some other
non-component class. Use the appropriate method (either Seam.Component.newInstance() for

Chapter 19. Remoting

228

Seam components or Seam.Remoting.createType() for everything else) to create a new
instance of the object.

It is important to note that only objects that are created by either of these two methods should
be used as parameter values, where the parameter is not one of the other valid types
mentioned anywhere else in this section. In some situations you may have a component
method where the exact parameter type cannot be determined, such as:

@Name("myAction")
public class MyAction implements MyActionLocal {

public void doSomethingWithObject(Object obj) {
// code

}
}

In this case you might want to pass in an instance of your myWidget component, however the
interface for myAction won't include myWidget as it is not directly referenced by any of its
methods. To get around this, MyWidget needs to be explicitly imported:

<script type="text/javascript"
src="seam/resource/remoting/interface.js?myAction&myWidget">
</script>

This will then allow a myWidget object to be created with
Seam.Component.newInstance("myWidget"), which can then be passed to
myAction.doSomethingWithObject().

6.3. Dates and Times

Date values are serialized into a String representation that is accurate to the millisecond. On the
client side, use a Javascript Date object to work with date values. On the server side, use any
java.util.Date (or descendent, such as java.sql.Date or java.sql.Timestamp class.

6.4. Enums

On the client side, enums are treated the same as Strings. When setting the value for an enum
parameter, simply use the String representation of the enum. Take the following component as
an example:

@Name("paintAction")
public class paintAction implements paintLocal {

public enum Color {red, green, blue, yellow, orange, purple};

Dates and Times

229

public void paint(Color color) {
// code

}
}

To call the paint() method with the color red, pass the parameter value as a String literal:

Seam.Component.getInstance("paintAction").paint("red");

The inverse is also true - that is, if a component method returns an enum parameter (or contains
an enum field anywhere in the returned object graph) then on the client-side it will be
represented as a String.

6.5. Collections

6.5.1. Bags

Bags cover all collection types including arrays, collections, lists, sets, (but excluding Maps -
see the next section for those), and are implemented client-side as a Javascript array. When
calling a component method that accepts one of these types as a parameter, your parameter
should be a Javascript array. If a component method returns one of these types, then the return
value will also be a Javascript array. The remoting framework is clever enough on the server
side to convert the bag to an appropriate type for the component method call.

6.5.2. Maps

As there is no native support for Maps within Javascript, a simple Map implementation is
provided with the Seam Remoting framework. To create a Map which can be used as a
parameter to a remote call, create a new Seam.Remoting.Map object:

var map = new Seam.Remoting.Map();

This Javascript implementation provides basic methods for working with Maps: size(),
isEmpty(), keySet(), values(), get(key), put(key, value), remove(key) and
contains(key). Each of these methods are equivalent to their Java counterpart. Where the
method returns a collection, such as keySet() and values(), a Javascript Array object will be
returned that contains the key or value objects (respectively).

7. Debugging

To aid in tracking down bugs, it is possible to enable a debug mode which will display the

Chapter 19. Remoting

230

contents of all the packets send back and forth between the client and server in a popup
window. To enable debug mode, either execute the setDebug() method in Javascript:

Seam.Remoting.setDebug(true);

Or configure it via components.xml:

<remoting:remoting debug="true"/>

To turn off debugging, call setDebug(false). If you want to write your own messages to the
debug log, call Seam.Remoting.log(message).

8. The Loading Message

The default loading message that appears in the top right corner of the screen can be modified,
its rendering customised or even turned off completely.

8.1. Changing the message

To change the message from the default "Please Wait..." to something different, set the value of
Seam.Remoting.loadingMessage:

Seam.Remoting.loadingMessage = "Loading...";

8.2. Hiding the loading message

To completely suppress the display of the loading message, override the implementation of
displayLoadingMessage() and hideLoadingMessage() with functions that instead do nothing:

// don't display the loading indicator
Seam.Remoting.displayLoadingMessage = function() {};
Seam.Remoting.hideLoadingMessage = function() {};

8.3. A Custom Loading Indicator

It is also possible to override the loading indicator to display an animated icon, or anything else
that you want. To do this override the displayLoadingMessage() and hideLoadingMessage()

messages with your own implementation:

The Loading Message

231

Seam.Remoting.displayLoadingMessage = function() {
// Write code here to display the indicator

};

Seam.Remoting.hideLoadingMessage = function() {
// Write code here to hide the indicator

};

9. Controlling what data is returned

When a remote method is executed, the result is serialized into an XML response that is
returned to the client. This response is then unmarshaled by the client into a Javascript object.
For complex types (i.e. Javabeans) that include references to other objects, all of these
referenced objects are also serialized as part of the response. These objects may reference
other objects, which may reference other objects, and so forth. If left unchecked, this object
"graph" could potentially be enormous, depending on what relationships exist between your
objects. And as a side issue (besides the potential verbosity of the response), you might also
wish to prevent sensitive information from being exposed to the client.

Seam Remoting provides a simple means to "constrain" the object graph, by specifying the
exclude field of the remote method's @WebRemote annotation. This field accepts a String array
containing one or more paths specified using dot notation. When invoking a remote method, the
objects in the result's object graph that match these paths are excluded from the serialized
result packet.

For all our examples, we'll use the following Widget class:

@Name("widget")
public class Widget
{
private String value;
private String secret;
private Widget child;
private Map<String,Widget> widgetMap;
private List<Widget> widgetList;

// getters and setters for all fields
}

9.1. Constraining normal fields

If your remote method returns an instance of Widget, but you don't want to expose the secret

field because it contains sensitive information, you would constrain it like this:

Chapter 19. Remoting

232

@WebRemote(exclude = {"secret"})
public Widget getWidget();

The value "secret" refers to the secret field of the returned object. Now, suppose that we don't
care about exposing this particular field to the client. Instead, notice that the Widget value that
is returned has a field child that is also a Widget. What if we want to hide the child's secret

value instead? We can do this by using dot notation to specify this field's path within the result's
object graph:

@WebRemote(exclude = {"child.secret"})
public Widget getWidget();

9.2. Constraining Maps and Collections

The other place that objects can exist within an object graph are within a Map or some kind of
collection (List, Set, Array, etc). Collections are easy, and are treated like any other field. For
example, if our Widget contained a list of other Widgets in its widgetList field, to constrain the
secret field of the Widgets in this list the annotation would look like this:

@WebRemote(exclude = {"widgetList.secret"})
public Widget getWidget();

To constrain a Map's key or value, the notation is slightly different. Appending [key] after the
Map's field name will constrain the Map's key object values, while [value] will constrain the
value object values. The following example demonstrates how the values of the widgetMap field
have their secret field constrained:

@WebRemote(exclude = {"widgetMap[value].secret"})
public Widget getWidget();

9.3. Constraining objects of a specific type

There is one last notation that can be used to constrain the fields of a type of object no matter
where in the result's object graph it appears. This notation uses either the name of the
component (if the object is a Seam component) or the fully qualified class name (only if the
object is not a Seam component) and is expressed using square brackets:

@WebRemote(exclude = {"[widget].secret"})

Constraining Maps and Collections

233

public Widget getWidget();

9.4. Combining Constraints

Constraints can also be combined, to filter objects from multiple paths within the object graph:

@WebRemote(exclude = {"widgetList.secret", "widgetMap[value].secret"})
public Widget getWidget();

10. JMS Messaging

Seam Remoting provides experimental support for JMS Messaging. This section describes the
JMS support that is currently implemented, but please note that this may change in the future. It
is currently not recommended that this feature is used within a production environment.

10.1. Configuration

Before you can subscribe to a JMS topic, you must first configure a list of the topics that can be
subscribed to by Seam Remoting. List the topics under
org.jboss.seam.remoting.messaging.subscriptionRegistry.allowedTopics in
seam.properties, web.xml or components.xml.

<remoting:remoting poll-timeout="5" poll-interval="1"/>

10.2. Subscribing to a JMS Topic

The following example demonstrates how to subscribe to a JMS Topic:

function subscriptionCallback(message)
{

if (message instanceof Seam.Remoting.TextMessage)
alert("Received message: " + message.getText());

}

Seam.Remoting.subscribe("topicName", subscriptionCallback);

The Seam.Remoting.subscribe() method accepts two parameters, the first being the name of
the JMS Topic to subscribe to, the second being the callback function to invoke when a
message is received.

Chapter 19. Remoting

234

There are two types of messages supported, Text messages and Object messages. If you need
to test for the type of message that is passed to your callback function you can use the
instanceof operator to test whether the message is a Seam.Remoting.TextMessage or
Seam.Remoting.ObjectMessage. A TextMessage contains the text value in its text field (or
alternatively call getText() on it), while an ObjectMessage contains its object value in its
object field (or call its getObject() method).

10.3. Unsubscribing from a Topic

To unsubscribe from a topic, call Seam.Remoting.unsubscribe() and pass in the topic name:

Seam.Remoting.unsubscribe("topicName");

10.4. Tuning the Polling Process

There are two parameters which you can modify to control how polling occurs. The first one is
Seam.Remoting.pollInterval, which controls how long to wait between subsequent polls for
new messages. This parameter is expressed in seconds, and its default setting is 10.

The second parameter is Seam.Remoting.pollTimeout, and is also expressed as seconds. It
controls how long a request to the server should wait for a new message before timing out and
sending an empty response. Its default is 0 seconds, which means that when the server is
polled, if there are no messages ready for delivery then an empty response will be immediately
returned.

Caution should be used when setting a high pollTimeout value; each request that has to wait
for a message means that a server thread is tied up until a message is received, or until the
request times out. If many such requests are being served simultaneously, it could mean a large
number of threads become tied up because of this reason.

It is recommended that you set these options via components.xml, however they can be
overridden via Javascript if desired. The following example demonstrates how to configure the
polling to occur much more aggressively. You should set these parameters to suitable values for
your application:

Via components.xml:

<remoting:remoting poll-timeout="5" poll-interval="1"/>

Via JavaScript:

// Only wait 1 second between receiving a poll response and sending the
next poll request.
Seam.Remoting.pollInterval = 1;

Unsubscribing from a Topic

235

// Wait up to 5 seconds on the server for new messages
Seam.Remoting.pollTimeout = 5;

Chapter 19. Remoting

236

Spring Framework integration
The Spring integration module allows easy migration of Spring-based projects to Seam and
allows Spring applications to take advantage of key Seam features like conversations and
Seam's more sophisticated persistence context management.

Seam's support for Spring provides the ability to:

• inject Seam component instances into Spring beans

• inject Spring beans into Seam components

• turn Spring beans into Seam components

• allow Spring beans to live in any Seam context

• start a spring WebApplicationContext with a Seam component

1. Injecting Seam components into Spring beans

Injecting Seam component instances into Spring beans is accomplished using the
<seam:instance/> namespace handler. To enable the Seam namespace handler, the Seam
namespace must be added to the Spring beans definition file:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:seam="http://jboss.com/products/seam/spring-seam"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://jboss.com/products/seam/spring-seam
http://jboss.com/products/seam/spring-seam-1.2.xsd">

Now any Seam component may be injected into any Spring bean:

<bean id="someSpringBean" class="SomeSpringBeanClass" scope="prototype">
<property name="someProperty">

<seam:instance name="someComponent"/>
</property>

</bean>

An EL expression may be used instead of a component name:

<bean id="someSpringBean" class="SomeSpringBeanClass" scope="prototype">
<property name="someProperty">

<seam:instance name="#{someExpression}"/>
</property>

</bean>

Chapter 20.

237

Seam component instances may even be made available for injection into Spring beans by a
Spring bean id.

<seam:instance name="someComponent" id="someSeamComponentInstance"/>

<bean id="someSpringBean" class="SomeSpringBeanClass" scope="prototype">
<property name="someProperty" ref="someSeamComponentInstance">

</bean>

Now for the caveat!

Seam was designed from the ground up to support a stateful component model with multiple
contexts. Spring was not. Unlike Seam bijection, Spring injection does not occur at method
invocation time. Instead, injection happens only when the Spring bean is instantiated. So the
instance available when the bean is instantiated will be the same instance that the bean uses
for the entire life of the bean. For example, if a Seam CONVERSATION-scoped component
instance is directly injected into a singleton Spring bean, that singleton will hold a reference to
the same instance long after the conversation is over! We call this problem scope impedance.
Seam bijection ensures that scope impedance is maintained naturally as an invocation flows
through the system. In Spring, we need to inject a proxy of the Seam component, and resolve
the reference when the proxy is invoked.

The <seam:instance/> tag lets us automatically proxy the Seam component.

<seam:instance id="seamManagedEM" name="someManagedEMComponent"
proxy="true"/>

<bean id="someSpringBean" class="SomeSpringBeanClass">
<property name="entityManager" ref="seamManagedEM">

</bean>

This example shows one way to use a Seam-managed persistence context from a Spring bean.
(A more robust way to use Seam-managed persistence contexts as a replacement for the
Spring OpenEntityManagerInView filter will be provided in a future release)

2. Injecting Spring beans into Seam components

It is even easier to inject Spring beans into Seam component instances. Actually, there are two
possible approaches:

• inject a Spring bean using an EL expression

• make the Spring bean a Seam component

We'll discuss the second option in the next section. The easiest approach is to access the
Spring beans via EL.

Chapter 20. Spring Framework integration

238

The Spring DelegatingVariableResolver is an integration point Spring provides for
integrating Spring with JSF. This VariableResolver makes all Spring beans available in EL by
their bean id. You'll need to add the DelegatingVariableResolver to faces-config.xml:

<application>
<variable-resolver>

org.springframework.web.jsf.DelegatingVariableResolver
</variable-resolver>

</application>

Then you can inject Spring beans using @In:

@In("#{bookingService}")
private BookingService bookingService;

The use of Spring beans in EL is not limited to injection. Spring beans may be used anywhere
that EL expressions are used in Seam: process and pageflow definitions, working memory
assertions, etc...

3. Making a Spring bean into a Seam component

The <seam:component/> namespace handler can be used to make any Spring bean a Seam
component. Just place the <seam:component/> tag within the declaration of the bean that you
wish to be a Seam component:

<bean id="someSpringBean" class="SomeSpringBeanClass" scope="prototype">
<seam:component/>

</bean>

By default, <seam:component/> will create a STATELESS Seam component with class and name
provided in the bean definition. Occasionally, such as when a FactoryBean is used, the class of
the Spring bean may not be the class appearing in the bean definition. In such cases the class

should be explicitly specified. A Seam component name may be explicitly specified in cases
where there is potential for a naming conflict.

The scope attribute of <seam:component/> may be used if you wish the Spring bean to be
managed in a particular Seam scope. The Spring bean must be scoped to prototype if the
Seam scope specified is anything other than STATELESS. Pre-existing Spring beans usually
have a fundamentally stateless character, so this attribute is not usually needed.

4. Seam-scoped Spring beans

The Seam integration package also lets you use Seam's contexts as Spring 2.0 style custom
scopes. This lets you declare any Spring bean in any of Seam's contexts. However, note once
again that Spring's component model was never architected to support statefulness, so please
use this feature with great care. In particular, clustering of session or conversation scoped

Making a Spring bean into a Seam

239

Spring beans is deeply problematic, and care must be taken when injecting a bean or
component from a wider scope into a bean of a narrower scope.

By specifying <seam:configure-scopes/> once in a Spring bean factory configuration, all of
the Seam scopes will be available to Spring beans as custom scopes. To associate a Spring
bean with a particular Seam scope, specify the Seam scope in the scope attribute of the bean
definition.

<!-- Only needs to be specified once per bean factory-->
<seam:configure-scopes/>

...

<bean id="someSpringBean" class="SomeSpringBeanClass"
scope="seam.CONVERSATION"/>

The prefix of the scope name may be changed by specifying the prefix attribute in the
configure-scopes definition. (The default prefix is seam.)

Seam-scoped Spring beans defined this way can be injected into other Spring beans without
the use of <seam:instance/>. However, care must be taken to ensure scope impedance is
maintained. The normal approach used in Spring is to specify <aop:scoped-proxy/> in the
bean definition. However, Seam-scoped Spring beans are not compatible with
<aop:scoped-proxy/>. So if you need to inject a Seam-scoped Spring bean into a singleton,
<seam:instance/> must be used:

<bean id="someSpringBean" class="SomeSpringBeanClass"
scope="seam.CONVERSATION"/>

...

<bean id="someSingleton">
<property name="someSeamScopedSpringBean">

<seam:instance name="someSpringBean" proxy="true"/>
</property>

</bean>

5. Spring Application Context as a Seam Component

Although it is possible to use the Spring ContextLoaderListener to start your application's
Spring ApplicationContext there are a couple of limitations.

• the Spring ApplicationContext must be started after the SeamListener

• it can be tricky starting a Spring ApplicationContext for use in Seam unit and integration tests

To overcome these two limitations the Spring integration includes a Seam component that will

Chapter 20. Spring Framework integration

240

start a Spring ApplicationContext. To use this Seam component place the
<spring:context-loader/> definition in the components.xml. Specify your Spring context file
location in the config-locations attribute. If more than one config file is needed you can place
them in the nested <spring:config-locations/> element following standard
components.xml multi value practices.

<components xmlns="http://jboss.com/products/seam/components"
xmlns:spring="http://jboss.com/products/seam/spring"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://jboss.com/products/seam/components

http://jboss.com/products/seam/components-1.2.xsd
http://jboss.com/products/seam/spring

http://jboss.com/products/seam/spring-1.2.xsd">

<spring:context-loader
context-locations="/WEB-INF/applicationContext.xml"/>

</components>

component

241

242

Configuring Seam and packaging
Seam applications
Configuration is a very boring topic and an extremely tedious pastime. Unfortunately, several
lines of XML are required to integrate Seam into your JSF implementation and servlet container.
There's no need to be too put off by the following sections; you'll never need to type any of this
stuff yourself, since you can just copy and paste from the example applications!

1. Basic Seam configuration

First, let's look at the basic configuration that is needed whenever we use Seam with JSF.

1.1. Integrating Seam with JSF and your servlet container

Seam requires the following entry in your web.xml file:

<listener>
<listener-class>org.jboss.seam.servlet.SeamListener</listener-class>

</listener>

This listener is responsible for bootstrapping Seam, and for destroying session and application
contexts.

To integrate with the JSF request lifecycle, we also need a JSF PhaseListener registered in in
the faces-config.xml file:

<lifecycle>
<phase-listener>org.jboss.seam.jsf.SeamPhaseListener</phase-listener>

</lifecycle>

The actual listener class here varies depending upon how you want to manage transaction
demarcation (more on this below).

If you are using Sun's JSF 1.2 reference implementation, you should also add this to
faces-config.xml:

<application>
<el-resolver>org.jboss.seam.jsf.SeamELResolver</el-resolver>

</application>

(This line should not strictly speaking be necessary, but it works around a minor bug in the RI.)

Some JSF implementations have a broken implementation of server-side state saving that
interferes with Seam's conversation propagation. If you have problems with conversation

Chapter 21.

243

propagation during form submissions, try switching to client-side state saving. You'll need this in
web.xml:

<context-param>
<param-name>javax.faces.STATE_SAVING_METHOD</param-name>
<param-value>client</param-value>

</context-param>

1.2. Seam Resource Servlet

The Seam Resource Servlet provides resources used by Seam Remoting, captchas (see the
security chapter) and some JSF UI controls. Configuring the Seam Resource Servlet requires
the following entry in web.xml:

<servlet>
<servlet-name>Seam Resource Servlet</servlet-name>
<servlet-class>org.jboss.seam.servlet.ResourceServlet</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>Seam Resource Servlet</servlet-name>
<url-pattern>/seam/resource/*</url-pattern>

</servlet-mapping>

1.3. Seam servlet filters

Seam doesn't need any servlet filters for basic operation. However, there are several features
which depend upon the use of filters. To make things easier for you guys, Seam lets you add
and configure servlet filters just like you would configure other built-in Seam components. To
take advantage of this feature, we must first install a master filter in web.xml:

<filter>
<filter-name>Seam Filter</filter-name>
<filter-class>org.jboss.seam.web.SeamFilter</filter-class>

</filter>

<filter-mapping>
<filter-name>Seam Filter</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

Adding the master filter enables the following built-in filters.

1.3.1. Exception handling

This filter provides the exception mapping functionality in pages.xml (almost all applications will
need this). It also takes care of rolling back uncommitted transactions when uncaught
exceptions occur. (According to the Java EE specification, the web container should do this

Chapter 21. Configuring Seam and packaging Seam applications

244

automatically, but we've found that this behavior cannot be relied upon in all application servers.
And it is certainly not required of plain servlet engines like Tomcat.)

By default, the exception handling filter will process all requests, however this behavior may be
adjusted by adding a <web:exception-filter> entry to components.xml, as shown in this
example:

<components xmlns="http://jboss.com/products/seam/components"
xmlns:core="http://jboss.com/products/seam/core"
xmlns:web="http://jboss.com/products/seam/web"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation=

"http://jboss.com/products/seam/core
http://jboss.com/products/seam/core-1.2.xsd

http://jboss.com/products/seam/components
http://jboss.com/products/seam/components-1.2.xsd

http://jboss.com/products/seam/web
http://jboss.com/products/seam/web-1.2.xsd">

<web:exception-filter url-pattern="*.seam"/>

</components>

• url-pattern — Used to specify which requests are filtered, the default is all requests.

1.3.2. Conversation propagation with redirects

This filter allows Seam to propagate the conversation context across browser redirects. It
intercepts any browser redirects and adds a request parameter that specifies the Seam
conversation identifier.

The redirect filter will process all requests by default, but this behavior can also be adjusted in
components.xml:

<web:redirect-filter url-pattern="*.seam"/>

• url-pattern — Used to specify which requests are filtered, the default is all requests.

1.3.3. Multipart form submissions

This feature is necessary when using the Seam file upload JSF control. It detects multipart form
requests and processes them according to the multipart/form-data specification (RFC-2388). To
override the default settings, add the following entry to components.xml:

<web:multipart-filter create-temp-files="true"
max-request-size="1000000"
url-pattern="*.seam"/>

Seam servlet filters

245

• create-temp-files — If set to true, uploaded files are written to a temporary file (instead of
held in memory). This may be an important consideration if large file uploads are expected.
The default setting is false.

• max-request-size — If the size of a file upload request (determined by reading the
Content-Length header in the request) exceeds this value, the request will be aborted. The
default setting is 0 (no size limit).

• url-pattern — Used to specify which requests are filtered, the default is all requests.

1.3.4. Character encoding

Sets the character encoding of submitted form data.

This filter is not installed by default and requires an entry in components.xml to enable it:

<web:character-encoding-filter encoding="UTF-16"
override-client="true"
url-pattern="*.seam"/>

• encoding — The encoding to use.

• override-client — If this is set to true, the request encoding will be set to whatever is
specified by encoding no matter whether the request already specifies an encoding or not. If
set to false, the request encoding will only be set if the request doesn't already specify an
encoding. The default setting is false.

• url-pattern — Used to specify which requests are filtered, the default is all requests.

1.3.5. Context management for custom servlets

Requests sent direct to some servlet other than the JSF servlet are not processed through the
JSF lifecycle, so Seam provides a servlet filter that can be applied to any other servlet that
needs access to Seam components.

This filter allows custom servlets to interact with the Seam contexts. It sets up the Seam
contexts at the beginning of each request, and tears them down at the end of the request. You
should make sure that this filter is never applied to the JSF FacesServlet. Seam uses the
phase listener for context management in a JSF request.

This filter is not installed by default and requires an entry in components.xml to enable it:

<web:context-filter url-pattern="/media/*"/>

Chapter 21. Configuring Seam and packaging Seam applications

246

• url-pattern — Used to specify which requests are filtered, the default is all requests. If the
url-pattern is specified for the context filter, then the filter will be enabled (unless explicitly
disabled).

The context filter expects to find the conversation id of any conversation context in a request
parameter named conversationId. You are responsible for ensuring that it gets sent in the
request.

You are also responsible for ensuring propagation of any new conversation id back to the client.
Seam exposes the conversation id as a property of the built in component conversation.

1.4. Integrating Seam with your EJB container

We need to apply the SeamInterceptor to our Seam components. The simplest way to do this
is to add the following interceptor binding to the <assembly-descriptor> in ejb-jar.xml:

<interceptor-binding>
<ejb-name>*</ejb-name>

<interceptor-class>org.jboss.seam.ejb.SeamInterceptor</interceptor-class>
</interceptor-binding>

Seam needs to know where to go to find session beans in JNDI. One way to do this is specify
the @JndiName annotation on every session bean Seam component. However, this is quite
tedious. A better approach is to specify a pattern that Seam can use to calculate the JNDI name
from the EJB name. Unfortunately, there is no standard mapping to global JNDI defined in the
EJB3 specification, so this mapping is vendor-specific. We usually specify this option in
components.xml.

For JBoss AS, the following pattern is correct:

<core:init jndi-name="myEarName/#{ejbName}/local" />

Where myEarName is the name of the EAR in which the bean is deployed.

Outside the context of an EAR (when using the JBoss Embeddable EJB3 container), the
following pattern is the one to use:

<core:init jndi-name="#{ejbName}/local" />

You'll have to experiment to find the right setting for other application servers. Note that some
servers (such as GlassFish) require you to specify JNDI names for all EJB components
explicitly (and tediously). In this case, you can pick your own pattern ;-)

1.5. Using facelets

Integrating Seam with your EJB container

247

If you want follow our advice and use facelets instead of JSP, add the following lines to
faces-config.xml:

<application>
<view-handler>com.sun.facelets.FaceletViewHandler</view-handler>

</application>

And the following lines to web.xml:

<context-param>
<param-name>javax.faces.DEFAULT_SUFFIX</param-name>
<param-value>.xhtml</param-value>

</context-param>

1.6. Don't forget!

There is one final item you need to know about. You must place a seam.properties,
META-INF/seam.properties or META-INF/components.xml file in any archive in which your
Seam components are deployed (even an empty properties file will do). At startup, Seam will
scan any archives with seam.properties files for seam components.

In a web archive (WAR) file, you must place a seam.properties file in the WEB-INF/classes

directory if you have any Seam components included here.

That's why all the Seam examples have an empty seam.properties file. You can't just delete
this file and expect everything to still work!

You might think this is silly and what kind of idiot framework designers would make an empty file
affect the behavior of their software?? Well, this is a workaround for a limitation of the JVM—if
we didn't use this mechanism, our next best option would be to force you to list every
component explicitly in components.xml, just like some other competing frameworks do! I think
you'll like our way better.

2. Configuring Seam in Java EE 5

Chapter 21. Configuring Seam and packaging Seam applications

248

If you're running in a Java EE 5 environment, this is all the configuration required to start using
Seam!

2.1. Packaging

Once you've packaged all this stuff together into an EAR, the archive structure will look
something like this:

my-application.ear/
jboss-seam.jar
el-api.jar
el-ri.jar
META-INF/

MANIFEST.MF
application.xml

my-application.war/
META-INF/

MANIFEST.MF
WEB-INF/

web.xml
components.xml
faces-config.xml
lib/

jsf-facelets.jar
jboss-seam-ui.jar

login.jsp
register.jsp
...

my-application.jar/
META-INF/

MANIFEST.MF
persistence.xml

seam.properties
org/

jboss/
myapplication/

User.class

Packaging

249

Login.class
LoginBean.class
Register.class
RegisterBean.class
...

You must include jboss-seam.jar, el-api.jar and el-ri.jar in the EAR classpath. Make
sure you reference all of these jars from application.xml.

If you want to use jBPM or Drools, you must include the needed jars in the EAR classpath.
Make sure you reference all of the jars from application.xml.

If you want to use facelets (our recommendation), you must include jsf-facelets.jar in the
WEB-INF/lib directory of the WAR.

If you want to use the Seam tag library (most Seam applications do), you must include
jboss-seam-ui.jar in the WEB-INF/lib directory of the WAR. If you want to use the PDF or
email tag libraries, you need to put jboss-seam-pdf.jar or jboss-seam-mail.jar in
WEB-INF/lib.

If you want to use the Seam debug page (only works for applications using facelets), you must
include jboss-seam-debug.jar in the WEB-INF/lib directory of the WAR.

Seam ships with several example applications that are deployable in any Java EE container that
supports EJB 3.0.

I really wish that was all there was to say on the topic of configuration but unfortunately we're
only about a third of the way there. If you're too overwhelmed by all this tedious configuration
stuff, feel free to skip over the rest of this section and come back to it later.

3. Configuring Seam in Java SE, with the JBoss
Embeddable EJB3 container

The JBoss Embeddable EJB3 container lets you run EJB3 components outside the context of
the Java EE 5 application server. This is especially, but not only, useful for testing.

The Seam booking example application includes a TestNG integration test suite that runs on the
Embeddable EJB3 container.

Chapter 21. Configuring Seam and packaging Seam applications

250

The booking example application may even be deployed to Tomcat.

3.1. Installing the Embeddable EJB3 container

Seam ships with a build of the Embeddable EJB3 container in the embedded-ejb directory. To
use the Embeddable EJB3 container with Seam, add the embedded-ejb/conf directory, and all
jars in the lib and embedded-ejb/lib directories to your classpath. Then, add the following
line to components.xml:

<core:ejb />

This setting installs the built-in component named org.jboss.seam.core.ejb. This component
is responsible for bootstrapping the EJB container when Seam is started, and shutting it down
when the web application is undeployed.

3.2. Configuring a datasource with the Embeddable EJB3
container

You should refer to the Embeddable EJB3 container documentation for more information about
configuring the container. You'll probably at least need to set up your own datasource.
Embeddable EJB3 is implemented using the JBoss Microcontainer, so it's very easy to add new
services to the minimal set of services provided by default. For example, I can add a new
datasource by putting this jboss-beans.xml file in my classpath:

<?xml version="1.0" encoding="UTF-8"?>

<deployment xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:jboss:bean-deployer

bean-deployer_1_0.xsd"
xmlns="urn:jboss:bean-deployer">

<bean name="bookingDatasourceBootstrap"

Installing the Embeddable EJB3 container

251

class="org.jboss.resource.adapter.jdbc.local.LocalTxDataSource">
<property name="driverClass">org.hsqldb.jdbcDriver</property>
<property name="connectionURL">jdbc:hsqldb:.</property>
<property name="userName">sa</property>
<property name="jndiName">java:/bookingDatasource</property>
<property name="minSize">0</property>
<property name="maxSize">10</property>
<property name="blockingTimeout">1000</property>
<property name="idleTimeout">100000</property>
<property name="transactionManager">

<inject bean="TransactionManager"/>
</property>
<property name="cachedConnectionManager">

<inject bean="CachedConnectionManager"/>
</property>
<property name="initialContextProperties">

<inject bean="InitialContextProperties"/>
</property>

</bean>

<bean name="bookingDatasource" class="java.lang.Object">
<constructor factoryMethod="getDatasource">

<factory bean="bookingDatasourceBootstrap"/>
</constructor>

</bean>

</deployment>

3.3. Packaging

The archive structure of a WAR-based deployment on an servlet engine like Tomcat will look
something like this:

my-application.war/
META-INF/

MANIFEST.MF
WEB-INF/

web.xml
components.xml
faces-config.xml
lib/

jboss-seam.jar
jboss-seam-ui.jar
el-api.jar
el-ri.jar
jsf-facelets.jar
myfaces-api.jar
myfaces-impl.jar
jboss-ejb3.jar
jboss-jca.jar
jboss-j2ee.jar
...
mc-conf.jar/

ejb3-interceptors-aop.xml

Chapter 21. Configuring Seam and packaging Seam applications

252

embedded-jboss-beans.xml
default.persistence.properties
jndi.properties
login-config.xml
security-beans.xml
log4j.xml

my-application.jar/
META-INF/

MANIFEST.MF
persistence.xml
jboss-beans.xml

log4j.xml
seam.properties
org/

jboss/
myapplication/

User.class
Login.class
LoginBean.class
Register.class
RegisterBean.class
...

login.jsp
register.jsp
...

The mc-conf.jar just contains the standard JBoss Microcontainer configuration files for
Embeddable EJB3. You won't usually need to edit these files yourself.

Most of the Seam example applications may be deployed to Tomcat by running ant

deploy.tomcat.

4. Configuring Seam in J2EE

Seam is useful even if you're not yet ready to take the plunge into EJB 3.0. In this case you
would use Hibernate3 or JPA instead of EJB 3.0 persistence, and plain JavaBeans instead of
session beans. You'll miss out on some of the nice features of session beans but it will be very
easy to migrate to EJB 3.0 when you're ready and, in the meantime, you'll be able to take
advantage of Seam's unique declarative state management architecture.

Configuring Seam in J2EE

253

Seam JavaBean components do not provide declarative transaction demarcation like session
beans do. You could manage your transactions manually using the JTA UserTransaction (you
could even implement your own declarative transaction management in a Seam interceptor).
But most applications will use Seam managed transactions when using Hibernate with
JavaBeans. Follow the instructions in the persistence chapter to install
TransactionalSeamPhaseListener.

The Seam distribution includes a version of the booking example application that uses
Hibernate3 and JavaBeans instead of EJB3, and another version that uses JPA and
JavaBeans. These example applications are ready to deploy into any J2EE application server.

4.1. Boostrapping Hibernate in Seam

Seam will bootstrap a Hibernate SessionFactory from your hibernate.cfg.xml file if you
install a built-in component:

<core:hibernate-session-factory name="hibernateSessionFactory"/>

You will also need to configure a managed session if you want a Seam managed Hibernate
Session to be available via injection.

4.2. Boostrapping JPA in Seam

Seam will bootstrap a JPA EntityManagerFactory from your persistence.xml file if you
install this built-in component:

<core:entity-manager-factory name="entityManagerFactory"/>

You will also need to configure a managed persistencece context if you want a Seam managed
JPA EntityManager to be available via injection.

Chapter 21. Configuring Seam and packaging Seam applications

254

4.3. Packaging

We can package our application as a WAR, in the following structure:

my-application.war/
META-INF/

MANIFEST.MF
WEB-INF/

web.xml
components.xml
faces-config.xml
lib/

jboss-seam.jar
jboss-seam-ui.jar
el-api.jar
el-ri.jar
jsf-facelets.jar
hibernate3.jar
hibernate-annotations.jar
...
my-application.jar/

META-INF/
MANIFEST.MF

seam.properties
hibernate.cfg.xml
org/

jboss/
myapplication/

User.class
Login.class
Register.class
...

login.jsp
register.jsp
...

If we want to deploy Hibernate in a non-J2EE environment like Tomcat or TestNG, we need to
do a little bit more work.

5. Configuring Seam in Java SE, with the JBoss
Microcontainer

The Seam support for Hibernate and JPA requires JTA and a JCA datasource. If you are
running in a non-EE environment like Tomcat or TestNG you can run these services, and
Hibernate itself, in the JBoss Microcontainer.

You can even deploy the Hibernate and JPA versions of the booking example in Tomcat.

Configuring Seam in Java SE, with the

255

Seam ships with an example Microcontainer configuration in
microcontainer/conf/jboss-beans.xml that provides all the things you need to run Seam
with Hibernate in any non-EE environment. Just add the microcontainer/conf directory, and
all jars in the lib and microcontainer/lib directories to your classpath. Refer to the
documentation for the JBoss Microcontainer for more information.

5.1. Using Hibernate and the JBoss Microcontainer

The built-in Seam component named org.jboss.seam.core.microcontainer bootstraps the
microcontainer. As before, we probably want to use a Seam managed session.

<core:microcontainer/>

<core:managed-hibernate-session name="bookingDatabase" auto-create="true"
session-factory-jndi-name="java:/bookingSessionFactory"/>

Where java:/bookingSessionFactory is the name of the Hibernate session factory specified
in hibernate.cfg.xml.

You'll need to provide a jboss-beans.xml file that installs JNDI, JTA, your JCA datasource and
Hibernate into the microcontainer:

<?xml version="1.0" encoding="UTF-8"?>

<deployment xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:jboss:bean-deployer

bean-deployer_1_0.xsd"

Chapter 21. Configuring Seam and packaging Seam applications

256

xmlns="urn:jboss:bean-deployer">

<bean name="Naming" class="org.jnp.server.SingletonNamingServer"/>

<bean name="TransactionManagerFactory"
class="org.jboss.seam.microcontainer.TransactionManagerFactory"/>

<bean name="TransactionManager" class="java.lang.Object">
<constructor factoryMethod="getTransactionManager">

<factory bean="TransactionManagerFactory"/>
</constructor>

</bean>

<bean name="bookingDatasourceFactory"
class="org.jboss.seam.microcontainer.DataSourceFactory">

<property name="driverClass">org.hsqldb.jdbcDriver</property>
<property name="connectionUrl">jdbc:hsqldb:.</property>
<property name="userName">sa</property>
<property name="jndiName">java:/hibernateDatasource</property>
<property name="minSize">0</property>
<property name="maxSize">10</property>
<property name="blockingTimeout">1000</property>
<property name="idleTimeout">100000</property>
<property name="transactionManager"><inject

bean="TransactionManager"/></property>
</bean>
<bean name="bookingDatasource" class="java.lang.Object">

<constructor factoryMethod="getDataSource">
<factory bean="bookingDatasourceFactory"/>

</constructor>
</bean>

<bean name="bookingSessionFactoryFactory"
class="org.jboss.seam.microcontainer.HibernateFactory"/>

<bean name="bookingSessionFactory" class="java.lang.Object">
<constructor factoryMethod="getSessionFactory">

<factory bean="bookingSessionFactoryFactory"/>
</constructor>
<depends>bookingDatasource</depends>

</bean>

</deployment>

5.2. Packaging

The WAR could have the following structure:

my-application.war/
META-INF/

MANIFEST.MF
WEB-INF/

web.xml
components.xml
faces-config.xml
lib/

JBoss Microcontainer

257

jboss-seam.jar
jboss-seam-ui.jar
el-api.jar
el-ri.jar
jsf-facelets.jar
hibernate3.jar
...
jboss-microcontainer.jar
jboss-jca.jar
...
myfaces-api.jar
myfaces-impl.jar
mc-conf.jar/

jndi.properties
log4j.xml

my-application.jar/
META-INF/

MANIFEST.MF
jboss-beans.xml

seam.properties
hibernate.cfg.xml
log4j.xml
org/

jboss/
myapplication/

User.class
Login.class
Register.class
...

login.jsp
register.jsp
...

6. Configuring jBPM in Seam

Seam's jBPM integration is not installed by default, so you'll need to enable jBPM by installing a
built-in component. You'll also need to explicitly list your process and pageflow definitions. In
components.xml:

<core:jbpm>
<core:pageflow-definitions>

<value>createDocument.jpdl.xml</value>
<value>editDocument.jpdl.xml</value>
<value>approveDocument.jpdl.xml</value>

</core:pageflow-definitions>
<core:process-definitions>

<value>documentLifecycle.jpdl.xml</value>
</core:process-definitions>

</core:jbpm>

No further special configuration is needed if you only have pageflows. If you do have business
process definitions, you need to provide a jBPM configuration, and a Hibernate configuration for

Chapter 21. Configuring Seam and packaging Seam applications

258

jBPM. The Seam DVD Store demo includes example jbpm.cfg.xml and hibernate.cfg.xml

files that will work with Seam:

<jbpm-configuration>

<jbpm-context>
<service name="persistence">

<factory>
<bean class="org.jbpm.persistence.db.DbPersistenceServiceFactory">

<field name="isTransactionEnabled"><false/></field>
</bean>

</factory>
</service>
<service name="message"

factory="org.jbpm.msg.db.DbMessageServiceFactory" />
<service name="scheduler"

factory="org.jbpm.scheduler.db.DbSchedulerServiceFactory" />
<service name="logging"

factory="org.jbpm.logging.db.DbLoggingServiceFactory" />
<service name="authentication"

factory="org.jbpm.security.authentication.DefaultAuthenticationServiceFactory"
/>
</jbpm-context>

</jbpm-configuration>

The most important thing to notice here is that jBPM transaction control is disabled. Seam or
EJB3 should control the JTA transactions.

6.1. Packaging

There is not yet any well-defined packaging format for jBPM configuration and process/pageflow
definition files. In the Seam examples we've decided to simply package all these files into the
root of the EAR. In future, we will probably design some other standard packaging format. So
the EAR looks something like this:

my-application.ear/
jboss-seam.jar
el-api.jar
el-ri.jar
jbpm-3.1.jar
META-INF/

MANIFEST.MF
application.xml

my-application.war/
META-INF/

MANIFEST.MF
WEB-INF/

web.xml
components.xml
faces-config.xml
lib/

jsf-facelets.jar

Packaging

259

jboss-seam-ui.jar
login.jsp
register.jsp
...

my-application.jar/
META-INF/

MANIFEST.MF
persistence.xml

seam.properties
org/

jboss/
myapplication/

User.class
Login.class
LoginBean.class
Register.class
RegisterBean.class
...

jbpm.cfg.xml
hibernate.cfg.xml
createDocument.jpdl.xml
editDocument.jpdl.xml
approveDocument.jpdl.xml
documentLifecycle.jpdl.xml

Remember to add jbpm-3.1.jar to the manifest of your EJB-JAR and WAR.

7. Configuring Seam in a Portal

To run a Seam application as a portlet, you'll need to provide certain portlet metadata
(portlet.xml, etc) in addition to the usual Java EE metadata. See the examples/portal

directory for an example of the booking demo preconfigured to run on JBoss Portal.

In addition, you'll need to use a portlet-specific phase listener instead of SeamPhaseListener or
TransactionalSeamPhaseListener. The SeamPortletPhaseListener and
TransactionalSeamPortletPhaseListener are adapted to the portlet lifecycle. I would like to
offer my sincerest apologies for the name of that last class. I really couldn't think of anything
better. Sorry.

8. Configuring SFSB and Session Timeouts in JBoss
AS

It is very important that the timeout for Stateful Session Beans is set higher than the timeout for
HTTP Sessions, otherwise SFSB's may time out before the user's HTTP session has ended.
JBoss Application Server has a default session bean timeout of 30 minutes, which is configured
in server/default/conf/standardjboss.xml (replace default with your own configuration).

The default SFSB timeout can be adjusted by modifying the value of max-bean-life in the
LRUStatefulContextCachePolicy cache configuration:

Chapter 21. Configuring Seam and packaging Seam applications

260

<container-cache-conf>
<cache-policy>org.jboss.ejb.plugins.LRUStatefulContextCachePolicy</cache-policy>

<cache-policy-conf>
<min-capacity>50</min-capacity>
<max-capacity>1000000</max-capacity>
<remover-period>1800</remover-period>

<!-- SFSB timeout in seconds; 1800 seconds == 30 minutes -->
<max-bean-life>1800</max-bean-life>

<overager-period>300</overager-period>
<max-bean-age>600</max-bean-age>
<resizer-period>400</resizer-period>
<max-cache-miss-period>60</max-cache-miss-period>
<min-cache-miss-period>1</min-cache-miss-period>
<cache-load-factor>0.75</cache-load-factor>

</cache-policy-conf>
</container-cache-conf>

The default HTTP session timeout can be modified in
server/default/deploy/jbossweb-tomcat55.sar/conf/web.xml for JBoss 4.0.x, or in
server/default/deploy/jboss-web.deployer/conf/web.xml for JBoss 4.2.x. The following
entry in this file controls the default session timeout for all web applications:

<session-config>
<!-- HTTP Session timeout, in minutes -->
<session-timeout>30</session-timeout>

</session-config>

To override this value for your own application, simply include this entry in your application's
own web.xml.

Configuring SFSB and Session Timeouts in

261

262

Seam annotations
When you write a Seam application, you'll use a lot of annotations. Seam lets you use
annotations to achieve a declarative style of programming. Most of the annotations you'll use
are defined by the EJB 3.0 specification. The annotations for data validation are defined by the
Hibernate Validator package. Finally, Seam defines its own set of annotations, which we'll
describe in this chapter.

All of these annotations are defined in the package org.jboss.seam.annotations.

1. Annotations for component definition

The first group of annotations lets you define a Seam component. These annotations appear on
the component class.

@Name

@Name("componentName")

Defines the Seam component name for a class. This annotation is required for all Seam
components.

@Scope

@Scope(ScopeType.CONVERSATION)

Defines the default context of the component. The possible values are defined by the
ScopeType enumeration: EVENT, PAGE, CONVERSATION, SESSION, BUSINESS_PROCESS,

APPLICATION, STATELESS.

When no scope is explicitly specified, the default depends upon the component type. For
stateless session beans, the default is STATELESS. For entity beans and stateful session
beans, the default is CONVERSATION. For JavaBeans, the default is EVENT.

@Role

@Role(name="roleName", scope=ScopeType.SESSION)

Allows a Seam component to be bound to multiple contexts variables. The @Name/@Scope
annotations define a "default role". Each @Role annotation defines an additional role.

• name — the context variable name.

• scope — the context variable scope. When no scope is explicitly specified, the default
depends upon the component type, as above.

Chapter 22.

263

@Roles

@Roles({
@Role(name="user", scope=ScopeType.CONVERSATION),
@Role(name="currentUser", scope=ScopeType.SESSION)

})

Allows specification of multiple additional roles.

@Intercept

@Intercept(InterceptionType.ALWAYS)

Determines when Seam interceptors are active. The possible values are defined by the
InterceptionType enumeration: ALWAYS, AFTER_RESTORE_VIEW,

AFTER_UPDATE_MODEL_VALUES, INVOKE_APPLICATION, NEVER.

When no interception type is explicitly specified, the default depends upon the component
type. For entity beans, the default is NEVER. For session beans, message driven beans and
JavaBeans, the default is ALWAYS.

@JndiName

@JndiName("my/jndi/name")

Specifies the JNDI name that Seam will use to look up the EJB component. If no JNDI
name is explicitly specified, Seam will use the JNDI pattern specified by
org.jboss.seam.core.init.jndiPattern.

@Conversational

@Conversational(ifNotBegunOutcome="error")

Specifies that a conversation scope component is conversational, meaning that no method
of the component can be called unless a long-running conversation started by this
component is active (unless the method would begin a new long-running conversation).

@Startup

@Startup(depends={"org.jboss.core.jndi", "org.jboss.core.jta"})

Specifies that an application scope component is started immediately at initialization time.
This is mainly used for certain built-in components that bootstrap critical infrastructure such
as JNDI, datasources, etc.

Chapter 22. Seam annotations

264

@Startup

Specifies that a session scope component is started immediately at session creation time.

• depends — specifies that the named components must be started first, if they are
installed.

@Install

@Install(false)

Specifies whether or not a component should be installed by default. The lack of an @Install
annotation indicates a component should be installed.

@Install(dependencies="org.jboss.seam.core.jbpm")

Specifies that a component should only be stalled if the components listed as dependencies
are also installed.

@Install(genericDependencies=ManagedQueueSender.class)

Specifies that a component should only be installed if a component that is implemented by a
certain class is installed. This is useful when the dependency doesn't have a single
well-known name.

@Install(classDependencies="org.hibernate.Session")

Specifies that a component should only be installed if the named class is in the classpath.

@Install(precedence=BUILT_IN)

Specifies the precedence of the component. If multiple components with the same name
exist, the one with the higher precedence will be installed. The defined precendence values
are (in ascending order):

• BUILT_IN — Precedence of all built-in Seam components

• FRAMEWORK — Precedence to use for components of frameworks which extend Seam

• APPLICATION — Predence of application components (the default precedence)

• DEPLOYMENT — Precedence to use for components which override application
components in a particular deployment

Annotations for component definition

265

• MOCK — Precedence for mock objects used in testing

@Synchronized

@Synchronized(timeout=1000)

Specifies that a component is accessed concurrently by multiple clients, and that Seam
should serialize requests. If a request is not able to obtain its lock on the component in the
given timeout period, an exception will be raised.

@ReadOnly

@ReadOnly

Specifies that a JavaBean component or component method does not require state
replication at the end of the invocation.

2. Annotations for bijection

The next two annotations control bijection. These attributes occur on component instance
variables or property accessor methods.

@In

@In

Specifies that a component attribute is to be injected from a context variable at the
beginning of each component invocation. If the context variable is null, an exception will be
thrown.

@In(required=false)

Specifies that a component attribute is to be injected from a context variable at the
beginning of each component invocation. The context variable may be null.

@In(create=true)

Specifies that a component attribute is to be injected from a context variable at the
beginning of each component invocation. If the context variable is null, an instance of the
component is instantiated by Seam.

@In(value="contextVariableName")

Chapter 22. Seam annotations

266

Specifies the name of the context variable explicitly, instead of using the annotated instance
variable name.

@In(value="#{customer.addresses['shipping']}")

Specifies that a component attribute is to be injected by evaluating a JSF EL expression at
the beginning of each component invocation.

• value — specifies the name of the context variable. Default to the name of the
component attribute. Alternatively, specifies a JSF EL expression, surrounded by #{...}.

• create — specifies that Seam should instantiate the component with the same name as
the context variable if the context variable is undefined (null) in all contexts. Default to
false.

• required — specifies Seam should throw an exception if the context variable is
undefined in all contexts.

@Out

@Out

Specifies that a component attribute that is a Seam component is to be outjected to its
context variable at the end of the invocation. If the attribute is null, an exception is thrown.

@Out(required=false)

Specifies that a component attribute that is a Seam component is to be outjected to its
context variable at the end of the invocation. The attribute may be null.

@Out(scope=ScopeType.SESSION)

Specifies that a component attribute that is not a Seam component type is to be outjected to
a specific scope at the end of the invocation.

Alternatively, if no scope is explicitly specified, the scope of the component with the @Out

attribute is used (or the EVENT scope if the component is stateless).

@Out(value="contextVariableName")

Specifies the name of the context variable explicitly, instead of using the annotated instance
variable name.

• value — specifies the name of the context variable. Default to the name of the
component attribute.

Annotations for bijection

267

• required — specifies Seam should throw an exception if the component attribute is null
during outjection.

Note that it is quite common for these annotations to occur together, for example:

@In(create=true) @Out private User currentUser;

The next annotation supports the manager component pattern, where a Seam component that
manages the lifecycle of an instance of some other class that is to be injected. It appears on a
component getter method.

@Unwrap

@Unwrap

Specifies that the object returned by the annotated getter method is the thing that is injected
instead of the component instance itself.

The next annotation supports the factory component pattern, where a Seam component is
responsible for initializing the value of a context variable. This is especially useful for initializing
any state needed for rendering the response to a non-faces request. It appears on a component
method.

@Factory

@Factory("processInstance")

Specifies that the method of the component is used to initialize the value of the named
context variable, when the context variable has no value. This style is used with methods
that return void.

@Factory("processInstance", scope=CONVERSATION)

Specifies that the method returns a value that Seam should use to initialize the value of the
named context variable, when the context variable has no value. This style is used with
methods that return a value. If no scope is explicitly specified, the scope of the component
with the @Factory method is used (unless the component is stateless, in which case the
EVENT context is used).

• value — specifies the name of the context variable. If the method is a getter method,
default to the JavaBeans property name.

Chapter 22. Seam annotations

268

• scope — specifies the scope that Seam should bind the returned value to. Only
meaningful for factory methods which return a value.

This annotation lets you inject a Log:

@Logger

@Logger("categoryName")

Specifies that a component field is to be injected with an instance of
org.jboss.seam.log.Log. For entity beans, the field must be declared as static.

• value — specifies the name of the log category. Default to the name of the component
class.

The last annotation lets you inject a request parameter value:

@RequestParameter

@RequestParameter("parameterName")

Specifies that a component attribute is to be injected with the value of a request parameter.
Basic type conversions are performed automatically.

• value — specifies the name of the request parameter. Default to the name of the
component attribute.

3. Annotations for component lifecycle methods

These annotations allow a component to react to its own lifecycle events. They occur on
methods of the component. There may be only one of each per component class.

@Create

@Create

Specifies that the method should be called when an instance of the component is
instantiated by Seam. Note that create methods are only supported for JavaBeans and
stateful session beans.

@Destroy

@Destroy

Annotations for component lifecycle

269

Specifies that the method should be called when the context ends and its context variables
are destroyed. Note that create methods are only supported for JavaBeans and stateful
session beans.

Note that all stateful session bean components must define a method annotated @Destroy

@Remove in order to guarantee destruction of the stateful bean when a context ends.

Destroy methods should be used only for cleanup. Seam catches, logs and swallows any
exception that propagates out of a destroy method.

@Observer

@Observer("somethingChanged")

Specifies that the method should be called when a component-driven event of the specified
type occurs.

@Observer(value="somethingChanged",create=false)

Specifies that the method should be called when an event of the specified type occurs but
that an instance should not be created if one doesn't exist. If an instance does not exist and
create is false, the event will not be observed. The default value for create is true.

4. Annotations for context demarcation

These annotations provide declarative conversation demarcation. They appear on methods of
Seam components, usually action listener methods.

Every web request has a conversation context associated with it. Most of these conversations
end at the end of the request. If you want a conversation that span multiple requests, you must
"promote" the current conversation to a long-running conversation by calling a method marked
with @Begin.

@Begin

•
@Begin

Specifies that a long-running conversation begins when this method returns a non-null
outcome without exception.

•
@Begin(ifOutcome={"success", "continue"})

Chapter 22. Seam annotations

270

Specifies that a long-running conversation begins when this action listener method
returns with one of the given outcomes.

•
@Begin(join=true)

Specifies that if a long-running conversation is already in progress, the conversation
context is simply propagated.

•
@Begin(nested=true)

Specifies that if a long-running conversation is already in progress, a new nested
conversation context begins. The nested conversation will end when the next @End is
encountered, and the outer conversation will resume. It is perfectly legal for multiple
nested conversations to exist concurrently in the same outer conversation.

•
@Begin(pageflow="process definition name")

Specifies a jBPM process definition name that defines the pageflow for this conversation.

•
@Begin(flushMode=FlushModeType.MANUAL)

Specify the flush mode of any Seam-managed persistence contexts.
flushMode=FlushModeType.MANUAL supports the use of atomic conversations where all
write operations are queued in the conversation context until an explicit call to flush()

(which usually occurs at the end of the conversation).

•
• ifOutcome — specifies the JSF outcome or outcomes that result in a new long-running

conversation context.

• join — determines the behavior when a long-running conversation is already in
progress. If true, the context is propagated. If false, an exception is thrown. Default to
false. This setting is ignored when nested=true is specified

• nested — specifies that a nested conversation should be started if a long-running
conversation is already in progress.

• flushMode — set the flush mode of any Seam-managed Hibernate sessions or JPA
persistence contexts that are created during this conversation.

methods

271

• pageflow — a process definition name of a jBPM process definition deployed via
org.jboss.seam.core.jbpm.pageflowDefinitions.

@End

•
@End

Specifies that a long-running conversation ends when this method returns a non-null
outcome without exception.

•
@End(ifOutcome={"success", "error"}, evenIfException={SomeException.class,
OtherException.class})

Specifies that a long-running conversation ends when this action listener method returns
with one of the given outcomes or throws one of the specified classes of exception.

•
• ifOutcome — specifies the JSF outcome or outcomes that result in the end of the

current long-running conversation.

• beforeRedirect — by default, the conversation will not actually be destroyed until
after any redirect has occurred. Setting beforeRedirect=true specifies that the
conversation should be destroyed at the end of the current request, and that the
redirect will be processed in a new temporary conversation context.

@StartTask

@StartTask

"Starts" a jBPM task. Specifies that a long-running conversation begins when this method
returns a non-null outcome without exception. This conversation is associated with the
jBPM task specified in the named request parameter. Within the context of this
conversation, a business process context is also defined, for the business process instance
of the task instance.

The jBPM TaskInstance will be available in a request context variable named
taskInstance. The jPBM ProcessInstance will be available in a request context variable
named processInstance. (Of course, these objects are available for injection via @In.)

• taskIdParameter — the name of a request parameter which holds the id of the task.
Default to "taskId", which is also the default used by the Seam taskList JSF
component.

• flushMode — set the flush mode of any Seam-managed Hibernate sessions or JPA
persistence contexts that are created during this conversation.

Chapter 22. Seam annotations

272

@BeginTask

@BeginTask

Resumes work on an incomplete jBPM task. Specifies that a long-running conversation
begins when this method returns a non-null outcome without exception. This conversation is
associated with the jBPM task specified in the named request parameter. Within the context
of this conversation, a business process context is also defined, for the business process
instance of the task instance.

The jBPM TaskInstance will be available in a request context variable named
taskInstance. The jPBM ProcessInstance will be available in a request context variable
named processInstance.

• taskIdParameter — the name of a request parameter which holds the id of the task.
Default to "taskId", which is also the default used by the Seam taskList JSF
component.

• flushMode — set the flush mode of any Seam-managed Hibernate sessions or JPA
persistence contexts that are created during this conversation.

@EndTask

•
@EndTask

"Ends" a jBPM task. Specifies that a long-running conversation ends when this method
returns a non-null outcome, and that the current task is complete. Triggers a jBPM
transition. The actual transition triggered will be the default transition unless the
application has called Transition.setName() on the built-in component named
transition.

•
@EndTask(transition="transitionName")

Triggers the given jBPM transition.

•
@EndTask(ifOutcome={"success", "continue"})

Specifies that the task ends when this method returns one of the listed outcomes.

•
• transition — the name of the jBPM transition to be triggered when ending the task.

Defaults to the default transition.

Annotations for context demarcation

273

• ifOutcome — specifies the JSF outcome or outcomes that result in the end of the task.

• beforeRedirect — by default, the conversation will not actually be destroyed until
after any redirect has occurred. Setting beforeRedirect=true specifies that the
conversation should be destroyed at the end of the current request, and that the
redirect will be processed in a new temporary conversation context.

@CreateProcess

@CreateProcess(definition="process definition name")

Creates a new jBPM process instance when the method returns a non-null outcome without
exception. The ProcessInstance object will be available in a context variable named
processInstance.

• definition — the name of the jBPM process definition deployed via
org.jboss.seam.core.jbpm.processDefinitions.

@ResumeProcess

@ResumeProcess(processIdParameter="processId")

Re-enters the scope of an existing jBPM process instance when the method returns a
non-null outcome without exception. The ProcessInstance object will be available in a
context variable named processInstance.

• processIdParameter — the name a request parameter holding the process id. Default to
"processId".

5. Annotations for transaction demarcation

Seam provides an annotation that lets you force a rollback of the JTA transaction for certain
action listener outcomes.

@Rollback

@Rollback(ifOutcome={"failure", "not-found"})

If the outcome of the method matches any of the listed outcomes, or if no outcomes are
listed, set the transaction to rollback only when the method completes.

• ifOutcome — the JSF outcomes that cause a transaction rollback (no outcomes is
interpreted to mean any outcome).

Chapter 22. Seam annotations

274

@Transactional

@Transactional

Specifies that a JavaBean component should have a similar transactional behavior to the
default behavior of a session bean component. ie. method invocations should take place in
a transaction, and if no transaction exists when the method is called, a transaction will be
started just for that method. This annotation may be applied at either class or method level.

Seam applications usually use the standard EJB3 annotations for all other transaction
demarcation needs.

6. Annotations for exceptions

These annotations let you specify how Seam should handle an exception that propagates out of
a Seam component.

@Redirect

@Redirect(viewId="error.jsp")

Specifies that the annotated exception causes a browser redirect to a specified view id.

• viewId — specifies the JSF view id to redirect to.

• message — a message to be displayed, default to the exception message.

• end — specifies that the long-running conversation should end, default to false.

@HttpError

@HttpError(errorCode=404)

Specifies that the annotated exception causes a HTTP error to be sent.

• errorCode — the HTTP error code, default to 500.

• message — a message to be sent with the HTTP error, default to the exception message.

• end — specifies that the long-running conversation should end, default to false.

7. Annotations for validation

This annotation triggers Hibernate Validator. It appears on a method of a Seam component,
almost always an action listener method.

Annotations for exceptions

275

Please refer to the documentation for the Hibernate Annotations package for information about
the annotations defined by the Hibernate Validator framework.

Note that use of @IfInvalid is now semi-deprecated and <s:validateAll> is now preferred.

@IfInvalid

@IfInvalid(outcome="invalid", refreshEntities=true)

Specifies that Hibernate Validator should validate the component before the method is
invoked. If the invocation fails, the specified outcome will be returned, and the validation
failure messages returned by Hibernate Validator will be added to the FacesContext.
Otherwise, the invocation will proceed.

• outcome — the JSF outcome when validation fails.

• refreshEntities — specifies that any invalid entity in the managed state should be
refreshed from the database when validation fails. Default to false. (Useful with
extended persistence contexts.)

8. Annotations for Seam Remoting

Seam Remoting requires that the local interface of a session bean be annotated with the
following annotation:

@WebRemote

@WebRemote(exclude="path.to.exclude")

Indicates that the annotated method may be called from client-side JavaScript. The
exclude property is optional and allows objects to be excluded from the result's object
graph (see the Remoting chapter for more details).

9. Annotations for Seam interceptors

The following annotations appear on Seam interceptor classes.

Please refer to the documentation for the EJB 3.0 specification for information about the
annotations required for EJB interceptor definition.

@Interceptor

•
@Interceptor(stateless=true)

Chapter 22. Seam annotations

276

Specifies that this interceptor is stateless and Seam may optimize replication.

•
@Interceptor(type=CLIENT)

Specifies that this interceptor is a "client-side" interceptor that is called before the EJB
container.

•
@Interceptor(around={SomeInterceptor.class, OtherInterceptor.class})

Specifies that this interceptor is positioned higher in the stack than the given interceptors.

•
@Interceptor(within={SomeInterceptor.class, OtherInterceptor.class})

Specifies that this interceptor is positioned deeper in the stack than the given
interceptors.

10. Annotations for asynchronicity

The following annotations are used to declare an asynchronous method, for example:

@Asynchronous public void scheduleAlert(Alert alert, @Expiration Date date)
{ ... }

@Asynchronous public Timer scheduleAlerts(Alert alert, @Expiration Date
date,
@IntervalDuration long interval) { ... }

@Asynchronous

@Asynchronous

Specifies that the method call is processed asynchronously.

@Duration

@Duration

Annotations for asynchronicity

277

Specifies that a parameter of the asynchronous call is the duration before the call is
processed (or first processed for recurring calls).

@Expiration

@Expiration

Specifies that a parameter of the asynchronous call is the datetime at which the call is
processed (or first processed for recurring calls).

@IntervalDuration

@IntervalDuration

Specifies that an asynchronous method call recurs, and that the annotationed parameter is
duration between recurrences.

11. Annotations for use with JSF dataTable

The following annotations make it easy to implement clickable lists backed by a stateful session
bean. They appear on attributes.

@DataModel

@DataModel("variableName")

Exposes an attribute of type List, Map, Set or Object[] as a JSF DataModel into the
scope of the owning component (or the EVENT scope if the owning component is
STATELESS). In the case of Map, each row of the DataModel is a Map.Entry.

• value — name of the conversation context variable. Default to the attribute name.

• scope — if scope=ScopeType.PAGE is explicitly specified, the DataModel will be kept in
the PAGE context.

@DataModelSelection

@DataModelSelection

Injects the selected value from the JSF DataModel (this is the element of the underlying
collection, or the map value).

• value — name of the conversation context variable. Not needed if there is exactly one
@DataModel in the component.

Chapter 22. Seam annotations

278

@DataModelSelectionIndex

@DataModelSelectionIndex

Exposes the selection index of the JSF DataModel as an attribute of the component (this is
the row number of the underlying collection, or the map key).

• value — name of the conversation context variable. Not needed if there is exactly one
@DataModel in the component.

12. Meta-annotations for databinding

These meta-annotations make it possible to implement similar functionality to @DataModel and
@DataModelSelection for other datastructures apart from lists.

@DataBinderClass

@DataBinderClass(DataModelBinder.class)

Specifies that an annotation is a databinding annotation.

@DataSelectorClass

@DataSelectorClass(DataModelSelector.class)

Specifies that an annotation is a dataselection annotation.

13. Annotations for packaging

This annotation provides a mechanism for declaring information about a set of components that
are packaged together. It can be applied to any Java package.

@Namespace

@Namespace(value="http://jboss.com/products/seam/example/seampay")

Specifies that components in the current package are associated with the given
namespace. The declared namespace can be used as an XML namespace in a
components.xml file to simplify application configuration.

@Namespace(value="http://jboss.com/products/seam/core",
prefix="org.jboss.seam.core")

Meta-annotations for databinding

279

Specifies a namespace to associate with a given package. Additionally, it specifies a
component name prefix to be applied to component names specified in the XML file. For
example, an XML element named microcontainer that is associated with this namespace
would be understood to actually refere to a component named
org.jboss.seam.core.microcontainer.

Chapter 22. Seam annotations

280

Built-in Seam components
This chapter describes Seam's built-in components, and their configuration properties.

Note that you can replace any of the built in components with your own implementations simply
by specifying the name of one of the built in components on your own class using @Name.

Note also that even though all the built in components use a qualified name, most of them are
aliased to unqualified names by default. These aliases specify auto-create="true", so you do
not need to use create=true when injecting built-in components by their unqualified name.

1. Context injection components

The first set of built in components exist purely to support injection of various contextual objects.
For example, the following component instance variable would have the Seam session context
object injected:

@In private Context sessionContext;

org.jboss.seam.core.eventContext

Manager component for the event context object

org.jboss.seam.core.pageContext

Manager component for the page context object

org.jboss.seam.core.conversationContext

Manager component for the conversation context object

org.jboss.seam.core.sessionContext

Manager component for the session context object

org.jboss.seam.core.applicationContext

Manager component for the appication context object

org.jboss.seam.core.businessProcessContext

Manager component for the business process context object

org.jboss.seam.core.facesContext

Manager component for the FacesContext context object (not a true Seam context)

All of these components are always installed.

2. Utility components

These components are merely useful.

Chapter 23.

281

org.jboss.seam.core.facesMessages

Allows faces success messages to propagate across a browser redirect.

• add(FacesMessage facesMessage) — add a faces message, which will be displayed
during the next render response phase that occurs in the current conversation.

• add(String messageTemplate) — add a faces message, rendered from the given
message template which may contain EL expressions.

• add(Severity severity, String messageTemplate) — add a faces message,
rendered from the given message template which may contain EL expressions.

• addFromResourceBundle(String key) — add a faces message, rendered from a
message template defined in the Seam resource bundle which may contain EL
expressions.

• addFromResourceBundle(Severity severity, String key) — add a faces message,
rendered from a message template defined in the Seam resource bundle which may
contain EL expressions.

• clear() — clear all messages.

org.jboss.seam.core.redirect

A convenient API for performing redirects with parameters (this is especially useful for
bookmarkable search results screens).

• redirect.viewId — the JSF view id to redirect to.

• redirect.conversationPropagationEnabled — determines whether the conversation
will propagate across the redirect.

• redirect.parameters — a map of request parameter name to value, to be passed in
the redirect request.

• execute() — perform the redirect immediately.

• captureCurrentRequest() — stores the view id and request parameters of the current
GET request (in the conversation context), for later use by calling execute().

org.jboss.seam.core.httpError

A convenient API for sending HTTP errors.

org.jboss.seam.core.events

An API for raising events that can be observed via @Observer methods, or method bindings
in components.xml.

• raiseEvent(String type) — raise an event of a particular type and distribute to all
observers.

• raiseAsynchronousEvent(String type) — raise an event to be processed

Chapter 23. Built-in Seam components

282

asynchronously by the EJB3 timer service.

• raiseTimedEvent(String type,) — schedule an event to be processed
asynchronously by the EJB3 timer service.

• addListener(String type, String methodBinding) — add an observer for a
particular event type.

org.jboss.seam.core.interpolator

An API for interpolating the values of JSF EL expressions in Strings.

• interpolate(String template) — scan the template for JSF EL expressions of the
form #{...} and replace them with their evaluated values.

org.jboss.seam.core.expressions

An API for creating value and method bindings.

• createValueBinding(String expression) — create a value binding object.

• createMethodBinding(String expression) — create a method binding object.

org.jboss.seam.core.pojoCache

Manager component for a JBoss Cache PojoCache instance.

• pojoCache.cfgResourceName — the name of the configuration file. Default to
treecache.xml.

org.jboss.seam.core.uiComponent

Allows access to a JSF UIComponent by its id from the EL. For example, we can write
@In("#{uiComponent['myForm:address'].value}").

All of these components are always installed.

3. Components for internationalization and themes

The next group of components make it easy to build internationalized user interfaces using
Seam.

org.jboss.seam.core.locale

The Seam locale. The locale is session scoped.

org.jboss.seam.core.timezone

The Seam timezone. The timezone is session scoped.

org.jboss.seam.core.resourceBundle

The Seam resource bundle. The resource bundle is session scoped. The Seam resource
bundle performs a depth-first search for keys in a list of Java resource bundles.

• resourceBundle.bundleNames — the names of the Java resource bundles to search.

Components for internationalization and

283

Default to messages.

org.jboss.seam.core.localeSelector

Supports selection of the locale either at configuration time, or by the user at runtime.

• select() — select the specified locale.

• localeSelector.locale — the actual java.util.Locale.

• localeSelector.localeString — the stringified representation of the locale.

• localeSelector.language — the language for the specified locale.

• localeSelector.country — the country for the specified locale.

• localeSelector.variant — the variant for the specified locale.

• localeSelector.supportedLocales — a list of SelectItems representing the
supported locales listed in jsf-config.xml.

• localeSelector.cookieEnabled — specifies that the locale selection should be
persisted via a cookie.

org.jboss.seam.core.timezoneSelector

Supports selection of the timezone either at configuration time, or by the user at runtime.

• select() — select the specified locale.

• timezoneSelector.timezone — the actual java.util.TimeZone.

• timezoneSelector.timeZoneId — the stringified representation of the timezone.

• timezoneSelector.cookieEnabled — specifies that the timezone selection should be
persisted via a cookie.

org.jboss.seam.core.messages

A map containing internationalized messages rendered from message templates defined in
the Seam resource bundle.

org.jboss.seam.theme.themeSelector

Supports selection of the theme either at configuration time, or by the user at runtime.

• select() — select the specified theme.

• theme.availableThemes — the list of defined themes.

• themeSelector.theme — the selected theme.

• themeSelector.themes — a list of SelectItems representing the defined themes.

• themeSelector.cookieEnabled — specifies that the theme selection should be
persisted via a cookie.

Chapter 23. Built-in Seam components

284

org.jboss.seam.theme.theme

A map containing theme entries.

All of these components are always installed.

4. Components for controlling conversations

The next group of components allow control of conversations by the application or user
interface.

org.jboss.seam.core.conversation

API for application control of attributes of the current Seam conversation.

• getId() — returns the current conversation id

• isNested() — is the current conversation a nested conversation?

• isLongRunning() — is the current conversation a long-running conversation?

• getId() — returns the current conversation id

• getParentId() — returns the conversation id of the parent conversation

• getRootId() — returns the conversation id of the root conversation

• setTimeout(int timeout) — sets the timeout for the current conversation

• setViewId(String outcome) — sets the view id to be used when switching back to the
current conversation from the conversation switcher, conversation list, or breadcrumbs.

• setDescription(String description) — sets the description of the current
conversation to be displayed in the conversation switcher, conversation list, or
breadcrumbs.

• redirect() — redirect to the last well-defined view id for this conversation (useful after
login challenges).

• leave() — exit the scope of this conversation, without actually ending the conversation.

• begin() — begin a long-running conversation (equivalent to @Begin).

• beginPageflow(String pageflowName) — begin a long-running conversation with a
pageflow (equivalent to @Begin(pageflow="...")).

• end() — end a long-running conversation (equivalent to @End).

• pop() — pop the conversation stack, returning to the parent conversation.

• root() — return to the root conversation of the conversation stack.

themes

285

• changeFlushMode(FlushModeType flushMode) — change the flush mode of the
conversation.

org.jboss.seam.core.conversationList

Manager component for the conversation list.

org.jboss.seam.core.conversationStack

Manager component for the conversation stack (breadcrumbs).

org.jboss.seam.core.switcher

The conversation switcher.

All of these components are always installed.

5. jBPM-related components

These components are for use with jBPM.

org.jboss.seam.core.pageflow

API control of Seam pageflows.

• isInProcess() — returns true if there is currently a pageflow in process

• getProcessInstance() — returns jBPM ProcessInstance for the current pageflow

• begin(String pageflowName) — begin a pageflow in the context of the current
conversation

• reposition(String nodeName) — reposition the current pageflow to a particular node

org.jboss.seam.core.actor

API for application control of attributes of the jBPM actor associated with the current
session.

• setId(String actorId) — sets the jBPM actor id of the current user.

• getGroupActorIds() — returns a Set to which jBPM actor ids for the current users
groups may be added.

org.jboss.seam.core.transition

API for application control of the jBPM transition for the current task.

• setName(String transitionName) — sets the jBPM transition name to be used when
the current task is ended via @EndTask.

org.jboss.seam.core.businessProcess

API for programmatic control of the association between the conversation and business
process.

Chapter 23. Built-in Seam components

286

• businessProcess.taskId — the id of the task associated with the current conversation.

• businessProcess.processId — the id of the process associated with the current
conversation.

• businessProcess.hasCurrentTask() — is a task instance associated with the current
conversation?

• businessProcess.hasCurrentProcess() — is a process instance associated with the
current conversation.

• createProcess(String name) — create an instance of the named process definition
and associate it with the current conversation.

• startTask() — start the task associated with the current conversation.

• endTask(String transitionName) — end the task associated with the current
conversation.

• resumeTask(Long id) — associate the task with the given id with the current
conversation.

• resumeProcess(Long id) — associate the process with the given id with the current
conversation.

• transition(String transitionName) — trigger the transition.

org.jboss.seam.core.taskInstance

Manager component for the jBPM TaskInstance.

org.jboss.seam.core.processInstance

Manager component for the jBPM ProcessInstance.

org.jboss.seam.core.jbpmContext

Manager component for an event-scoped JbpmContext.

org.jboss.seam.core.taskInstanceList

Manager component for the jBPM task list.

org.jboss.seam.core.pooledTaskInstanceList

Manager component for the jBPM pooled task list.

org.jboss.seam.core.taskInstanceListForType

Manager component for the jBPM task lists.

org.jboss.seam.core.pooledTask

Action handler for pooled task assignment.

All of these components are installed whenever the component org.jboss.seam.core.jbpm is
installed.

Security-related components

287

6. Security-related components

These components relate to web-tier security.

org.jboss.seam.core.userPrincipal

Manager component for the current user Principal.

org.jboss.seam.core.isUserInRole

Allows JSF pages to choose to render a control, depending upon the roles available to the
current principal. <h:commandButton value="edit"

rendered="#{isUserInRole['admin']}"/>.

7. JMS-related components

These components are for use with managed TopicPublishers and QueueSenders (see
below).

org.jboss.seam.jms.queueSession

Manager component for a JMS QueueSession .

org.jboss.seam.jms.topicSession

Manager component for a JMS TopicSession .

8. Mail-related components

These components are for use with Seam's Email support

org.jboss.seam.mail.mailSession

Manager component for a JavaMail Session .

• org.jboss.seam.mail.mailSession.host — the hostname of the SMTP server to use

• org.jboss.seam.mail.mailSession.port — the port of the SMTP server to use

• org.jboss.seam.mail.mailSession.username — the username to use to connect to
the SMTP server.

• org.jboss.seam.mail.mailSession.password — the password to use to connect to
the SMTP server

• org.jboss.seam.mail.mailSession.debug — enable JavaMail debugging (very
verbose)

• org.jboss.seam.mail.mailSession.sessionJndiName — name under which a
javax.mail.Session is bound to JNDI

Chapter 23. Built-in Seam components

288

9. Infrastructural components

These components provide critical platform infrastructure. You can install a component by
including its class name in the org.jboss.seam.core.init.componentClasses configuration
property.

org.jboss.seam.core.init

Initialization settings for Seam. Always installed.

• org.jboss.seam.core.init.jndiPattern — the JNDI pattern used for looking up
session beans

• org.jboss.seam.core.init.debug — enable Seam debug mode

• org.jboss.seam.core.init.clientSideConversations — if set to true, Seam will
save conversation context variables in the client instead of in the HttpSession.

• org.jboss.seam.core.init.userTransactionName — the JNDI name to use when
looking up the JTA UserTransaction object.

org.jboss.seam.core.manager

Internal component for Seam page and conversation context management. Always
installed.

• org.jboss.seam.core.manager.conversationTimeout — the conversation context
timeout in milliseconds.

• org.jboss.seam.core.manager.concurrentRequestTimeout — maximum wait time for
a thread attempting to gain a lock on the long-running conversation context.

• org.jboss.seam.core.manager.conversationIdParameter — the request parameter
used to propagate the conversation id, default to conversationId.

• org.jboss.seam.core.manager.conversationIsLongRunningParameter — the
request parameter used to propagate information about whether the conversation is
long-running, default to conversationIsLongRunning.

org.jboss.seam.core.pages

Internal component for Seam workspace management. Always installed.

• org.jboss.seam.core.pages.noConversationViewId — global setting for the view id
to redirect to when a conversation entry is not found on the server side.

org.jboss.seam.core.ejb

Bootstraps the JBoss Embeddable EJB3 container. Install as class
org.jboss.seam.core.Ejb. This is useful when using Seam with EJB components outside
the context of a Java EE 5 application server.

The basic Embedded EJB configuration is defined in jboss-embedded-beans.xml.
Additional microcontainer configuration (for example, extra datasources) may be specified

Infrastructural components

289

by jboss-beans.xml or META-INF/jboss-beans.xml in the classpath.

org.jboss.seam.core.microcontainer

Bootstraps the JBoss microcontainer. Install as class
org.jboss.seam.core.Microcontainer. This is useful when using Seam with Hibernate
and no EJB components outside the context of a Java EE application server. The
microcontainer can provide a partial EE environment with JNDI, JTA, a JCA datasource and
Hibernate.

The microcontainer configuration may be specified by jboss-beans.xml or
META-INF/jboss-beans.xml in the classpath.

org.jboss.seam.core.jbpm

Bootstraps a JbpmConfiguration. Install as class org.jboss.seam.core.Jbpm.

• org.jboss.seam.core.jbpm.processDefinitions — a list of resource names of jPDL
files to be used for orchestration of business processes.

• org.jboss.seam.core.jbpm.pageflowDefinitions — a list of resource names of jPDL
files to be used for orchestration of conversation page flows.

org.jboss.seam.core.conversationEntries

Internal session-scoped component recording the active long-running conversations
between requests.

org.jboss.seam.core.facesPage

Internal page-scoped component recording the conversation context associated with a
page.

org.jboss.seam.core.persistenceContexts

Internal component recording the persistence contexts which were used in the current
conversation.

org.jboss.seam.jms.queueConnection

Manages a JMS QueueConnection. Installed whenever managed managed QueueSender is
installed.

• org.jboss.seam.jms.queueConnection.queueConnectionFactoryJndiName — the
JNDI name of a JMS QueueConnectionFactory. Default to UIL2ConnectionFactory

org.jboss.seam.jms.topicConnection

Manages a JMS TopicConnection. Installed whenever managed managed
TopicPublisher is installed.

• org.jboss.seam.jms.topicConnection.topicConnectionFactoryJndiName — the
JNDI name of a JMS TopicConnectionFactory. Default to UIL2ConnectionFactory

org.jboss.seam.persistence.persistenceProvider

Abstraction layer for non-standardized features of JPA provider.

org.jboss.seam.core.validation

Chapter 23. Built-in Seam components

290

Internal component for Hibernate Validator support.

org.jboss.seam.debug.introspector

Support for the Seam Debug Page.

org.jboss.seam.debug.contexts

Support for the Seam Debug Page.

10. Special components

Certain special Seam component classes are installable multiple times under names specified
in the Seam configuration. For example, the following lines in components.xml install and
configure two Seam components:

<component name="bookingDatabase"
class="org.jboss.seam.core.ManagedPersistenceContext">

<property
name="persistenceUnitJndiName">java:/comp/emf/bookingPersistence</property>
</component>

<component name="userDatabase"
class="org.jboss.seam.core.ManagedPersistenceContext">

<property
name="persistenceUnitJndiName">java:/comp/emf/userPersistence</property>
</component>

The Seam component names are bookingDatabase and userDatabase.

<entityManager> , org.jboss.seam.core.ManagedPersistenceContext
Manager component for a conversation scoped managed EntityManager with an extended
persistence context.

• <entityManager> .entityManagerFactory — a value binding expression that
evaluates to an instance of EntityManagerFactory.

<entityManager> .persistenceUnitJndiName — the JNDI name of the entity manager
factory, default to java:/ <managedPersistenceContext> .

<entityManagerFactory> , org.jboss.seam.core.EntityManagerFactory
Manages a JPA EntityManagerFactory. This is most useful when using JPA outside of an
EJB 3.0 supporting environment.

• entityManagerFactory.persistenceUnitName — the name of the persistence unit.

See the API JavaDoc for further configuration properties.

<session> , org.jboss.seam.core.ManagedSession
Manager component for a conversation scoped managed Hibernate Session.

Special components

291

• <session> .sessionFactory — a value binding expression that evaluates to an
instance of SessionFactory.

<session> .sessionFactoryJndiName — the JNDI name of the session factory, default
to java:/ <managedSession> .

<sessionFactory> , org.jboss.seam.core.HibernateSessionFactory
Manages a Hibernate SessionFactory.

• <sessionFactory>.cfgResourceName — the path to the configuration file. Default to
hibernate.cfg.xml.

See the API JavaDoc for further configuration properties.

<managedQueueSender> , org.jboss.seam.jms.ManagedQueueSender
Manager component for an event scoped managed JMS QueueSender.

• <managedQueueSender> .queueJndiName — the JNDI name of the JMS queue.

<managedTopicPublisher> , org.jboss.seam.jms.ManagedTopicPublisher
Manager component for an event scoped managed JMS TopicPublisher.

• <managedTopicPublisher> .topicJndiName — the JNDI name of the JMS topic.

<managedWorkingMemory> , org.jboss.seam.drools.ManagedWorkingMemory
Manager component for a conversation scoped managed Drools WorkingMemory.

• <managedWorkingMemory> .ruleBase — a value expression that evaluates to an
instance of RuleBase.

<ruleBase> , org.jboss.seam.drools.RuleBase
Manager component for an application scoped Drools RuleBase. Note that this is not really
intended for production usage, since it does not support dynamic installation of new rules.

• <ruleBase> .ruleFiles — a list of files containing Drools rules.

<ruleBase> .dslFile — a Drools DSL definition.

<entityHome> , org.jboss.seam.framework.EntityHome

<hibernateEntityHome> , org.jboss.seam.framework.HibernateEntityHome

<entityQuery> , org.jboss.seam.framework.EntityQuery

<hibernateEntityQuery> , org.jboss.seam.framework.HibernateEntityQuery

Chapter 23. Built-in Seam components

292

Seam JSF controls
Seam includes a number of JSF controls that are useful for working with Seam. These are
intended to complement the built-in JSF controls, and controls from other third-party libraries.
We recommend the Ajax4JSF and ADF faces (now Trinidad) tag libraries for use with Seam.
We do not recommend the use of the Tomahawk tag library.

To use these controls, define the "s" namespace in your page as follows (facelets only):

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:s="http://jboss.com/products/seam/taglib">

The ui example demonstrates the use of a number of these tags.

<s:validate> Description

A non-visual control, validates a JSF input field against the bound
property using Hibernate Validator.

Attributes

None.

Usage

<h:inputText id="userName" required="true"
value="#{customer.userName}">

<s:validate />
</h:inputText>
<h:message for="userName" styleClass="error" />

<s:validateAll> Description

A non-visual control, validates all child JSF input fields against their
bound properties using Hibernate Validator.

Attributes

None.

Usage

<s:validateAll>
<div class="entry">

<h:outputLabel

Chapter 24.

293

for="username">Username:</h:outputLabel>
<h:inputText id="username" value="#{user.username}"

required="true"/>
<h:message for="username" styleClass="error" />

</div>
<div class="entry">

<h:outputLabel
for="password">Password:</h:outputLabel>

<h:inputSecret id="password"
value="#{user.password}" required="true"/>

<h:message for="password" styleClass="error" />
</div>
<div class="entry">

<h:outputLabel for="verify">Verify
Password:</h:outputLabel>

<h:inputSecret id="verify"
value="#{register.verify}" required="true"/>

<h:message for="verify" styleClass="error" />
</div>

</s:validateAll>

<s:formattedText> Description

Outputs Seam Text, a rich text markup useful for blogs, wikis and
other applications that might use rich text. See the Seam Text chapter
for full usage.

Attributes

• value — an EL expression specifying the rich text markup to
render.

Usage

<s:formattedText value="#{blog.text}"/>

Example

Chapter 24. Seam JSF controls

294

<s:convertDateTime> Description

Perform date or time conversions in the Seam timezone.

Attributes

None.

Usage

<s:convertEnum> Description

Assigns an enum converter to the current component. This is primarily
useful for radio button and dropdown controls.

Attributes

None.

Usage

<s:convertEntity> Description

Assigns an entity converter to the current component. This is primarily
useful for radio button and dropdown controls.

The converter works with any entity which has an @Id annotation -

295

either simple or composite. If your Managed Persistence Context isn't
called entityManager, then you need to set it in components.xml:

Attributes

None.

Configuration

<component name="org.jboss.seam.ui.entityConverter">
<property name="entityManager">#{em}</property>

</component>

Usage

<h:selectOneMenu value="#{person.continent}"
required="true">

<s:selectItems value="#{continents.resultList}"
var="continent" label="#{continent.name}"
noSelectionLabel="Please Select..."/>

<s:convertEntity />
</h:selectOneMenu>

<s:enumItem> Description

Creates a SelectItem from an enum value.

Attributes

• enumValue — the string representation of the enum value.

• label — the label to be used when rendering the SelectItem.

Usage

<s:selectItems> Description

Creates a List<SelectItem> from a List, Set, DataModel or Array.

Attributes

• value — an EL expression specifying the data that backs the
List<SelectItem>

Chapter 24. Seam JSF controls

296

• var — defines the name of the local variable that holds the current
object during iteration

• label — the label to be used when rendering the SelectItem. Can
reference the var variable

• disabled — if true the SelectItem will be rendered disabled. Can
reference the var variable

• noSelectionLabel — specifies the (optional) label to place at the
top of list (if required="true" is also specified then selecting this
value will cause a validation error)

• hideNoSelectionLabel — if true, the noSelectionLabel will be
hidden when a value is selected

Usage

<h:selectOneMenu value="#{person.age}"
converter="#{converters.ageConverter}">

<s:selectItems value="#{ages}" var="age"
label="#{age}" />
</h:selectOneMenu>

<s:graphicImage> Description

An extended <h:graphicImage> that allows the image to be created
in a Seam Component; further transforms can be applied to the
image. Facelets only.

All attributes for <h:graphicImage> are supported, as well as:

Attributes

• value — image to display. Can be a path String (loaded from the
classpath), a byte[], a java.io.File, a java.io.InputStream or
a java.net.URL. Currently supported image formats are
image/png, image/jpeg and image/gif.

• fileName — if not specified the served image will have a generated
file name. If you want to name your file, you should specify it here.
This name should be unique

Transformations

297

To apply a transform to the image, you would nest a tag specifying the
transform to apply. Seam currently supports these transforms:

<s:transformImageSize>

• width — new width of the image

• height — new height of the image

• maintainRatio — if true, and one of width/height are
specified, the image will be resized with the dimension not
specified being calculated to maintain the aspect ratio.

• factor — scale the image by the given factor

<s:transformImageBlur>

• radius — perform a convolution blur with the given radius

<s:transformImageType>

• contentType — alter the type of the image to either
image/jpeg or image/png

It's easy to create your own transform - create a UIComponent which
implementsorg.jboss.seam.ui.graphicImage.ImageTransform.
Inside the applyTransform()method use
image.getBufferedImage() to get the original image and
image.setBufferedImage() to set your transformed image.
Transforms are applied in the order specified in the view.

Usage

<s:decorate> Description

"Decorate" a JSF input field when validation fails or when
required="true" is set.

Attributes

None.

Usage

Chapter 24. Seam JSF controls

298

<s:layoutForm> Description

A layout component for producing a "standard" form layout. Each child
component will be treated as a row, and if the child is a
<s:decorate>, additional formatting will be applied:

• Label — if a label facet is on the <s:decorate> then it's contents
will be used as the label for this field. The labels are rendered
right-aligned in a column

Some further decoration facets are supported - beforeLabel,
afterLabel, aroundLabel, beforeInvalidLabel,
afterInvalidLabel and aroundInvalidLabel.

• Other text — if a belowLabel facet or/and a belowField facet are
present on <s:decorate> then it's contents will be placed below the
label or the field

• Required — if required="true" is set on the field, then the
aroundRequiredField, beforeRequiredField,
afterRequiredField, aroundRequiredLabel,
beforeRequiredLabel and afterRequiredLabel will be applied.

Attributes

None.

Usage

<s:layoutForm>
<f:facet name="aroundInvalidField">

<s:span styleClass="error"/>
</f:facet>
<f:facet name="afterInvalidField">

<s:message />
</f:facet>
<f:facet name="beforeRequiredLabel">

<s:span>#</s:span>
</f:facet>
<f:facet name="aroundLabel">

<s:span style="text-align:right;" />
</f:facet>
<f:facet name="aroundInvalidLabel">

<s:span style="text-align:right;"
styleClass="error" />

299

</f:facet>
<s:decorate>

<f:facet name="label">
<h:outputText value="Name" />

</f:facet>
<h:inputText value="#{person.name}"

required="true"/>
<f:facet name="belowField">

<h:outputText styleClass="help"
value="Enter your name as it appears

on your passport" />
</f:facet>

</s:decorate>
</s:layoutForm>

<s:message> Description

"Decorate" a JSF input field with the validation error message.

Attributes

None.

Usage

<s:span> Description

Render a HTML .

Attributes

None.

Usage

<s:div> Description

Render a HTML <div>.

Chapter 24. Seam JSF controls

300

Attributes

None.

Usage

<s:fragment> Description

A non-rendering component useful for enabling/disabling rendering of
it's children.

Attributes

None.

Usage

<s:cache> Description

Cache the rendered page fragment using JBoss Cache. Note that
<s:cache> actually uses the instance of JBoss Cache managed by
the built-in pojoCache component.

Attributes

• key — the key to cache rendered content, often a value expression.
For example, if we were caching a page fragment that displays a
document, we might use key="Document-#{document.id}".

• enabled — a value expression that determines if the cache should
be used.

• region — a JBoss Cache node to use (different nodes can have
different expiry policies).

Usage

301

<s:link> Description

A link that supports invocation of an action with control over
conversation propagation. Does not submit the form.

Attributes

• value — the label.

• action — a method binding that specified the action listener.

• view — the JSF view id to link to.

• fragment — the fragment identifier to link to.

• disabled — is the link disabled?

• propagation — determines the conversation propagation style:
begin, join, nest, none or end.

• pageflow — a pageflow definition to begin. (This is only useful
when propagation="begin" or propagation="join".)

Usage

<s:button> Description

A button that supports invocation of an action with control over
conversation propagation. Does not submit the form.

Attributes

• value — the label.

• action — a method binding that specified the action listener.

• view — the JSF view id to link to.

• fragment — the fragment identifier to link to.

• disabled — is the link disabled?

• propagation — determines the conversation propagation style:
begin, join, nest, none or end.

Chapter 24. Seam JSF controls

302

• pageflow — a pageflow definition to begin. (This is only useful
when propagation="begin" or propagation="join".)

Usage

<s:selectDate> Description

Displays a dynamic date picker component that selects a date for the
specified input field. The body of the selectDate element should
contain HTML elements, such as text or an image, that prompt the
user to click to display the date picker. The date picker must be styled
using CSS. An example CSS file can be found in the Seam booking
demo as date.css, or can be generated using seam-gen. The CSS
styles used to control the appearance of the date picker are also
described below.

Attributes

• for — The id of the input field that the date picker will insert the
selected date into.

• dateFormat — The date format string. This should match the date
format of the input field.

• startYear — The popup year selector range will start at this year.

• endYear — The popup year selector range will end at this year.

Usage

<div class="row">
<h:outputLabel for="dob">Date of

birth*</h:outputLabel>
<h:inputText id="dob" value="#{user.dob}"

required="true">
<s:convertDateTime pattern="MM/dd/yyyy"/>

</h:inputText>
<s:selectDate for="dob" startYear="1910"

endYear="2007"></s:selectDate>

<div class="validationError"><h:message
for="dob"/></div>

</div>

303

Example

CSS Styling

The following list describes the CSS class names that are used to
control the style of the selectDate control.

• seam-date — This class is applied to the outer div containing the
popup calendar. (1) It is also applied to the table that controls the
inner layout of the calendar. (2)

• seam-date-header — This class is applied to the calendar header
table row (tr) and header table cells (td). (3)

• seam-date-header-prevMonth — This class is applied to the
"previous month" table cell, (td), which when clicked causes the
calendar to display the month prior to the one currently displayed.
(4)

• seam-date-header-nextMonth — This class is applied to the "next
month" table cell, (td), which when clicked causes the calendar to
display the month following the one currently displayed. (5)

• seam-date-headerDays — This class is applied to the calendar
days header row (tr), which contains the names of the week days.
(6)

• seam-date-footer — This class is applied to the calendar footer
row (tr), which displays the current date. (7)

Chapter 24. Seam JSF controls

304

• seam-date-inMonth — This class is applied to the table cell (td)
elements that contain a date within the month currently displayed.
(8)

• seam-date-outMonth — This class is applied to the table cell (td)
elements that contain a date outside of the month currently
displayed. (9)

• seam-date-selected — This class is applied to the table cell (td)
element that contains the currently selected date. (10)

• seam-date-dayOff-inMonth — This class is applied to the table
cell (td) elements that contain a "day off" date (i.e. weekend days,
Saturday and Sunday) within the currently selected month. (11)

• seam-date-dayOff-outMonth — This class is applied to the table
cell (td) elements that contain a "day off" date (i.e. weekend days,
Saturday and Sunday) outside of the currently selected month. (12)

• seam-date-hover — This class is applied to the table cell (td)
element over which the cursor is hovering. (13)

• seam-date-monthNames — This class is applied to the div control
that contains the popup month selector. (14)

• seam-date-monthNameLink — This class is applied to the anchor
(a) controls that contain the popup month names. (15)

• seam-date-years — This class is applied to the div control that
contains the popup year selector. (16)

• seam-date-yearLink — This class is applied to the anchor (a)
controls that contain the popup years. (15)

<s:conversationPropagation>Description

Customize the conversation propagation for a command link or button
(or similar JSF control). Facelets only.

Attributes

305

• propagation — determines the conversation propagation style:
begin, join, nest, none or end.

• pageflow — a pageflow definition to begin. (This is only useful
when propagation="begin" or propagation="join".)

Usage

<s:conversationId> Description

Add the conversation id to an output link (or similar JSF control).
Facelets only.

Attributes

None.

Usage

<s:taskId> Description

Add the task id to an output link (or similar JSF control), when the task
is available via #{task}. Facelets only.

Attributes

None.

Usage

<s:fileUpload> Description

Renders a file upload control. This control must be used within a form
with an encoding type of multipart/form-data, i.e:

Chapter 24. Seam JSF controls

306

<h:form enctype="multipart/form-data">

For multipart requests, the Seam Multipart servlet filter must also be
configured in web.xml:

<filter>
<filter-name>Seam Filter</filter-name>

<filter-class>org.jboss.seam.web.SeamFilter</filter-class>
</filter>

<filter-mapping>
<filter-name>Seam Filter</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

Configuration

The following configuration options for multipart requests may be
configured in components.xml:

• createTempFiles — if this option is set to true, uploaded files are
streamed to a temporary file instead of in memory.

• maxRequestSize — the maximum size of a file upload request, in
bytes.

Here's an example:

<component
class="org.jboss.seam.web.MultipartFilter">

<property name="createTempFiles">true</property>
<property

name="maxRequestSize">1000000</property>
</component>

Attributes

307

• data — this value binding receives the binary file data. The
receiving field should be declared as a byte[] or InputStream
(required).

• contentType — this value binding receives the file's content type
(optional).

• fileName — this value binding receives the filename (optional).

• accept — a comma-separated list of content types to accept, may
not be supported by the browser. E.g. "images/png,images/jpg",
"images/*".

• style — The control's style

• styleClass — The control's style class

Usage

Table 24.1. Seam JSF Control Reference

Chapter 24. Seam JSF controls

308

Expression language enhancements
The standard Unified Expression Language (EL) assumes that any parameters to a method
expression will be provided by Java code. This means that a method with parameters cannot be
used as a JSF method binding. Seam provides an enhancement to the EL that allows
parameters to be included in a method expression itself. This applies to any Seam method
expression, including any JSF method binding, for example:

<s:commandButton action="#{hotelBooking.bookHotel(hotel)}" value="Book
Hotel"/>

1. Configuration

To use this feature in Facelets, you will need to declare a special view handler,
SeamFaceletViewHandler in faces-config.xml.

<faces-config>
<application>

<view-handler>org.jboss.seam.ui.facelet.SeamFaceletViewHandler</view-handler>
</application>

</faces-config>

2. Usage

Parameters are surrounded by parentheses, and separated by commas:

<h:commandButton action="#{hotelBooking.bookHotel(hotel, user)}" value="Book
Hotel"/>

The parameters hotel and user will be evaluated as value expressions and passed to the
bookHotel() method of the component. This gives you an alternative to the use of @In.

Any value expression may be used as a parameter:

<h:commandButton action="#{hotelBooking.bookHotel(hotel.id, user.username)}"
value="Book Hotel"/>

You may even pass literal strings using single or double quotes:

<h:commandLink action=”#{printer.println(‘Hello world!’)}” value=”Hello”/>

<h:commandLink action=’#{printer.println(“Hello again”)}’ value=’Hello’/>

Chapter 25.

309

You might even want to use this notation for all your action methods, even when you don’t have
parameters to pass. This improves readability by making it clear that the expression is a method
expression and not a value expression:

<s:link value="Cancel" action="#{hotelBooking.cancel()}"/>

3. Limitations

Please be aware of the following limitations:

3.1. Incompatibility with JSP 2.1

This extension is not currently compatible with JSP 2.1. So if you want to use this extension with
JSF 1.2, you will need to use Facelets. The extension works correctly with JSP 2.0.

3.2. Calling a MethodExpression from Java code

Normally, when a MethodExpression or MethodBinding is created, the parameter types are
passed in by JSF. In the case of a method binding, JSF assumes that there are no parameters
to pass. With this extension, we can’t know the parameter types until after the expression has
been evaluated. This has two minor consequences:

• When you invoke a MethodExpression in Java code, parameters you pass may be ignored.
Parameters defined in the expression will take precedence.

• Ordinarily, it is safe to call methodExpression.getMethodInfo().getParamTypes() at any
time. For an expression with parameters, you must first invoke the MethodExpression before
calling getParamTypes().

Both of these cases are exceedingly rare and only apply when you want to invoke the
MethodExpression by hand in Java code.

Chapter 25. Expression language enhancements

310

Testing Seam applications
Most Seam applications will need at least two kinds of automated tests: unit tests, which test a
particular Seam component in isolation, and scripted integration tests which exercise all Java
layers of the application (that is, everything except the view pages).

Both kinds of tests are very easy to write.

1. Unit testing Seam components

All Seam components are POJOs. This is a great place to start if you want easy unit testing.
And since Seam emphasises the use of bijection for inter-component interactions and access to
contextual objects, it's very easy to test a Seam component outside of its normal runtime
environment.

Consider the following Seam component:

@Stateless
@Scope(EVENT)
@Name("register")
public class RegisterAction implements Register
{

private User user;
private EntityManager em;

@In
public void setUser(User user) {

this.user = user;
}

@PersistenceContext
public void setBookingDatabase(EntityManager em) {

this.em = em;
}

public String register()
{

List existing = em.createQuery("select username from User where
username=:username")

.setParameter("username", user.getUsername())

.getResultList();
if (existing.size()==0)
{

em.persist(user);
return "success";

}
else
{

return null;
}

}

}

Chapter 26.

311

We could write a TestNG test for this component as follows:

public class RegisterActionTest
{

@Test
public testRegisterAction()
{

EntityManager em = getEntityManagerFactory().createEntityManager();
em.getTransaction().begin();

User gavin = new User();
gavin.setName("Gavin King");
gavin.setUserName("1ovthafew");
gavin.setPassword("secret");

RegisterAction action = new RegisterAction();
action.setUser(gavin);
action.setBookingDatabase(em);

assert "success".equals(action.register());

em.getTransaction().commit();
em.close();

}

private EntityManagerFactory emf;

public EntityManagerFactory getEntityManagerFactory()
{

return emf;
}

@Configuration(beforeTestClass=true)
public void init()
{

emf =
Persistence.createEntityManagerFactory("myResourceLocalEntityManager");

}

@Configuration(afterTestClass=true)
public void destroy()
{

emf.close();
}

}

Seam components don't usually depend directly upon container infrastructure, so most unit
testing as as easy as that!

Chapter 26. Testing Seam applications

312

2. Integration testing Seam applications

Integration testing is slightly more difficult. In this case, we can't eliminate the container
infrastructure; indeed, that is part of what is being tested! At the same time, we don't want to be
forced to deploy our application to an application server to run the automated tests. We need to
be able to reproduce just enough of the container infrastructure inside our testing environment
to be able to exercise the whole application, without hurting performance too much.

A second problem is emulating user interactions. A third problem is where to put our assertions.
Some test frameworks let us test the whole application by reproducing user interactions with the
web browser. These frameworks have their place, but they are not appropriate for use at
development time.

The approach taken by Seam is to let you write tests that script your components while running
inside a pruned down container environment (Seam, together with the JBoss Embeddable EJB
container). The role of the test script is basically to reproduce the interaction between the view
and the Seam components. In other words, you get to pretend you are the JSF implementation!

This approach tests everything except the view.

Let's consider a JSP view for the component we unit tested above:

<html>
<head>
<title>Register New User</title>
</head>
<body>
<f:view>
<h:form>

<table border="0">
<tr>

<td>Username</td>
<td><h:inputText value="#{user.username}"/></td>

</tr>
<tr>

<td>Real Name</td>
<td><h:inputText value="#{user.name}"/></td>

</tr>
<tr>

<td>Password</td>
<td><h:inputSecret value="#{user.password}"/></td>

</tr>
</table>
<h:messages/>
<h:commandButton type="submit" value="Register"

action="#{register.register}"/>
</h:form>

</f:view>
</body>

</html>

We want to test the registration functionality of our application (the stuff that happens when the

Integration testing Seam applications

313

user clicks the Register button). We'll reproduce the JSF request lifecycle in an automated
TestNG test:

public class RegisterTest extends SeamTest
{

@Test
public void testRegister() throws Exception
{

new FacesRequest() {

@Override
protected void processValidations() throws Exception
{

validateValue("#{user.username}", "1ovthafew");
validateValue("#{user.name}", "Gavin King");
validateValue("#{user.password}", "secret");
assert !isValidationFailure();

}

@Override
protected void updateModelValues() throws Exception
{

setValue("#{user.username}", "1ovthafew");
setValue("#{user.name}", "Gavin King");
setValue("#{user.password}", "secret");

}

@Override
protected void invokeApplication()
{

assert invokeMethod("#{register.register}").equals("success");
}

@Override
protected void renderResponse()
{

assert getValue("#{user.username}").equals("1ovthafew");
assert getValue("#{user.name}").equals("Gavin King");
assert getValue("#{user.password}").equals("secret");

}

}.run();

}

...

}

Notice that we've extended SeamTest, which provides a Seam environment for our components,
and written our test script as an anonymous class that extends SeamTest.FacesRequest, which
provides an emulated JSF request lifecycle. (There is also a SeamTest.NonFacesRequest for

Chapter 26. Testing Seam applications

314

testing GET requests.) We've written our code in methods which are named for the various JSF
phases, to emulate the calls that JSF would make to our components. Then we've thrown in
various assertions.

You'll find plenty of integration tests for the Seam example applications which demonstrate
more complex cases. There are instructions for running these tests using Ant, or using the
TestNG plugin for eclipse:

Integration testing Seam applications

315

Chapter 26. Testing Seam applications

316

2.1. Using mocks in integration tests

Occasionally, we need to be able to replace the implementation of some Seam component that
depends upon resources which are not available in the integration test environment. For
example, suppose we have some Seam component which is a facade to some payment
processing system:

@Name("paymentProcessor")
public class PaymentProcessor {

public boolean processPayment(Payment payment) { }
}

For integration tests, we can mock out this component as follows:

@Name("paymentProcessor")
@Install(precedence=MOCK)
public class MockPaymentProcessor extends PaymentProcessor {

public void processPayment(Payment payment) {
return true;

}
}

Since the MOCK precedence is higher than the default precedence of application components,
Seam will install the mock implementation whenever it is in the classpath. When deployed into
production, the mock implementation is absent, so the real component will be installed.

Using mocks in integration tests

317

318

Seam tools

1. jBPM designer and viewer

The jBPM designer and viewer will let you design and view in a nice way your business
processes and your pageflows. This convenient tool is part of the JBoss Developer Studio and
more details can be found in the jBPM's documentation (http://docs.jboss.com/jbpm/v3/gpd/)

1.1. Business process designer

This tool lets you design your own business process in a graphical way.

1.2. Pageflow viewer

This tool will let you design to some extend your pageflows and let you build graphical views of
them so you can easily share and compare ideas on how it should be designed.

Chapter 27.

319

2. CRUD-application generator

This chapter, will give you a short overview of the support for Seam that is available in the
Hibernate Tools. Hibernate Tools is a set of tools for working with Hibernate and related
technologies, such as JBoss Seam and EJB3. The tools are available as a set of eclipse plugins
and Ant tasks. You can download the Hibernate Tools from the JBoss Tools or Hibernate Tools
websites.

The specific support for Seam that is currently available is generation of a fully functional Seam
based CRUD-application. The CRUD-application can be generated based on your existing
Hibernate mapping files or EJB3 annotated POJO's or even fully reverse engineered from your
existing database schema.

The following sections is focused on the features required to understand for usage with Seam.
The content is derived from the the Hibernate Tools reference documentation. Thus if you need
more detailed information please refer to the Hibernate Tools documentation.

2.1. Creating a Hibernate configuration file

To be able to reverse engineer and generate code a hibernate.properties or hibernate.cfg.xml
file is needed. The Hibernate Tools provide a wizard for generating the hibernate.cfg.xml file if
you do not already have such file.

Start the wizard by clicking "New Wizard" (Ctrl+N), select the Hibernate/Hibernate Configuration
file (cfg.xml) wizard and press "Next". After selecting the wanted location for the
hibernate.cfg.xml file, you will see the following page:

Chapter 27. Seam tools

320

Tip: The contents in the combo boxes for the JDBC driver class and JDBC URL change
automatically, depending on the Dialect and actual driver you have chosen.

Enter your configuration information in this dialog. Details about the configuration options can
be found in Hibernate reference documentation.

Press "Finish" to create the configuration file, after optionally creating a Console onfiguration,
the hibernate.cfg.xml will be automatically opened in an editor. The last option "Create Console
Configuration" is enabled by default and when enabled i will automatically use the
hibernate.cfg.xml for the basis of a "Console Configuration"

2.2. Creating a Hibernate Console configuration

A Console Configuration describes to the Hibernate plugin which configuration files should be
used to configure hibernate, including which classpath is needed to load the POJO's, JDBC
drivers etc. It is required to make usage of query prototyping, reverse engineering and code
generation. You can have multiple named console configurations. Normally you would just need
one per project, but more (or less) is definitly possible.

You create a console configuration by running the Console Configuration wizard, shown in the
following screenshot. The same wizard will also be used if you are coming from the
hibernate.cfg.xml wizard and had enabled "Create Console Configuration".

Creating a Hibernate Console configuration

321

Creating a Hibernate Console configuration

The following table describes the relevant settings. The wizard can automatically detect default
values for most of these if you started the Wizard with the relevant java project selected

Parameter Description Auto detected
value

Name The unique name of the configuration Name of the
selected project

Property file Path to a hibernate.properties file First
hibernate.properties
file found in the

Chapter 27. Seam tools

322

Parameter Description Auto detected
value

selected project

Configuration file Path to a hibernate.cfg.xml file First
hibernate.cfg.xml
file found in the
selected project

Enable
Hibernate
ejb3/annotations

Selecting this option enables usage of annotated
classes. hbm.xml files are of course still possible to use
too. This feature requires running the Eclipse IDE with
a JDK 5 runtime, otherwise you will get classloading
and/or version errors.

Not enabled

Mapping files List of additional mapping files that should be loaded.
Note: A hibernate.cfg.xml can also contain mappings.
Thus if these a duplicated here, you will get "Duplicate
mapping" errors when using the console configuration.

If no
hibernate.cfg.xml
file is found, all
hbm.xml files
found in the
selected project

Classpath The classpath for loading POJO and JDBC drivers. Do
not add Hibernate core libraries or dependencies, they
are already included. If you get ClassNotFound errors
then check this list for possible missing or redundant
directories/jars.

The default build
output directory
and any JARs
with a class
implementing
java.sql.Driver in
the selected
project

Table 27.1. Hibernate Console Configuration Parameters

Clicking "Finish" creates the configuration and shows it in the "Hibernate Configurations" view

Creating a Hibernate Console configuration

323

Console overview

2.3. Reverse engineering and code generation

A very simple "click-and-generate" reverse engineering and code generation facility is available.
It is this facility that allows you to generate the skeleton for a full Seam CRUD application.

To start working with this process, start the "Hibernate Code Generation" which is available in
the toolbar via the Hibernate icon or via the "Run/Hibernate Code Generation" menu item.

2.3.1. Code Generation Launcher

When you click on "Hibernate Code Generation" the standard Eclipse launcher dialog will
appear. In this dialog you can create, edit and delete named Hibernate code generation
"launchers".

Chapter 27. Seam tools

324

The dialog has the standard tabs "Refresh" and "Common" that can be used to configure which
directories should be automatically refreshed and various general settings launchers, such as
saving them in a project for sharing the launcher within a team.

The first time you create a code generation launcher you should give it a meaningfull name,
otherwise the default prefix "New_Generation" will be used.

Note: The "At least one exporter option must be selected" is just a warning stating that for this
launch to work you need to select an exporter on the Exporter tab. When an exporter has been
selected the warning will disappear.

On the "Main" tab you the following fields:

Field Description

Console
Configuration

The name of the console configuration which should be used when
code generating.

Output directory Path to a directory into where all output will be written by default. Be
aware that existing files will be overwritten, so be sure to specify the
correct directory.

Reverse engineer
from JDBC
Connection

If enabled the tools will reverse engineer the database available via
the connection information in the selected Hibernate Console
Configuration and generate code based on the database schema. If
not enabled the code generation will just be based on the mappings

Reverse engineering and code generation

325

Field Description

already specified in the Hibernate Console configuration.

Package The package name here is used as the default package name for any
entities found when reverse engineering.

reveng.xml Path to a reveng.xml file. A reveng.xml file allows you to control
certain aspects of the reverse engineering. e.g. how jdbc types are
mapped to hibernate types and especially important which tables are
included/excluded from the process. Clicking "setup" allows you to
select an existing reveng.xml file or create a new one..

reveng. strategy If reveng.xml does not provide enough customization you can provide
your own implementation of an ReverseEngineeringStrategy. The
class need to be in the claspath of the Console Configuration,
otherwise you will get class not found exceptions.

Generate basic typed
composite ids

This field should always be enabled when generating the Seam
CRUD application. A table that has a multi-colum primary key a
<composite-id> mapping will always be created. If this option is
enabled and there are matching foreign-keys each key column is still
considered a 'basic' scalar (string, long, etc.) instead of a reference to
an entity. If you disable this option a <key-many-to-one> instead.
Note: a <many-to-one> property is still created, but is simply marked
as non-updatable and non-insertable.

Use custom
templates

If enabled, the Template directory will be searched first when looking
up the velocity templates, allowing you to redefine how the individual
templates process the hibernate mapping model.

Template directory A path to a directory with custom velocity templates.

Table 27.2. Code generation "Main" tab fields

2.3.2. Exporters

The exporters tab is used to specify which type of code that should be generated. Each
selection represents an "Exporter" that are responsible for generating the code, hence the
name.

Chapter 27. Seam tools

326

The following table describes in short the various exporters. The most relevant for Seam is of
course the "JBoss Seam Skeleton app".

Field Description

Generate domain
code

Generates POJO's for all the persistent classes and components
found in the given Hibernate configuration.

JDK 1.5 constructs When enabled the POJO's will use JDK 1.5 constructs.

EJB3/JSR-220
annotations

When enabled the POJO's will be annotated according to the
EJB3/JSR-220 persistency specification.

Generate DAO code Generates a set of DAO's for each entity found.

Generate Mappings Generate mapping (hbm.xml) files for each entity

Generate hibernate
configuration file

Generate a hibernate.cfg.xml file. Used to keep the hibernate.cfg.xml
uptodate with any new found mapping files.

Generate schema
html-documentation

Generates set of html pages that documents the database schema
and some of the mappings.

Generate JBoss
Seam skeleton app

Generates a complete JBoss Seam skeleton app. The generation will
include annotated POJO's, Seam controller beans and a JSP for the

Reverse engineering and code generation

327

Field Description

(beta) presentation layer. See the generated readme.txt for how to use it.

Note: this exporter generates a full application, including a build.xml
thus you will get the best results if you use an output directory which
is the root of your project.

Table 27.3. Code generation "Exporter" tab fields

2.3.3. Generating and using the code

When you have finished filling out the settings, simply press "Run" to start the generation of
code. This might take a little while if you are reverse engineering from a database.

When the generation have finished you should now have a complete skeleton Seam application
in the output directory. In the output directory there is a readme.txt file describing the steps
needed to deploy and run the example.

If you want to regenerate/update the skeleton code then simply run the code generation again
by selecting the "Hibernate Code Generation" in the toolbar or "Run" menu. Enjoy.

Chapter 27. Seam tools

328

Index

329

330

	Seam Reference Guide
	Table of Contents
	Chapter 1. Feedback
	Introduction to JBoss Seam
	Chapter 2. Seam Tutorial
	1. Try the examples
	1.1. Running the examples on JBoss AS
	1.2. Running the examples on Tomcat
	1.3. Running the example tests

	2. Your first Seam application: the registration example
	2.1. Understanding the code
	2.1.1. The entity bean: User.java
	2.1.2. The stateless session bean class: RegisterAction.java
	2.1.3. The session bean local interface: Register.java
	2.1.4. The Seam component deployment descriptor: components.xml
	2.1.5. The web deployment description: web.xml
	2.1.6. The JSF configration: faces-config.xml
	2.1.7. The EJB deployment descriptor: ejb-jar.xml
	2.1.8. The EJB persistence deployment descriptor: persistence.xml
	2.1.9. The view: register.jsp and registered.jsp
	2.1.10. The EAR deployment descriptor: application.xml

	2.2. How it works

	3. Clickable lists in Seam: the messages example
	3.1. Understanding the code
	3.1.1. The entity bean: Message.java
	3.1.2. The stateful session bean: MessageManagerBean.java
	3.1.3. The session bean local interface: MessageManager.java
	3.1.4. The view: messages.jsp

	3.2. How it works

	4. Seam and jBPM: the todo list example
	4.1. Understanding the code
	4.2. How it works

	5. Seam pageflow: the numberguess example
	5.1. Understanding the code
	5.2. How it works

	6. A complete Seam application: the Hotel Booking example
	6.1. Introduction
	6.2. Overview of the booking example
	6.3. Understanding Seam conversations
	6.4. The Seam UI control library
	6.5. The Seam Debug Page

	7. A complete application featuring Seam and jBPM: the DVD Store example
	8. A complete application featuring Seam workspace management: the Issue Tracker example
	9. An example of Seam with Hibernate: the Hibernate Booking example
	10. A RESTful Seam application: the Blog example
	10.1. Using "pull"-style MVC
	10.2. Bookmarkable search results page
	10.3. Using "push"-style MVC in a RESTful application

	Chapter 3. The contextual component model
	1. Seam contexts
	1.1. Stateless context
	1.2. Event context
	1.3. Page context
	1.4. Conversation context
	1.5. Session context
	1.6. Business process context
	1.7. Application context
	1.8. Context variables
	1.9. Context search priority
	1.10. Concurrency model

	2. Seam components
	2.1. Stateless session beans
	2.2. Stateful session beans
	2.3. Entity beans
	2.4. JavaBeans
	2.5. Message-driven beans
	2.6. Interception
	2.7. Component names
	2.8. Defining the component scope
	2.9. Components with multiple roles
	2.10. Built-in components

	3. Bijection
	4. Lifecycle methods
	5. Conditional installation
	6. Logging
	7. The Mutable interface and @ReadOnly
	8. Factory and manager components

	Chapter 4. Configuring Seam components
	1. Configuring components via property settings
	2. Configuring components via components.xml
	3. Fine-grained configuration files
	4. Configurable property types
	5. Using XML Namespaces

	Chapter 5. Events, interceptors and exception handling
	1. Seam events
	1.1. Page actions
	1.1.1. Page parameters
	1.1.2. Navigation
	1.1.3. Fine-grained files for definition of navigation, page actions and parameters

	1.2. Component-driven events
	1.3. Contextual events

	2. Seam interceptors
	3. Managing exceptions
	3.1. Exceptions and transactions
	3.2. Enabling Seam exception handling
	3.3. Using annotations for exception handling
	3.4. Using XML for exception handling

	Chapter 6. Conversations and workspace management
	1. Seam's conversation model
	2. Nested conversations
	3. Starting conversations with GET requests
	4. Using <s:link> and <s:button>
	5. Success messages
	6. Using an "explicit" conversation id
	7. Workspace management
	7.1. Workspace management and JSF navigation
	7.2. Workspace management and jPDL pageflow
	7.3. The conversation switcher
	7.4. The conversation list
	7.5. Breadcrumbs

	8. Conversational components and JSF component bindings

	Chapter 7. Pageflows and business processes
	1. Pageflow in Seam
	1.1. The two navigation models
	1.2. Seam and the back button

	2. Using jPDL pageflows
	2.1. Installing pageflows
	2.2. Starting pageflows
	2.3. Page nodes and transitions
	2.4. Controlling the flow
	2.5. Ending the flow

	3. Business process management in Seam
	4. Using jPDL business process definitions
	4.1. Installing process definitions
	4.2. Initializing actor ids
	4.3. Initiating a business process
	4.4. Task assignment
	4.5. Task lists
	4.6. Performing a task

	Chapter 8. Seam and Object/Relational Mapping
	1. Introduction
	2. Seam managed transactions
	2.1. Enabling Seam-managed transactions

	3. Seam-managed persistence contexts
	3.1. Using a Seam-managed persistence context with JPA
	3.2. Using a Seam-managed Hibernate session
	3.3. Seam-managed persistence contexts and atomic conversations

	4. Using the JPA "delegate"
	5. Using EL in EJB-QL/HQL
	6. Using Hibernate filters

	Chapter 9. JSF form validation in Seam
	Chapter 10. The Seam Application Framework
	1. Introduction
	2. Home objects
	3. Query objects
	4. Controller objects

	Chapter 11. Seam and JBoss Rules
	1. Installing rules
	2. Using rules from a Seam component
	3. Using rules from a jBPM process definition

	Chapter 12. Security
	1. Overview
	1.1. Which mode is right for my application?

	2. Requirements
	3. Authentication
	3.1. Configuration
	3.2. Writing an authentication method
	3.3. Writing a login form
	3.4. Simplified Configuration - Summary
	3.5. Handling Security Exceptions
	3.6. Login Redirection
	3.7. Advanced Authentication Features
	3.7.1. Using your container's JAAS configuration

	4. Error Messages
	5. Authorization
	5.1. Core concepts
	5.2. Securing components
	5.2.1. The @Restrict annotation
	5.2.2. Inline restrictions

	5.3. Security in the user interface
	5.4. Securing pages
	5.5. Securing Entities
	5.5.1. Entity security with JPA
	5.5.2. Entity security with Hibernate

	6. Writing Security Rules
	6.1. Permissions Overview
	6.2. Configuring a rules file
	6.3. Creating a security rules file
	6.3.1. Wildcard permission checks

	7. SSL Security
	8. Implementing a Captcha Test
	8.1. Configuring the Captcha Servlet
	8.2. Adding a Captcha to a page

	Chapter 13. Internationalization and themes
	1. Locales
	2. Labels
	2.1. Defining labels
	2.2. Displaying labels
	2.3. Faces messages

	3. Timezones
	4. Themes
	5. Persisting locale and theme preferences via cookies

	Chapter 14. Seam Text
	1. Basic fomatting
	2. Entering code and text with special characters
	3. Links
	4. Entering HTML

	Chapter 15. iText PDF generation
	1. Using PDF Support
	2. Creating a document
	2.1. p:document

	3. Basic Text Elements
	3.1. p:paragraph
	3.2. p:text
	3.3. p:font
	3.4. p:newPage
	3.5. p:image
	3.6. p:anchor

	4. Headers and Footers
	4.1. p:header and p:footer
	4.2. p:pageNumber

	5. Chapters and Sections
	5.1. p:chapter and p:section
	5.2. p:title

	6. Lists
	6.1. p:list
	6.2. p:listItem

	7. Tables
	7.1. p:table
	7.2. p:cell

	8. Document Constants
	8.1. Color Values
	8.2. Alignment Values

	9. Configuring iText
	10. iText links

	Chapter 16. Email
	1. Creating a message
	1.1. Attachments
	1.2. HTML/Text alternative part
	1.3. Multiple recipients
	1.4. Multiple messages
	1.5. Templating
	1.6. Internationalisation
	1.7. Other Headers

	2. Receiving emails
	3. Configuration
	3.1. mailSession
	3.1.1. JNDI lookup in JBoss AS
	3.1.2. Seam configured Session

	4. Tags

	Chapter 17. Asynchronicity and messaging
	1. Asynchronicity
	1.1. Asynchronous methods
	1.2. Asynchronous events

	2. Messaging in Seam
	2.1. Configuration
	2.2. Sending messages
	2.3. Receiving messages using a message-driven bean
	2.4. Receiving messages in the client

	Chapter 18. Caching
	1. Using JBossCache in Seam
	2. Page fragment caching

	Chapter 19. Remoting
	1. Configuration
	2. The "Seam" object
	2.1. A Hello World example
	2.2. Seam.Component
	2.2.1. Seam.Component.newInstance()
	2.2.2. Seam.Component.getInstance()
	2.2.3. Seam.Component.getComponentName()

	2.3. Seam.Remoting
	2.3.1. Seam.Remoting.createType()
	2.3.2. Seam.Remoting.getTypeName()

	3. Client Interfaces
	4. The Context
	4.1. Setting and reading the Conversation ID

	5. Batch Requests
	6. Working with Data types
	6.1. Primitives / Basic Types
	6.1.1. String
	6.1.2. Number
	6.1.3. Boolean

	6.2. JavaBeans
	6.3. Dates and Times
	6.4. Enums
	6.5. Collections
	6.5.1. Bags
	6.5.2. Maps

	7. Debugging
	8. The Loading Message
	8.1. Changing the message
	8.2. Hiding the loading message
	8.3. A Custom Loading Indicator

	9. Controlling what data is returned
	9.1. Constraining normal fields
	9.2. Constraining Maps and Collections
	9.3. Constraining objects of a specific type
	9.4. Combining Constraints

	10. JMS Messaging
	10.1. Configuration
	10.2. Subscribing to a JMS Topic
	10.3. Unsubscribing from a Topic
	10.4. Tuning the Polling Process

	Chapter 20. Spring Framework integration
	1. Injecting Seam components into Spring beans
	2. Injecting Spring beans into Seam components
	3. Making a Spring bean into a Seam component
	4. Seam-scoped Spring beans
	5. Spring Application Context as a Seam Component

	Chapter 21. Configuring Seam and packaging Seam applications
	1. Basic Seam configuration
	1.1. Integrating Seam with JSF and your servlet container
	1.2. Seam Resource Servlet
	1.3. Seam servlet filters
	1.3.1. Exception handling
	1.3.2. Conversation propagation with redirects
	1.3.3. Multipart form submissions
	1.3.4. Character encoding
	1.3.5. Context management for custom servlets

	1.4. Integrating Seam with your EJB container
	1.5. Using facelets
	1.6. Don't forget!

	2. Configuring Seam in Java EE 5
	2.1. Packaging

	3. Configuring Seam in Java SE, with the JBoss Embeddable EJB3 container
	3.1. Installing the Embeddable EJB3 container
	3.2. Configuring a datasource with the Embeddable EJB3 container
	3.3. Packaging

	4. Configuring Seam in J2EE
	4.1. Boostrapping Hibernate in Seam
	4.2. Boostrapping JPA in Seam
	4.3. Packaging

	5. Configuring Seam in Java SE, with the JBoss Microcontainer
	5.1. Using Hibernate and the JBoss Microcontainer
	5.2. Packaging

	6. Configuring jBPM in Seam
	6.1. Packaging

	7. Configuring Seam in a Portal
	8. Configuring SFSB and Session Timeouts in JBoss AS

	Chapter 22. Seam annotations
	1. Annotations for component definition
	2. Annotations for bijection
	3. Annotations for component lifecycle methods
	4. Annotations for context demarcation
	5. Annotations for transaction demarcation
	6. Annotations for exceptions
	7. Annotations for validation
	8. Annotations for Seam Remoting
	9. Annotations for Seam interceptors
	10. Annotations for asynchronicity
	11. Annotations for use with JSF dataTable
	12. Meta-annotations for databinding
	13. Annotations for packaging

	Chapter 23. Built-in Seam components
	1. Context injection components
	2. Utility components
	3. Components for internationalization and themes
	4. Components for controlling conversations
	5. jBPM-related components
	6. Security-related components
	7. JMS-related components
	8. Mail-related components
	9. Infrastructural components
	10. Special components

	Chapter 24. Seam JSF controls
	Chapter 25. Expression language enhancements
	1. Configuration
	2. Usage
	3. Limitations
	3.1. Incompatibility with JSP 2.1
	3.2. Calling a MethodExpression from Java code

	Chapter 26. Testing Seam applications
	1. Unit testing Seam components
	2. Integration testing Seam applications
	2.1. Using mocks in integration tests

	Chapter 27. Seam tools
	1. jBPM designer and viewer
	1.1. Business process designer
	1.2. Pageflow viewer

	2. CRUD-application generator
	2.1. Creating a Hibernate configuration file
	2.2. Creating a Hibernate Console configuration
	2.3. Reverse engineering and code generation
	2.3.1. Code Generation Launcher
	2.3.2. Exporters
	2.3.3. Generating and using the code

	Index

