
Hibernate Annotations Reference Guide

JBoss Enterprise
Application Platform

4.3

ISBN: N/A
Publication date: Sep, 2007

The JBoss Enterprise Application Platform Edition of the Hibernate Annotations Reference
Guide 3.2

Hibernate Annotations Reference Guide

Hibernate Annotations Reference Guide: JBoss Enterprise
Application Platform
Copyright © 2008 Red Hat, Inc

Copyright © 2008 Red Hat, Inc. This material may only be distributed subject to the terms and conditions set forth in the
Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License (which is presently available at
http://creativecommons.org/licenses/by-nc-sa/3.0/).

Red Hat and the Red Hat "Shadow Man" logo are registered trademarks of Red Hat, Inc. in the United States and other
countries.

All other trademarks referenced herein are the property of their respective owners.

The GPG fingerprint of the security@redhat.com key is:

CA 20 86 86 2B D6 9D FC 65 F6 EC C4 21 91 80 CD DB 42 A6 0E

1801 Varsity Drive
Raleigh, NC 27606-2072
USA
Phone: +1 919 754 3700
Phone: 888 733 4281
Fax: +1 919 754 3701
PO Box 13588
Research Triangle Park, NC 27709
USA

http://creativecommons.org/licenses/by-nc-sa/3.0/

Hibernate Annotations Reference Guide

1. Feedback .. 1
Preface ... iii
2. Setting up an annotations project .. 5

1. Requirements .. 5
2. Configuration ... 5

3. Entity Beans .. 9
1. Intro .. 9
2. Mapping with EJB3/JPA Annotations ... 9

2.1. Declaring an entity bean .. 9
2.2. Mapping simple properties ..11
2.. Mapping identifier properties ...16
2.4. Mapping inheritance ...19
2.5. Mapping entity bean associations/relationships23
2.6. Mapping composite primary and foreign keys34
2.7. Mapping secondary tables ..36

3. Mapping Queries ..37
3.Mapping JPAQL/HQL queries. Mapping JPAQL/HQL queries37
3.2. Mapping native queries ...38

4. Hibernate Annotation Extensions ...42
4.1. Entity ...42
4.Identifier. Identifier ...44
4.3. Property ..45
4.4. Inheritance ...49
4.5. Single Association related annotations ...50
4.6. Collection related annotations ...51
4.7. Cache ...57
4.8. Filters ..58
4.9. Queries ...59
4.10. Custom SQL for CRUD operations ..59

Overriding metadata through XML. Overriding metadata through XML63
1. Principles ...63

1.1. Global level metadata ...63
1.2. Entity level metadata ..64
1.3. Property level metadata ..66
1.4. Association level metadata ...67

5. Hibernate Validator ...69
1. Constraints ...69

1.1. What is a constraint? ..69
1.2. Built in constraints ..69
1.3. Error messages ..71
1.4. Writing your own constraints ...71
1.5. Annotating your domain model ..73

2. Using the Validator framework ...75
2.1. Database schema-level validation ...75
2.2. Hibernate event-based validation ..75
2.3. Application-level validation ..75

v

2.4. Validation informations ...76
6. Hibernate Search: Apache Lucene™ Integration ...77

1. Architecture ..77
2. Configuration ..77

2.1. Directory configuration ..77
2.2. Enabling automatic indexing ...79

3. Mapping entities to the index structure ..79
4. Property/Field Bridge ...81

4.1. Built-in bridges ...81
4.2. Custom Bridge ...82

5. Querying ..86
6. Indexing ...87

Hibernate Annotations Reference Guide

vi

1 http://jira.jboss.com/jira/browse/JBPAPP

Feedback
If you spot a typo in this guide, or if you have thought of a way to make this manual better, we
would love to hear from you! Submit a report in JIRA1 against the Product: JBoss Enterprise
Application Platform, Version: <version>, Component: Doc. If you have a suggestion for
improving the documentation, try to be as specific as possible. If you have found an error,
include the section number and some of the surrounding text so we can find it easily.

Chapter 1.

1

http://jira.jboss.com/jira/browse/JBPAPP
http://jira.jboss.com/jira/browse/JBPAPP

2

Preface

Hibernate, like all other object/relational mapping tools, requires metadata that governs the
transformation of data from one representation to the other (and vice versa). In Hibernate 2.x,
mapping metadata is most of the time declared in XML text files. Another option is XDoclet,
utilizing Javadoc source code annotations and a preprocessor at compile time. The same kind
of annotation support is now available in the standard JDK, although more powerful and better
supported by tools. IntelliJ IDEA, and Eclipse for example, support auto-completion and syntax
highlighting of JDK 5.0 annotations. Annotations are compiled into the bytecode and read at
runtime (in Hibernate's case on startup) using reflection, so no external XML files are needed.

The EJB3 specification recognizes the interest and the success of the transparent
object/relational mapping paradigm. The EJB3 specification standardizes the basic APIs and
the metadata needed for any object/relational persistence mechanism. Hibernate EntityManager
implements the programming interfaces and lifecycle rules as defined by the EJB3 persistence
specification. Together with Hibernate Annotations, this wrapper implements a complete (and
standalone) EJB3 persistence solution on top of the mature Hibernate core. You may use a
combination of all three together, annotations without EJB3 programming interfaces and
lifecycle, or even pure native Hibernate, depending on the business and technical needs of your
project. You can at all times fall back to Hibernate native APIs, or if required, even to native
JDBC and SQL.

This release is based on the final release of the EJB 3.0 / JPA specification (aka JSP-220) and
support all the specification features (including the optional ones). Most of the Hibernate
features and extensions are also available through Hibernate specific annotations compared to
the specification are also available. While the Hibernate feature coverage is now very high,
some are still missing. The eventual goal is to cover all of them. See the JIRA road map section
for more informations.

If you are moving from previous Hibernate Annotations versions, please have a look at
http://www.hibernate.org/371.html for a migration guide.

iii

iv

Setting up an annotations project

1. Requirements

• Download and unpack the Hibernate Annotations distribution from the Hibernate website.

• This release requires Hibernate 3.2.0.GA and above. Do not use this release of Hibernate
Annotations with an older version of Hibernate 3.x!

• This release is known to work on Hibernate core 3.2.0.CR5, 3.2.0.GA and 3.2.1.GA

• Make sure you have JDK 5.0 installed. You can of course continue using XDoclet and get
some of the benefits of annotation-based metadata with older JDK versions. Note that this
document only describes JDK 5.0 annotations and you have to refer to the XDoclet
documentation for more information.

2. Configuration

First, set up your classpath (after you have created a new project in your favorite IDE):

• Copy all Hibernate3 core and required 3rd party library files (see lib/README.txt in
Hibernate).

• Copy hibernate-annotations.jar and lib/ejb3-persistence.jar from the Hibernate
Annotations distribution to your classpath as well.

• To use the Chapter 6, Hibernate Search: Apache Lucene™ Integration, add the lucene jar
file.

We also recommend a small wrapper class to startup Hibernate in a static initializer block,
known as HibernateUtil. You might have seen this class in various forms in other areas of the
Hibernate documentation. For Annotation support you have to enhance this helper class as
follows:

package hello;

import org.hibernate.*;
import org.hibernate.cfg.*;
import test.*;
import test.animals.Dog;

public class HibernateUtil {

private static final SessionFactory sessionFactory;

static {
try {

Chapter 2.

5

sessionFactory = new
AnnotationConfiguration().buildSessionFactory();

} catch (Throwable ex) {
// Log exception!
throw new ExceptionInInitializerError(ex);

}
}

public static Session getSession()
throws HibernateException {

return sessionFactory.openSession();
}

}

Interesting here is the use of AnnotationConfiguration. The packages and annotated classes
are declared in your regular XML configuration file (usually hibernate.cfg.xml). Here is the
equivalent of the above declaration:

<!DOCTYPE hibernate-configuration PUBLIC "-//Hibernate/Hibernate
Configuration DTD 3.0//EN"

"http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">

<hibernate-configuration>
<session-factory>

<mapping package="test.animals"/>
<mapping class="test.Flight"/>
<mapping class="test.Sky"/>
<mapping class="test.Person"/>
<mapping class="test.animals.Dog"/>
<mapping resource="test/animals/orm.xml"/>

</session-factory>
</hibernate-configuration>

Note that you can mix the hbm.xml use and the new annotation one. The resource element can
be either an hbm file or an EJB3 XML deployment descriptor. The distinction is transparent for
your configuration process.

Alternatively, you can define the annotated classes and packages using the programmatic API

sessionFactory = new AnnotationConfiguration()
.addPackage("test.animals")

//the fully qualified package name
.addAnnotatedClass(Flight.class)
.addAnnotatedClass(Sky.class)
.addAnnotatedClass(Person.class)
.addAnnotatedClass(Dog.class)
.addResource("test/animals/orm.xml")
.buildSessionFactory();

Chapter 2. Setting up an annotations project

6

You can also use the Hibernate EntityManager which has its own configuration mechanism.
Please refer to this project documentation for more details.

There is no other difference in the way you use Hibernate APIs with annotations, except for this
startup routine change or in the configuration file. You can use your favorite configuration
method for other properties (hibernate.properties, hibernate.cfg.xml, programmatic
APIs, etc). You can even mix annotated persistent classes and classic hbm.cfg.xml

declarations with the same SessionFactory. You can however not declare a class several
times (whether annotated or through hbm.xml). You cannot mix configuration strategies (hbm vs
annotations) in a mapped entity hierarchy either.

To ease the migration process from hbm files to annotations, the configuration mechanism
detects the mapping duplication between annotations and hbm files. HBM files are then
prioritized over annotated metadata on a class to class basis. You can change the priority using
hibernate.mapping.precedence property. The default is hbm, class, changing it to class,

hbm will prioritize the annotated classes over hbm files when a conflict occurs.

Configuration

7

8

Entity Beans

1. Intro

This section covers EJB 3.0 (aka JPA) entity annotations and Hibernate-specific extensions.

2. Mapping with EJB3/JPA Annotations

EJB3 entities are plain POJOs. Actually they represent the exact same concept as the
Hibernate persistent entities. Their mappings are defined through JDK 5.0 annotations (an XML
descriptor syntax for overriding is defined in the EJB3 specification). Annotations can be split in
two categories, the logical mapping annotations (allowing you to describe the object model, the
class associations, etc.) and the physical mapping annotations (describing the physical schema,
tables, columns, indexes, etc). We will mix annotations from both categories in the following
code examples.

EJB3 annotations are in the javax.persistence.* package. Most JDK 5 compliant IDE (like
Eclipse, IntelliJ IDEA and Netbeans) can autocomplete annotation interfaces and attributes for
you (even without a specific "EJB3" module, since EJB3 annotations are plain JDK 5
annotations).

For more and runnable concrete examples read the JBoss EJB 3.0 tutorial or review the
Hibernate Annotations test suite. Most of the unit tests have been designed to represent a
concrete example and be a inspiration source.

2.1. Declaring an entity bean

Every bound persistent POJO class is an entity bean and is declared using the @Entity

annotation (at the class level):

@Entity
public class Flight implements Serializable {

Long id;

@Id
public Long getId() { return id; }

public void setId(Long id) { this.id = id; }
}

@Entity declares the class as an entity bean (i.e. a persistent POJO class), @Id declares the
identifier property of this entity bean. The other mapping declarations are implicit. This
configuration by exception concept is central to the new EJB3 specification and a major
improvement. The class Flight is mapped to the Flight table, using the column id as its primary
key column.

Chapter 3.

9

Depending on whether you annotate fields or methods, the access type used by Hibernate will
be field or property. The EJB3 spec requires that you declare annotations on the element
type that will be accessed, i.e. the getter method if you use property access, the field if you
use field access. Mixing EJB3 annotations in both fields and methods should be avoided.
Hibernate will guess the access type from the position of @Id or @EmbeddedId.

2.1.1. Defining the table

@Table is set at the class level; it allows you to define the table, catalog, and schema names for
your entity bean mapping. If no @Table is defined the default values are used: the unqualified
class name of the entity.

@Entity
@Table(name="tbl_sky")
public class Sky implements Serializable {
...

The @Table element also contains a schema and a catalog attributes, if they need to be
defined. You can also define unique constraints to the table using the @UniqueConstraint

annotation in conjunction with @Table (for a unique constraint bound to a single column, refer to
@Column).

@Table(name="tbl_sky",
uniqueConstraints = {@UniqueConstraint(columnNames={"month", "day"})}

)

A unique constraint is applied to the tuple month, day. Note that the columnNames array refers to
the logical column names.

2.1.2. Versioning for optimistic locking

You can add optimistic locking capability to an entity bean using the @Version annotation:

@Entity
public class Flight implements Serializable {
...

@Version
@Column(name="OPTLOCK")
public Integer getVersion() { ... }

}

The version property will be mapped to the OPTLOCK column, and the entity manager will use it
to detect conflicting updates (preventing lost updates you might otherwise see with the
last-commit-wins strategy).

Chapter 3. Entity Beans

10

The version column may be a numeric (the recommended solution) or a timestamp as per the
EJB3 spec. Hibernate support any kind of type provided that you define and implement the
appropriate UserVersionType.

2.2. Mapping simple properties

2.2.1. Declaring basic property mappings

Every non static non transient property (field or method) of an entity bean is considered
persistent, unless you annotate it as @Transient. Not having an annotation for your property is
equivalent to the appropriate @Basic annotation. The @Basic annotation allows you to declare
the fetching strategy for a property:

public transient int counter; //transient property

private String firstname; //persistent property

@Transient
String getLengthInMeter() { ... } //transient property

String getName() {... } // persistent property

@Basic
int getLength() { ... } // persistent property

@Basic(fetch = FetchType.LAZY)
String getDetailedComment() { ... } // persistent property

@Temporal(TemporalType.TIME)
java.util.Date getDepartureTime() { ... } // persistent property

@Enumerated(STRING)
Starred getNote() { ... } //enum persisted as String in database

counter, a transient field, and lengthInMeter, a method annotated as @Transient, and will be
ignored by the entity manager. name, length, and firstname properties are mapped persistent
and eagerly fetched (the default for simple properties). The detailedComment property value
will be lazily fetched from the database once a lazy property of the entity is accessed for the first
time. Usually you don't need to lazy simple properties (not to be confused with lazy association
fetching).

Note

To enable property level lazy fetching, your classes have to be instrumented:
bytecode is added to the original one to enable such feature, please refer to the
Hibernate reference documentation. If your classes are not instrumented,
property level lazy loading is silently ignored.

Mapping simple properties

11

The recommended alternative is to use the projection capability of EJB-QL or Criteria queries.

EJB3 support property mapping of all basic types supported by Hibernate (all basic Java types ,
their respective wrappers and serializable classes). Hibernate Annotations support out of the
box Enum type mapping either into a ordinal column (saving the enum ordinal) or a string based
column (saving the enum string representation): the persistence representation, defaulted to
ordinal, can be overriden through the @Enumerated annotation as shown in the note property
example.

In core Java APIs, the temporal precision is not defined. When dealing with temporal data you
might want to describe the expected precision in database. Temporal data can have DATE, TIME,
or TIMESTAMP precision (ie the actual date, only the time, or both). Use the @Temporal

annotation to fine tune that.

@Lob indicates that the property should be persisted in a Blob or a Clob depending on the
property type: java.sql.Clob, Character[], char[] and java.lang.String will be persisted in
a Clob. java.sql.Blob, Byte[], byte[] and serializable type will be persisted in a Blob.

@Lob
public String getFullText() {

return fullText;
}

@Lob
public byte[] getFullCode() {

return fullCode;
}

If the property type implements java.io.Serializable and is not a basic type, and if the
property is not annotated with @Lob, then the Hibernate serializable type is used.

2.2.2. Declaring column attributes

The column(s) used for a property mapping can be defined using the @Column annotation. Use it
to override default values (see the EJB3 specification for more information on the defaults). You
can use this annotation at the property level for properties that are:

• not annotated at all

• annotated with @Basic

• annotated with @Version

• annotated with @Lob

• annotated with @Temporal

Chapter 3. Entity Beans

12

• annotated with @org.hibernate.annotations.CollectionOfElements (for Hibernate only)

@Entity
public class Flight implements Serializable {
...
@Column(updatable = false, name = "flight_name", nullable = false,
length=50)
public String getName() { ... }

The name property is mapped to the flight_name column, which is not nullable, has a length of
50 and is not updatable (making the property immutable).

This annotation can be applied to regular properties as well as @Id or @Version properties.

@Column(
name="columnName";
boolean unique() default false;
boolean nullable() default true;
boolean insertable() default true;
boolean updatable() default true;
String columnDefinition() default "";
String table() default "";
int length() default 255;
int precision() default 0; // decimal precision
int scale() default 0; // decimal scale

name (optional): the column name (default to the property name)
unique (optional): set a unique constraint on this column or not (default false)
nullable (optional): set the column as nullable (default false).
insertable (optional): whether or not the column will be part of the insert statement
(default true)
updatable (optional): whether or not the column will be part of the update statement
(default true)
columnDefinition (optional): override the sql DDL fragment for this particular column
(non portable)
table (optional): define the targeted table (default primary table)
length (optional): column length (default 255)
precision (optional): column decimal precision (default 0)
scale (optional): column decimal scale if useful (default 0)

2.2.3. Embedded objects (aka components)

It is possible to declare an embedded component inside an entity and even override its column
mapping. Component classes have to be annotated at the class level with the @Embeddable

annotation. It is possible to override the column mapping of an embedded object for a particular
entity using the @Embedded and @AttributeOverride annotation in the associated property:

Mapping simple properties

13

@Entity
public class Person implements Serializable {

// Persistent component using defaults
Address homeAddress;

@Embedded
@AttributeOverrides({

@AttributeOverride(name="iso2", column =
@Column(name="bornIso2")),

@AttributeOverride(name="name", column =
@Column(name="bornCountryName"))

})
Country bornIn;
...

}

@Embeddable
public class Address implements Serializable {

String city;
Country nationality; //no overriding here

}

@Embeddable
public class Country implements Serializable {

private String iso2;
@Column(name="countryName") private String name;

public String getIso2() { return iso2; }
public void setIso2(String iso2) { this.iso2 = iso2; }

public String getName() { return name; }
public void setName(String name) { this.name = name; }
...

}

A embeddable object inherit the access type of its owning entity (note that you can override that
using the Hibernate specific @AccessType annotations (see Hibernate Annotation Extensions).

The Person entity bean has two component properties, homeAddress and bornIn.
homeAddress property has not been annotated, but Hibernate will guess that it is a persistent
component by looking for the @Embeddable annotation in the Address class. We also override
the mapping of a column name (to bornCountryName) with the @Embedded and

Chapter 3. Entity Beans

14

@AttributeOverride annotations for each mapped attribute of Country. As you can see,
Country is also a nested component of Address, again using auto-detection by Hibernate and
EJB3 defaults. Overriding columns of embedded objects of embedded objects is currently not
supported in the EJB3 spec, however, Hibernate Annotations supports it through dotted
expressions.

@Embedded
@AttributeOverrides({

@AttributeOverride(name="city", column =
@Column(name="fld_city"))

@AttributeOverride(name="nationality.iso2", column =
@Column(name="nat_Iso2")),

@AttributeOverride(name="nationality.name",
column = @Column(name="nat_CountryName"))

//nationality columns in homeAddress are overridden
})
Address homeAddress;

Hibernate Annotations supports one more feature that is not explicitly supported by the EJB3
specification. You can annotate a embedded object with the @MappedSuperclass annotation to
make the superclass properties persistent (see @MappedSuperclass for more informations).

While not supported by the EJB3 specification, Hibernate Annotations allows you to use
association annotations in an embeddable object (ie @*ToOne nor @*ToMany). To override the
association columns you can use @AssociationOverride.

If you want to have the same embeddable object type twice in the same entity, the column
name defaulting will not work: at least one of the columns will have to be explicit. Hibernate
goes beyond the EJB3 spec and allows you to enhance the defaulting mechanism through the
NamingStrategy. DefaultComponentSafeNamingStrategy is a small improvement over the
default EJB3NamingStrategy that allows embedded objects to be defaulted even if used twice in
the same entity.

2.2.4. Non-annotated property defaults

If a property is not annotated, the following rules apply:

• If the property is of a single type, it is mapped as @Basic

• Otherwise, if the type of the property is annotated as @Embeddable, it is mapped as
@Embedded

• Otherwise, if the type of the property is Serializable, it is mapped as @Basic in a column
holding the object in its serialized version

• Otherwise, if the type of the property is java.sql.Clob or java.sql.Blob, it is mapped as @Lob
with the appropriate LobType

Mapping identifier properties

15

2.. Mapping identifier properties

The @Id annotation lets you define which property is the identifier of your entity bean. This
property can be set by the application itself or be generated by Hibernate (preferred). You can
define the identifier generation strategy thanks to the @GeneratedValue annotation:

• AUTO - either identity column, sequence or table depending on the underlying DB

• TABLE - table holding the id

• IDENTITY - identity column

• SEQUENCE - sequence

Hibernate provides more id generators than the basic EJB3 ones. Check Hibernate Annotation
Extensions for more informations.

The following example shows a sequence generator using the SEQ_STORE configuration (see
below)

@Id @GeneratedValue(strategy=GenerationType.SEQUENCE, generator="SEQ_STORE")
public Integer getId() { ... }

The next example uses the identity generator:

@Id @GeneratedValue(strategy=GenerationType.IDENTITY)
public Long getId() { ... }

The AUTO generator is the preferred type for portable applications (across several DB vendors).
The identifier generation configuration can be shared for several @Id mappings with the
generator attribute. There are several configurations available through @SequenceGenerator

and @TableGenerator. The scope of a generator can be the application or the class.
Class-defined generators are not visible outside the class and can override application level
generators. Application level generators are defined at XML level (see Chapter Overriding
metadata through XML, Overriding metadata through XML):

<table-generator name="EMP_GEN"
table="GENERATOR_TABLE"
pk-column-name="key"
value-column-name="hi"
pk-column-value="EMP"
allocation-size="20"/>

//and the annotation equivalent

Chapter 3. Entity Beans

16

@javax.persistence.TableGenerator(
name="EMP_GEN",
table="GENERATOR_TABLE",
pkColumnName = "key",
valueColumnName = "hi"
pkColumnValue="EMP",
allocationSize=20

)

<sequence-generator name="SEQ_GEN"
sequence-name="my_sequence"
allocation-size="20"/>

//and the annotation equivalent

@javax.persistence.SequenceGenerator(
name="SEQ_GEN",
sequenceName="my_sequence",
allocationSize=20

)

If JPA XML (like META-INF/orm.xml) is used to define thegenerators, EMP_GEN and SEQ_GEN are
application level generators. EMP_GEN defines a table based id generator using the hilo algorithm
with a max_lo of 20. The hi value is kept in a table "GENERATOR_TABLE". The information is kept
in a row where pkColumnName "key" is equals to pkColumnValue "EMP" and column
valueColumnName "hi" contains the the next high value used.

SEQ_GEN defines a sequence generator using a sequence named my_sequence. The allocation
size used for this sequence based hilo algorithm is 20. Note that this version of Hibernate
Annotations does not handle initialValue in the sequence generator. The default allocation
size is 50, so if you want to use a sequence and pickup the value each time, you must set the
allocation size to 1.

Note

Package level definition is no longer supported by the EJB 3.0 specification.
However, you can use the @GenericGenerator at the package level (see
Section 4.Identifier, “Identifier”).

The next example shows the definition of a sequence generator in a class scope:

@Entity
@javax.persistence.SequenceGenerator(

name="SEQ_STORE",
sequenceName="my_sequence"

)
public class Store implements Serializable {

Mapping identifier properties

17

private Long id;

@Id @GeneratedValue(strategy=GenerationType.SEQUENCE,
generator="SEQ_STORE")

public Long getId() { return id; }
}

This class will use a sequence named my_sequence and the SEQ_STORE generator is not
visible in other classes. Note that you can check the Hibernate Annotations tests in the
org.hibernate.test.metadata.id package for more examples.

You can define a composite primary key through several syntaxes:

• annotate the component property as @Id and make the component class @Embeddable

• annotate the component property as @EmbeddedId

• annotate the class as @IdClass and annotate each property of the entity involved in the
primary key with @Id

While quite common to the EJB2 developer, @IdClass is likely new for Hibernate users. The
composite primary key class corresponds to multiple fields or properties of the entity class, and
the names of primary key fields or properties in the primary key class and those of the entity
class must match and their types must be the same. Let's look at an example:

@Entity@IdClass(FootballerPk.class)
public class Footballer {

//part of the id key
@Id public String getFirstname() {

return firstname;
}

public void setFirstname(String firstname) {
this.firstname = firstname;

}

//part of the id key
@Id public String getLastname() {

return lastname;
}

public void setLastname(String lastname) {
this.lastname = lastname;

}

public String getClub() {
return club;

}

public void setClub(String club) {

Chapter 3. Entity Beans

18

this.club = club;
}

//appropriate equals() and hashCode() implementation
}

@Embeddable
public class FootballerPk implements Serializable {

//same name and type as in Footballer
public String getFirstname() {

return firstname;
}

public void setFirstname(String firstname) {
this.firstname = firstname;

}

//same name and type as in Footballer
public String getLastname() {

return lastname;
}

public void setLastname(String lastname) {
this.lastname = lastname;

}

//appropriate equals() and hashCode() implementation
}

As you may have seen, @IdClass points to the corresponding primary key class.

While not supported by the EJB3 specification, Hibernate allows you to define associations
inside a composite identifier. Simply use the regular annotations for that

@Entity
@AssociationOverride(name="id.channel", joinColumns =
@JoinColumn(name="chan_id"))
public class TvMagazin {

@EmbeddedId public TvMagazinPk id;
@Temporal(TemporalType.TIME) Date time;

}

@Embeddable
public class TvMagazinPk implements Serializable {

@ManyToOne
public Channel channel;
public String name;
@ManyToOne
public Presenter presenter;

}

2.4. Mapping inheritance

Mapping inheritance

19

EJB3 supports the three types of inheritance:

• Table per Class Strategy: the <union-class> element in Hibernate

• Single Table per Class Hierarchy Strategy: the <subclass> element in Hibernate

• Joined Subclass Strategy: the <joined-subclass> element in Hibernate

The chosen strategy is declared at the class level of the top level entity in the hierarchy using
the @Inheritance annotation.

Note

Annotating interfaces is currently not supported.

2.4.1. Table per class

This strategy has many drawbacks (esp. with polymorphic queries and associations) explained
in the EJB3 spec, the Hibernate reference documentation, Hibernate in Action, and many other
places. Hibernate work around most of them implementing this strategy using SQL UNION

queries. It is commonly used for the top level of an inheritance hierarchy:

@Entity
@Inheritance(strategy = InheritanceType.TABLE_PER_CLASS)
public class Flight implements Serializable {

This strategy support one to many associations provided that they are bidirectional. This
strategy does not support the IDENTITY generator strategy: the id has to be shared across
several tables. Consequently, when using this strategy, you should not use AUTO nor IDENTITY.

2.4.2. Single table per class hierarchy

All properties of all super- and subclasses are mapped into the same table, instances are
distinguished by a special discriminator column:

@Entity
@Inheritance(strategy=InheritanceType.SINGLE_TABLE)
@DiscriminatorColumn(

name="planetype",
discriminatorType=DiscriminatorType.STRING

)
@DiscriminatorValue("Plane")
public class Plane { ... }

Chapter 3. Entity Beans

20

@Entity
@DiscriminatorValue("A320")
public class A320 extends Plane { ... }

Plane is the superclass, it defines the inheritance strategy InheritanceType.SINGLE_TABLE. It
also defines the discriminator column through the @DiscriminatorColumn annotation, a
discriminator column can also define the discriminator type. Finally, the @DiscriminatorValue

annotation defines the value used to differentiate a class in the hierarchy. All of these attributes
have sensible default values. The default name of the discriminator column is DTYPE. The
default discriminator value is the entity name (as defined in @Entity.name) for
DiscriminatorType.STRING. A320 is a subclass; you only have to define discriminator value if
you don't want to use the default value. The strategy and the discriminator type are implicit.

@Inheritance and @DiscriminatorColumn should only be defined at the top of the entity
hierarchy.

2.4.3. Joined subclasses

The @PrimaryKeyJoinColumn and @PrimaryKeyJoinColumns annotations define the primary
key(s) of the joined subclass table:

@Entity
@Inheritance(strategy=InheritanceType.JOINED)
public class Boat implements Serializable { ... }

@Entity
public class Ferry extends Boat { ... }

@Entity
@PrimaryKeyJoinColumn(name="BOAT_ID")
public class AmericaCupClass extends Boat { ... }

All of the above entities use the JOINED strategy, the Ferry table is joined with the Boat table
using the same primary key names. The AmericaCupClass table is joined with Boat using the
join condition Boat.id = AmericaCupClass.BOAT_ID.

2.4.4. Inherit properties from superclasses

This is sometimes useful to share common properties through a technical or a business
superclass without including it as a regular mapped entity (ie no specific table for this entity). For
that purpose you can map them as @MappedSuperclass.

@MappedSuperclass
public class BaseEntity {

@Basic

Mapping inheritance

21

@Temporal(TemporalType.TIMESTAMP)
public Date getLastUpdate() { ... }
public String getLastUpdater() { ... }
...

}

@Entity class Order extends BaseEntity {
@Id public Integer getId() { ... }
...

}

In database, this hierarchy will be represented as an Order table having the id, lastUpdate
and lastUpdater columns. The embedded superclass property mappings are copied into their
entity subclasses. Remember that the embeddable superclass is not the root of the hierarchy
though.

Note

Properties from superclasses not mapped as @MappedSuperclass are ignored.

Note

The access type (field or methods), is inherited from the root entity, unless you
use the Hibernate annotation @AccessType

Note

The same notion can be applied to @Embeddable objects to persist properties
from their superclasses. You also need to use @MappedSuperclass to do that
(this should not be considered as a standard EJB3 feature though)

Note

It is allowed to mark a class as @MappedSuperclass in the middle of the mapped
inheritance hierarchy.

Chapter 3. Entity Beans

22

Note

Any class in the hierarchy non annotated with @MappedSuperclass nor @Entity
will be ignored.

You can override columns defined in entity superclasses at the root entity level using the
@AttributeOverride annotation.

@MappedSuperclass
public class FlyingObject implements Serializable {

public int getAltitude() {
return altitude;

}

@Transient
public int getMetricAltitude() {

return metricAltitude;
}

@ManyToOne
public PropulsionType getPropulsion() {

return metricAltitude;
}
...

}

@Entity
@AttributeOverride(name="altitude", column = @Column(name="fld_altitude"))
@AssociationOverride(name="propulsion", joinColumns =
@JoinColumn(name="fld_propulsion_fk"))
public class Plane extends FlyingObject {

...
}

The altitude property will be persisted in an fld_altitude column of table Plane and the
propulsion association will be materialized in a fld_propulsion_fk foreign key column.

You can define @AttributeOverride(s) and @AssociationOverride(s) on @Entity classes,
@MappedSuperclass classes and properties pointing to an @Embeddable object.

2.5. Mapping entity bean associations/relationships

2.5.1. One-to-one

You can associate entity beans through a one-to-one relationship using @OneToOne. There are
three cases for one-to-one associations: either the associated entities share the same primary
keys values, a foreign key is held by one of the entities (note that this FK column in the

Mapping entity bean

23

database should be constrained unique to simulate one-to-one multiplicity), or a association
table is used to store the link between the 2 entities (a unique constraint has to be defined on
each fk to ensure the one to one multiplicity)

First, we map a real one-to-one association using shared primary keys:

@Entity
public class Body {

@Id
public Long getId() { return id; }

@OneToOne(cascade = CascadeType.ALL)
@PrimaryKeyJoinColumn
public Heart getHeart() {

return heart;
}
...

}

@Entity
public class Heart {

@Id
public Long getId() { ...}

}

The one to one is marked as true by using the @PrimaryKeyJoinColumn annotation.

In the following example, the associated entities are linked through a foreign key column:

@Entity
public class Customer implements Serializable {

@OneToOne(cascade = CascadeType.ALL)
@JoinColumn(name="passport_fk")
public Passport getPassport() {

...
}

@Entity
public class Passport implements Serializable {

@OneToOne(mappedBy = "passport")
public Customer getOwner() {
...

}

A Customer is linked to a Passport, with a foreign key column named passport_fk in the

Chapter 3. Entity Beans

24

Customer table. The join column is declared with the @JoinColumn annotation which looks like
the @Column annotation. It has one more parameters named referencedColumnName. This
parameter declares the column in the targeted entity that will be used to the join. Note that when
using referencedColumnName to a non primary key column, the associated class has to be
Serializable. Also note that the referencedColumnName to a non primary key column has to
be mapped to a property having a single column (other cases might not work).

The association may be bidirectional. In a bidirectional relationship, one of the sides (and only
one) has to be the owner: the owner is responsible for the association column(s) update. To
declare a side as not responsible for the relationship, the attribute mappedBy is used. mappedBy
refers to the property name of the association on the owner side. In our case, this is passport.
As you can see, you don't have to (must not) declare the join column since it has already been
declared on the owners side.

If no @JoinColumn is declared on the owner side, the defaults apply. A join column(s) will be
created in the owner table and its name will be the concatenation of the name of the relationship
in the owner side, _ (underscore), and the name of the primary key column(s) in the owned side.
In this example passport_id because the property name is passport and the column id of
Passport is id.

The third possibility (using an association table) is very exotic.

@Entity
public class Customer implements Serializable {

@OneToOne(cascade = CascadeType.ALL)
@JoinTable(name = "CustomerPassports" joinColumns =

@JoinColumn(name="customer_fk"),
inverseJoinColumns = @JoinColumns(name="passport_fk"))
public Passport getPassport() {

...
}

@Entity
public class Passport implements Serializable {

@OneToOne(mappedBy = "passport")
public Customer getOwner() {
...

}

A Customer is linked to a Passport through a association table named CustomerPassports ;
this association table has a foreign key column named passport_fk pointing to the Passport

table (materialized by the inverseJoinColumn, and a foreign key column named customer_fk

pointing to the Customer table materialized by the joinColumns attribute.

You must declare the join table name and the join columns explicitly in such a mapping.

2.5.2. Many-to-one

Many-to-one associations are declared at the property level with the annotation @ManyToOne:

associations/relationships

25

@Entity()
public class Flight implements Serializable {

@ManyToOne(cascade = {CascadeType.PERSIST, CascadeType.MERGE})
@JoinColumn(name="COMP_ID")
public Company getCompany() {

return company;
}
...

}

The @JoinColumn attribute is optional, the default value(s) is like in one to one, the
concatenation of the name of the relationship in the owner side, _ (underscore), and the name
of the primary key column in the owned side. In this example company_id because the property
name is company and the column id of Company is id.

@ManyToOne has a parameter named targetEntity which describes the target entity name.
You usually don't need this parameter since the default value (the type of the property that
stores the association) is good in almost all cases. However this is useful when you want to use
interfaces as the return type instead of the regular entity.

@Entity()
public class Flight implements Serializable {

@ManyToOne(cascade = {CascadeType.PERSIST, CascadeType.MERGE},
targetEntity=CompanyImpl.class)
@JoinColumn(name="COMP_ID")
public Company getCompany() {

return company;
}
...

}

public interface Company {
...

You can alse map a many to one association through an association table. This association
table described by the @JoinTable annotation will contains a foreign key referencing back the
entity table (through @JoinTable.joinColumns) and a a foreign key referencing the target
entity table (through @JoinTable.inverseJoinColumns).

@Entity()
public class Flight implements Serializable {

@ManyToOne(cascade = {CascadeType.PERSIST, CascadeType.MERGE})
@JoinTable(name="Flight_Company", joinColumns =

@JoinColumn(name="FLIGHT_ID"),
inverseJoinColumns = @JoinColumns(name="COMP_ID"))
public Company getCompany() {

Chapter 3. Entity Beans

26

return company;
}
...

}

2.5.3. Collections

2.5.3.1. Overview

You can map Collection, List (ie ordered lists, not indexed lists), Map and Set. The EJB3
specification describes how to map an ordered list (ie a list ordered at load time) using
@javax.persistence.OrderBy annotation: this annotation takes into parameter a list of comma
separated (target entity) properties to order the collection by (eg firstname asc, age desc), if
the string is empty, the collection will be ordered by id. @OrderBy currently works only on
collections having no association table. For true indexed collections, please refer to the
Hibernate Annotation Extensions. EJB3 allows you to map Maps using as a key one of the
target entity property using @MapKey(name="myProperty") (myProperty is a property name in
the target entity). When using @MapKey (without property name), the target entity primary key is
used. The map key uses the same column as the property pointed out: there is no additional
column defined to hold the map key, and it does make sense since the map key actually
represent a target property. Be aware that once loaded, the key is no longer kept in sync with
the property, in other words, if you change the property value, the key will not change
automatically in your Java model (for true map support please refers to Hibernate Annotation
Extensions). Many people confuse <map> capabilities and @MapKey ones. These are two
different features. @MapKey still has some limitations, please check the forum or the JIRA
tracking system for more informations.

Hibernate has several notions of collections.

Semantic java representation annotations

Bag semantic java.util.List,
java.util.Collection

@org.hibernate.annotations.CollectionOfElements
or @OneToMany or
@ManyToMany

Bag semantic with primary
key (withtout the limitations of
Bag semantic)

java.util.List,
java.util.Collection

(@org.hibernate.annotations.CollectionOfElements
or @OneToMany or
@ManyToMany) and
@CollectionId

List semantic java.util.List (@org.hibernate.annotations.CollectionOfElements
or @OneToMany or
@ManyToMany) and
@org.hibernate.annotations.IndexColumn

Set semantic java.util.Set @org.hibernate.annotations.CollectionOfElements
or @OneToMany or
@ManyToMany

Mapping entity bean

27

Semantic java representation annotations

Map semantic java.util.Map (@org.hibernate.annotations.CollectionOfElements
or @OneToMany or
@ManyToMany) and (nothing
or
@org.hibernate.annotations.MapKey/MapKeyManyToMany
for true map support, OR
@javax.persistence.MapKey

Table 3.1. Collections semantics

Collection of primitive, core type or embedded objects is not supported by the EJB3
specification. Hibernate Annotations allows them however (see Hibernate Annotation
Extensions).

@Entity public class City {
@OneToMany(mappedBy="city")
@OrderBy("streetName")
public List<Street> getStreets() {

return streets;
}

...
}

@Entity public class Street {
public String getStreetName() {

return streetName;
}

@ManyToOne
public City getCity() {

return city;
}
...

}

@Entity
public class Software {

@OneToMany(mappedBy="software")
@MapKey(name="codeName")
public Map<String, Version> getVersions() {

return versions;
}

...
}

@Entity
@Table(name="tbl_version")
public class Version {

public String getCodeName() {...}

Chapter 3. Entity Beans

28

@ManyToOne
public Software getSoftware() { ... }

...
}

So City has a collection of Streets that are ordered by streetName (of Street) when the
collection is loaded. Software has a map of Versions which key is the VersioncodeName.

Unless the collection is a generic, you will have to define targetEntity. This is a annotation
attribute that take the target entity class as a value.

2.5.3.2. One-to-many

One-to-many associations are declared at the property level with the annotation @OneToMany.
One to many associations may be bidirectional.

2.5.3.2.1. Bidirectional

Since many to one are (almost) always the owner side of a bidirectional relationship in the EJB3
spec, the one to many association is annotated by @OneToMany(mappedBy=...)

@Entity
public class Troop {

@OneToMany(mappedBy="troop")
public Set<Soldier> getSoldiers() {
...

}

@Entity
public class Soldier {

@ManyToOne
@JoinColumn(name="troop_fk")
public Troop getTroop() {
...

}

Troop has a bidirectional one to many relationship with Soldier through the troop property.
You don't have to (must not) define any physical mapping in the mappedBy side.

To map a bidirectional one to many, with the one-to-many side as the owning side, you have to
remove the mappedBy element and set the many to one @JoinColumn as insertable and
updatable to false. This solution is obviously not optimized and will produce some additional
UPDATE statements.

@Entity
public class Troop {

@OneToMany
@JoinColumn(name="troop_fk") //we need to duplicate the physical

information
public Set<Soldier> getSoldiers() {
...

associations/relationships

29

}

@Entity
public class Soldier {

@ManyToOne
@JoinColumn(name="troop_fk", insertable=false, updatable=false)
public Troop getTroop() {
...

}

2.5.3.2.2. Unidirectional

A unidirectional one to many using a foreign key column in the owned entity is not that common
and not really recommended. We strongly advise you to use a join table for this kind of
association (as explained in the next section). This kind of association is described through a
@JoinColumn

@Entity
public class Customer implements Serializable {

@OneToMany(cascade=CascadeType.ALL, fetch=FetchType.EAGER)
@JoinColumn(name="CUST_ID")
public Set<Ticket> getTickets() {
...

}

@Entity
public class Ticket implements Serializable {

... //no bidir
}

Customer describes a unidirectional relationship with Ticket using the join column CUST_ID.

2.5.3.2.3. Unidirectional with join table

A unidirectional one to many with join table is much preferred. This association is described
through an @JoinTable.

@Entity
public class Trainer {

@OneToMany
@JoinTable(

name="TrainedMonkeys",
joinColumns = { @JoinColumn(name="trainer_id") },
inverseJoinColumns = @JoinColumn(name="monkey_id")

)
public Set<Monkey> getTrainedMonkeys() {
...

}

Chapter 3. Entity Beans

30

@Entity
public class Monkey {

... //no bidir
}

Trainer describes a unidirectional relationship with Monkey using the join table
TrainedMonkeys, with a foreign key trainer_id to Trainer (joinColumns) and a foreign key
monkey_id to Monkey (inversejoinColumns).

2.5.3.2.4. Defaults

Without describing any physical mapping, a unidirectional one to many with join table is used.
The table name is the concatenation of the owner table name, _, and the other side table name.
The foreign key name(s) referencing the owner table is the concatenation of the owner table, _,
and the owner primary key column(s) name. The foreign key name(s) referencing the other side
is the concatenation of the owner property name, _, and the other side primary key column(s)
name. A unique constraint is added to the foreign key referencing the other side table to reflect
the one to many.

@Entity
public class Trainer {

@OneToMany
public Set<Tiger> getTrainedTigers() {
...

}

@Entity
public class Tiger {

... //no bidir
}

Trainer describes a unidirectional relationship with Tiger using the join table Trainer_Tiger,
with a foreign key trainer_id to Trainer (table name, _, trainer id) and a foreign key
trainedTigers_id to Monkey (property name, _, Tiger primary column).

2.5.3.3. Many-to-many

2.5.3.3.1. Definition

A many-to-many association is defined logically using the @ManyToMany annotation. You also
have to describe the association table and the join conditions using the @JoinTable annotation.
If the association is bidirectional, one side has to be the owner and one side has to be the
inverse end (ie. it will be ignored when updating the relationship values in the association table):

@Entity

Mapping entity bean

31

public class Employer implements Serializable {
@ManyToMany(

targetEntity=org.hibernate.test.metadata.manytomany.Employee.class,
cascade={CascadeType.PERSIST, CascadeType.MERGE}

)
@JoinTable(

name="EMPLOYER_EMPLOYEE",
joinColumns={@JoinColumn(name="EMPER_ID")},
inverseJoinColumns={@JoinColumn(name="EMPEE_ID")}

)
public Collection getEmployees() {

return employees;
}
...

}

@Entity
public class Employee implements Serializable {

@ManyToMany(
cascade={CascadeType.PERSIST, CascadeType.MERGE},
mappedBy="employees"
targetEntity=Employer.class

)
public Collection getEmployers() {

return employers;
}

}

We've already shown the many declarations and the detailed attributes for associations. We'll
go deeper in the @JoinTable description, it defines a name, an array of join columns (an array in
annotation is defined using { A, B, C }), and an array of inverse join columns. The latter ones are
the columns of the association table which refer to the Employee primary key (the "other side").

As seen previously, the other side don't have to (must not) describe the physical mapping: a
simple mappedBy argument containing the owner side property name bind the two.

2.5.3.3.2. Default values

As any other annotations, most values are guessed in a many to many relationship. Without
describing any physical mapping in a unidirectional many to many the following rules applied.
The table name is the concatenation of the owner table name, _ and the other side table name.
The foreign key name(s) referencing the owner table is the concatenation of the owner table
name, _ and the owner primary key column(s). The foreign key name(s) referencing the other
side is the concatenation of the owner property name, _, and the other side primary key
column(s). These are the same rules used for a unidirectional one to many relationship.

@Entity

Chapter 3. Entity Beans

32

public class Store {
@ManyToMany(cascade = CascadeType.PERSIST)
public Set<City> getImplantedIn() {

...
}

}

@Entity
public class City {

... //no bidirectional relationship
}

A Store_City is used as the join table. The Store_id column is a foreign key to the Store

table. The implantedIn_id column is a foreign key to the City table.

Without describing any physical mapping in a bidirectional many to many the following rules
applied. The table name is the concatenation of the owner table name, _ and the other side
table name. The foreign key name(s) referencing the owner table is the concatenation of the
other side property name, _, and the owner primary key column(s). The foreign key name(s)
referencing the other side is the concatenation of the owner property name, _, and the other
side primary key column(s). These are the same rules used for a unidirectional one to many
relationship.

@Entity
public class Store {

@ManyToMany(cascade = {CascadeType.PERSIST, CascadeType.MERGE})
public Set<Customer> getCustomers() {

...
}

}

@Entity
public class Customer {

@ManyToMany(mappedBy="customers")
public Set<Store> getStores() {

...
}

}

A Store_Customer is used as the join table. The stores_id column is a foreign key to the
Store table. The customers_id column is a foreign key to the Customer table.

2.5.4. Transitive persistence with cascading

You probably have noticed the cascade attribute taking an array of CascadeType as a value.
The cascade concept in EJB3 is very is similar to the transitive persistence and cascading of
operations in Hibernate, but with slightly different semantics and cascading types:

associations/relationships

33

• CascadeType.PERSIST: cascades the persist (create) operation to associated entities
persist() is called or if the entity is managed

• CascadeType.MERGE: cascades the merge operation to associated entities if merge() is
called or if the entity is managed

• CascadeType.REMOVE: cascades the remove operation to associated entities if delete() is
called

• CascadeType.REFRESH: cascades the refresh operation to associated entities if refresh() is
called

• CascadeType.ALL: all of the above

Please refer to the chapter 6.3 of the EJB3 specification for more information on cascading and
create/merge semantics.

2.5.5. Association fetching

You have the ability to either eagerly or lazily fetch associated entities. The fetch parameter
can be set to FetchType.LAZY or FetchType.EAGER. EAGER will try to use an outer join select to
retrieve the associated object, while LAZY will only trigger a select when the associated object is
accessed for the first time. @OneToMany and @ManyToMany associations are defaulted to LAZY

and @OneToOne and @ManyToOne are defaulted to EAGER. For more information about static
fetching, check Section 4.5.Lazy options and fetching modes, “Lazy options and fetching
modes”.

The recommanded approach is to use LAZY onn all static fetching definitions and override this
choice dynamically through JPA-QL. JPA-QL has a fetch keyword that allows you to override
laziness when doing a particular query. This is very useful to improve performance and is
decided on a use case to use case basis.

2.6. Mapping composite primary and foreign keys

Composite primary keys use a embedded class as the primary key representation, so you'd use
the @Id and @Embeddable annotations. Alternatively, you can use the @EmbeddedId annotation.
Note that the dependent class has to be serializable and implements equals()/hashCode().
You can also use @IdClass as described in Mapping identifier properties.

@Entity
public class RegionalArticle implements Serializable {

@Id
public RegionalArticlePk getPk() { ... }

}

@Embeddable
public class RegionalArticlePk implements Serializable { ... }

Chapter 3. Entity Beans

34

or alternatively

@Entity
public class RegionalArticle implements Serializable {

@EmbeddedId
public RegionalArticlePk getPk() { ... }

}

public class RegionalArticlePk implements Serializable { ... }

@Embeddable inherit the access type of its owning entity unless the Hibernate specific
annotation @AccessType is used. Composite foreign keys (if not using the default sensitive
values) are defined on associations using the @JoinColumns element, which is basically an
array of @JoinColumn. It is considered a good practice to express referencedColumnNames

explicitly. Otherwise, Hibernate will suppose that you use the same order of columns as in the
primary key declaration.

@Entity
public class Parent implements Serializable {

@Id
public ParentPk id;
public int age;

@OneToMany(cascade=CascadeType.ALL)
@JoinColumns ({

@JoinColumn(name="parentCivility", referencedColumnName = "isMale"),
@JoinColumn(name="parentLastName", referencedColumnName =

"lastName"),
@JoinColumn(name="parentFirstName", referencedColumnName =

"firstName")
})
public Set<Child> children; //unidirectional
...

}

@Entity
public class Child implements Serializable {

@Id @GeneratedValue
public Integer id;

@ManyToOne
@JoinColumns ({

@JoinColumn(name="parentCivility", referencedColumnName = "isMale"),

Mapping composite primary and foreign

35

@JoinColumn(name="parentLastName", referencedColumnName =
"lastName"),

@JoinColumn(name="parentFirstName", referencedColumnName =
"firstName")

})
public Parent parent; //unidirectional

}

@Embeddable
public class ParentPk implements Serializable {

String firstName;
String lastName;
...

}

Note the explicit usage of the referencedColumnName.

2.7. Mapping secondary tables

You can map a single entity bean to several tables using the @SecondaryTable or
@SecondaryTables class level annotations. To express that a column is in a particular table,
use the table parameter of @Column or @JoinColumn.

@Entity
@Table(name="MainCat")

@SecondaryTables({ @SecondaryTable(name="Cat1",
pkJoinColumns={ @PrimaryKeyJoinColumn(name="cat_id",

referencedColumnName="id")),
@SecondaryTable(name="Cat2",

uniqueConstraints={@UniqueConstraint(columnNames={"storyPart2"})})
})
public class Cat implements Serializable {

private Integer id;
private String name;
private String storyPart1;
private String storyPart2;

@Id @GeneratedValue
public Integer getId() {

return id;
}

public String getName() {
return name;

}

@Column(table="Cat1")

Chapter 3. Entity Beans

36

public String getStoryPart1() {
return storyPart1;

}

@Column(table="Cat2")
public String getStoryPart2() {

return storyPart2;
}

In this example, name will be in MainCat. storyPart1 will be in Cat1 and storyPart2 will be in
Cat2. Cat1 will be joined to MainCat using the cat_id as a foreign key, and Cat2 using id (ie
the same column name, the MainCat id column has). Plus a unique constraint on storyPart2

has been set.

Check out the JBoss EJB 3 tutorial or the Hibernate Annotations unit test suite for more
examples.

3. Mapping Queries

3.Mapping JPAQL/HQL queries. Mapping JPAQL/HQL queries

You can map EJBQL/HQL queries using annotations. @NamedQuery and @NamedQueries can be
defined at the class level or in a JPA XML file. However their definitions are global to the
session factory/entity manager factory scope. A named query is defined by its name and the
actual query string.

<entity-mappings>
<named-query name="plane.getAll">

<query>select p from Plane p</query>
</named-query>
...

</entity-mappings>
...

@Entity
@NamedQuery(name="night.moreRecentThan", query="select n from Night n where
n.date >= :date")
public class Night {

...
}

public class MyDao {
doStuff() {

Query q = s.getNamedQuery("night.moreRecentThan");
q.setDate("date", aMonthAgo);
List results = q.list();
...

}
...

}

keys

37

You can also provide some hints to a query through an array of QueryHint through a hints

attribute.

The availabe Hibernate hints are

hint description

org.hibernate.cacheable Whether the query should interact with the
second level cache (defualt to false)

org.hibernate.cacheRegion Cache region name (default used otherwise)

org.hibernate.timeout Query timeout

org.hibernate.fetchSize resultset fetch size

org.hibernate.flushMode Flush mode used for this query

org.hibernate.cacheMode Cache mode used for this query

org.hibernate.readOnly Entities loaded by this query should be in read
only mode or not (default to false)

org.hibernate.comment Query comment added to the generated SQL

Table 3.2. Query hints

3.2. Mapping native queries

You can also map a native query (ie a plain SQL query). To achieve that, you need to describe
the SQL resultset structure using @SqlResultSetMapping (or @SqlResultSetMappings if you
plan to define several resulset mappings). Like @NamedQuery, a @SqlResultSetMapping can be
defined at class level or in a JPA XML file. However its scope is global to the application.

As we will see, a resultSetMapping parameter is defined in @NamedNativeQuery, it represents
the name of a defined @SqlResultSetMapping. The resultset mapping declares the entities
retrieved by this native query. Each field of the entity is bound to an SQL alias (or column
name). All fields of the entity including the ones of subclasses and the foreign key columns of
related entities have to be present in the SQL query. Field definitions are optional provided that
they map to the same column name as the one declared on the class property.

@NamedNativeQuery(name="night&area", query="select night.id nid,
night.night_duration, "

+ " night.night_date, area.id aid, night.area_id, area.name "
+ "from Night night, Area area where night.area_id = area.id",

resultSetMapping="joinMapping")
@SqlResultSetMapping(name="joinMapping", entities={
@EntityResult(entityClass=org.hibernate.test.annotations.query.Night.class,
fields = {

@FieldResult(name="id", column="nid"),
@FieldResult(name="duration", column="night_duration"),
@FieldResult(name="date", column="night_date"),

Chapter 3. Entity Beans

38

@FieldResult(name="area", column="area_id"),
discriminatorColumn="disc"

}),
@EntityResult(entityClass=org.hibernate.test.annotations.query.Area.class,
fields = {

@FieldResult(name="id", column="aid"),
@FieldResult(name="name", column="name")

})
}

)

In the above example, the night&area named query use the joinMapping result set mapping.
This mapping returns 2 entities, Night and Area, each property is declared and associated to a
column name, actually the column name retrieved by the query. Let's now see an implicit
declaration of the property / column.

@Entity@SqlResultSetMapping(name="implicit",
entities=@EntityResult(entityClass=org.hibernate.test.annotations.query.SpaceShip.class))
@NamedNativeQuery(name="implicitSample", query="select * from

SpaceShip",
resultSetMapping="implicit")

public class SpaceShip {
private String name;
private String model;
private double speed;

@Id
public String getName() {

return name;
}

public void setName(String name) {
this.name = name;

}

@Column(name="model_txt")
public String getModel() {

return model;
}

public void setModel(String model) {
this.model = model;

}

public double getSpeed() {
return speed;

}

public void setSpeed(double speed) {
this.speed = speed;

}
}

Mapping native queries

39

In this example, we only describe the entity member of the result set mapping. The property /
column mappings is done using the entity mapping values. In this case the model property is
bound to the model_txt column. If the association to a related entity involve a composite
primary key, a @FieldResult element should be used for each foreign key column. The
@FieldResult name is composed of the property name for the relationship, followed by a dot
("."), followed by the name or the field or property of the primary key.

@Entity
@SqlResultSetMapping(name="compositekey",
entities=@EntityResult(entityClass=org.hibernate.test.annotations.query.SpaceShip.class,

fields = {
@FieldResult(name="name", column = "name"),
@FieldResult(name="model", column = "model"),
@FieldResult(name="speed", column = "speed"),
@FieldResult(name="captain.firstname",
column = "firstn"),

@FieldResult(name="captain.lastname", column = "lastn"),
@FieldResult(name="dimensions.length", column =

"length"),
@FieldResult(name="dimensions.width", column = "width")
}),

columns = { @ColumnResult(name = "surface"),
@ColumnResult(name = "volume") })

@NamedNativeQuery(name="compositekey",
query="select name, model, speed, lname as lastn, fname as firstn,

length, width,
length * width as surface from SpaceShip",
resultSetMapping="compositekey")

})
public class SpaceShip {

private String name;
private String model;
private double speed;
private Captain captain;
private Dimensions dimensions;

@Id
public String getName() {

return name;
}

public void setName(String name) {
this.name = name;

}

@ManyToOne(fetch= FetchType.LAZY)
@JoinColumns({

@JoinColumn(name="fname", referencedColumnName = "firstname"),
@JoinColumn(name="lname", referencedColumnName = "lastname")
})

public Captain getCaptain() {
return captain;

}

Chapter 3. Entity Beans

40

public void setCaptain(Captain captain) {
this.captain = captain;

}

public String getModel() {
return model;

}

public void setModel(String model) {
this.model = model;

}

public double getSpeed() {
return speed;

}

public void setSpeed(double speed) {
this.speed = speed;

}

public Dimensions getDimensions() {
return dimensions;

}

public void setDimensions(Dimensions dimensions) {
this.dimensions = dimensions;

}
}

@Entity
@IdClass(Identity.class)
public class Captain implements Serializable {

private String firstname;
private String lastname;

@Id
public String getFirstname() {

return firstname;
}

public void setFirstname(String firstname) {
this.firstname = firstname;

}

@Id
public String getLastname() {

return lastname;
}

public void setLastname(String lastname) {
this.lastname = lastname;

}
}

Mapping native queries

41

Note

If you look at the dimension property, you'll see that Hibernate supports the
dotted notation for embedded objects (you can even have nested embedded
objects). EJB3 implementations do not have to support this feature, we do :-)

If you retrieve a single entity and if you use the default mapping, you can use the resultClass

attribute instead of resultSetMapping:

@NamedNativeQuery(name="implicitSample", query="select * from SpaceShip",
resultClass=SpaceShip.class)

public class SpaceShip {

In some of your native queries, you'll have to return scalar values, for example when building
report queries. You can map them in the @SqlResultsetMapping through @ColumnResult. You
actually can even mix, entities and scalar returns in the same native query (this is probably not
that common though).

@SqlResultSetMapping(name="scalar", columns=@ColumnResult(name="dimension"))
@NamedNativeQuery(name="scalar", query="select length*width as

dimension from SpaceShip",
resultSetMapping="scalar")

An other query hint specific to native queries has been introduced: org.hibernate.callable
which can be true or false depending on whether the query is a stored procedure or not.

4. Hibernate Annotation Extensions

Hibernate 3.1 offers a variety of additional annotations that you can mix/match with your EJB 3
entities. They have been designed as a natural extension of EJB3 annotations.

To empower the EJB3 capabilities, hibernate provides specific annotations that match hibernate
features. The org.hibernate.annotations package contains all these annotations extensions.

4.1. Entity

You can fine tune some of the actions done by Hibernate on entities beyond what the EJB3
spec offers.

@org.hibernate.annotations.Entity adds additional metadata that may be needed beyond
what is defined in the standard @Entity

• mutable: whether this entity is mutable or not

Chapter 3. Entity Beans

42

• dynamicInsert: allow dynamic SQL for inserts

• dynamicUpdate: allow dynamic SQL for updates

• selectBeforeUpdate: Specifies that Hibernate should never perform an SQL UPDATE unless
it is certain that an object is actually modified.

• polymorphism: whether the entity polymorphism is of PolymorphismType.IMPLICIT (default)
or PolymorphismType.EXPLICIT

• persister: allow the overriding of the default persister implementation

• optimisticLock: optimistic locking strategy (OptimisticLockType.VERSION,
OptimisticLockType.NONE, OptimisticLockType.DIRTY or OptimisticLockType.ALL)

Note

@javax.persistence.Entity is still mandatory, @org.hibernate.annotations.Entity
is not a replacement.

Here are some additional Hibernate annotation extensions

@org.hibernate.annotations.BatchSize allows you to define the batch size when fetching
instances of this entity (eg. @BatchSize(size=4)). When loading a given entity, Hibernate will
then load all the uninitialized entities of the same type in the persistence context up to the batch
size.

@org.hibernate.annotations.Proxy defines the laziness attributes of the entity. lazy (default
to true) define whether the class is lazy or not. proxyClassName is the interface used to
generate the proxy (default is the class itself).

@org.hibernate.annotations.Where defines an optional SQL WHERE clause used when
instances of this class is retrieved.

@org.hibernate.annotations.Check defines an optional check constraints defined in the DDL
statetement.

@OnDelete(action=OnDeleteAction.CASCADE) on joined subclasses: use a SQL cascade
delete on deletion instead of the regular Hibernate mechanism.

@Table(appliesTo="tableName", indexes = { @Index(name="index1",

columnNames={"column1", "column2"}) }) creates the defined indexes on the columns of
table tableName. This can be applied on the primary table or any secondary table. The @Tables

annotation allows your to apply indexes on different tables. This annotation is expected where
@javax.persistence.Table or @javax.persistence.SecondaryTable(s) occurs.

Entity

43

Note

@org.hibernate.annotations.Table is a complement, not a replacement to
@javax.persistence.Table. Especially, if you want to change the default name
of a table, you must use @javax.persistence.Table, not
@org.hibernate.annotations.Table.

@Entity
@BatchSize(size=5)
@org.hibernate.annotations.Entity(

selectBeforeUpdate = true,
dynamicInsert = true, dynamicUpdate = true,
optimisticLock = OptimisticLockType.ALL,
polymorphism = PolymorphismType.EXPLICIT)

@Where(clause="1=1")
@org.hibernate.annotations.Table(name="Forest", indexes = {
@Index(name="idx",
columnNames = { "name", "length" }) })
public class Forest { ... }

@Entity
@Inheritance(

strategy=InheritanceType.JOINED
)
public class Vegetable { ... }

@Entity
@OnDelete(action=OnDeleteAction.CASCADE)
public class Carrot extends Vegetable { ... }

4.Identifier. Identifier

@org.hibernate.annotations.GenericGenerator allows you to define an Hibernate

specific id generator.

@Id @GeneratedValue(generator="system-uuid")
@GenericGenerator(name="system-uuid", strategy = "uuid")
public String getId() {

@Id @GeneratedValue(generator="hibseq")
@GenericGenerator(name="hibseq", strategy = "seqhilo",

parameters = {
@Parameter(name="max_lo", value = "5"),
@Parameter(name="sequence", value="heybabyhey")

}
)
public Integer getId() {

Chapter 3. Entity Beans

44

strategy is the short name of an Hibernate3 generator strategy or the fully qualified class
name of an IdentifierGenerator implementation. You can add some parameters through the
parameters attribute.

Contrary to its standard counterpart, @GenericGenerator can be used in package level
annotations, making it an application level generator (just like if it were in a JPA XML file).

@GenericGenerator(name="hibseq", strategy = "seqhilo",
parameters = {

@Parameter(name="max_lo", value = "5"),
@Parameter(name="sequence", value="heybabyhey")

}
)
package org.hibernate.test.model

4.3. Property

4.3.1. Access type

The access type is guessed from the position of @Id or @EmbeddedId in the entity hierarchy.
Sub-entities, embedded objects and mapped superclass inherit the access type from the root
entity.

In Hibernate, you can override the access type to:

• use a custom access type strategy

• fine tune the access type at the class level or at the property level

An @AccessType annotation has been introduced to support this behavior. You can define the
access type on

• an entity

• a superclass

• an embeddable object

• a property

The access type is overriden for the annotated element, if overriden on a class, all the
properties of the given class inherit the access type. For root entities, the access type is
considered to be the default one for the whole hierarchy (overridable at class or property level).

If the access type is marked as "property", the getters are scanned for annotations, if the access

Property

45

type is marked as "field", the fields are scanned for annotations. Otherwise the elements
marked with @Id or @embeddedId are scanned.

You can override an access type for a property, but the element to annotate will not be
influenced: for example an entity having access type field, can annotate a field with
@AccessType("property"), the access type will then be property for this attribute, the the
annotations still have to be carried on the field.

If a superclass or an embeddable object is not annotated, the root entity access type is used
(even if an access type has been define on an intermediate superclass or embeddable object).
The russian doll principle does not apply.

@Entity
public class Person implements Serializable {

@Id @GeneratedValue //access type field
Integer id;

@Embedded
@AttributeOverrides({
@AttributeOverride(name = "iso2", column = @Column(name = "bornIso2")),
@AttributeOverride(name = "name", column = @Column(name =

"bornCountryName"))
})

Country bornIn;
}

@Embeddable@AccessType("property") //override access type for all properties
in Country
public class Country implements Serializable {

private String iso2;
private String name;

public String getIso2() {
return iso2;

}

public void setIso2(String iso2) {
this.iso2 = iso2;

}

@Column(name = "countryName")
public String getName() {

return name;
}

public void setName(String name) {
this.name = name;

}
}

4.3.2. Formula

Sometimes, you want the Database to do some computation for you rather than in the JVM, you

Chapter 3. Entity Beans

46

might also create some kind of virtual column. You can use a SQL fragment (aka formula)
instead of mapping a property into a column. This kind of property is read only (its value is
calculated by your formula fragment).

@Formula("obj_length * obj_height * obj_width")
public long getObjectVolume()

The SQL fragment can be as complex as you want avec even include subselects.

4.3.3. Type

@org.hibernate.annotations.Type overrides the default hibernate type used: this is
generally not necessary since the type is correctly inferred by Hibernate. Please refer to the
Hibernate reference guide for more informations on the Hibernate types.

@org.hibernate.annotations.TypeDef and @org.hibernate.annotations.TypeDefs

allows you to declare type definitions. These annotations are placed at the class or package
level. Note that these definitions will be global for the session factory (even at the class level)
and that type definition has to be defined before any usage.

@TypeDefs(
{
@TypeDef(

name="caster",
typeClass = CasterStringType.class,
parameters = {

@Parameter(name="cast", value="lower")
}

)
}

)
package org.hibernate.test.annotations.entity;

...
public class Forest {

@Type(type="caster")
public String getSmallText() {
...

}

When using composite user type, you will have to express column definitions. The @Columns

has been introduced for that purpose.

@Type(type="org.hibernate.test.annotations.entity.MonetaryAmountUserType")
@Columns(columns = {

@Column(name="r_amount"),
@Column(name="r_currency")

})
public MonetaryAmount getAmount() {

return amount;

Property

47

}

public class MonetaryAmount implements Serializable {
private BigDecimal amount;
private Currency currency;
...

}

4.3.4. Index

You can define an index on a particular column using the @Index annotation on a one column
property, the columnNames attribute will then be ignored

@Column(secondaryTable="Cat1")
@Index(name="story1index")
public String getStoryPart1() {

return storyPart1;
}

4.3.5. @Parent

When inside an embeddable object, you can define one of the properties as a pointer back to
the owner element.

@Entity
public class Person {

@Embeddable public Address address;
...

}

@Embeddable
public class Address {

@Parent public Person owner;
...

}

person == person.address.owner

4.3.6. Generated properties

Some properties are generated at insert or update time by your database. Hibernate can deal
with such properties and triggers a subsequent select to read these properties.

@Entity
public class Antenna {

@Id public Integer id;
@Generated(GenerationTime.ALWAYS) @Column(insertable = false, updatable

Chapter 3. Entity Beans

48

= false)
public String longitude;

@Generated(GenerationTime.INSERT) @Column(insertable = false)
public String latitude;

}

Annotate your property as @Generated You have to make sure your insertability or updatability
does not conflict with the generation strategy you have chosen. When GenerationTime.INSERT
is chosen, the property must not contains insertable columns, when GenerationTime.ALWAYS
is chosen, the property must not contains insertable nor updatable columns.

@Version properties cannot be @Generated(INSERT) by design, it has to be either NEVER or
ALWAYS.

4.3.7. @Target

Sometimes, the type guessed by reflection is not the one you want Hibernate to use. This is
especially true on components when an interface is used. You can use @Target to by pass the
reflection guessing mechanism (very much like the targetEntity attribute available on
associations.

@Embedded
@Target(OwnerImpl.class)
public Owner getOwner() {

return owner;
}

4.4. Inheritance

SINGLE_TABLE is a very powerful strategy but sometimes, and especially for legacy systems,
you cannot add an additional discriminator column. For that purpose Hibernate has introduced
the notion of discriminator formula: @DiscriminatorFormula is a replacement of
@DiscriminatorColumn and use a SQL fragment as a formula for discriminator resolution (no
need to have a dedicated column).

@Entity
@DiscriminatorForumla("case when forest_type is null then 0 else forest_type
end")
public class Forest { ... }

By default, when querying the top entities, Hibernate does not put a restriction clause on the
discriminator column. This can be inconvenient if this column contains values not mapped in
your hierarchy (through @DiscriminatorValue). To work around that you can use
@ForceDiscriminator (at the class level, next to @DiscriminatorColumn). Hibernate will then
list the available values when loading the entities.

Inheritance

49

4.5. Single Association related annotations

By default, when Hibernate cannot resolve the association because the expected associated
element is not in database (wrong id on the association column), an exception is raised by
Hibernate. This might be inconvenient for lecacy and badly maintained schemas. You can ask
Hibernate to ignore such elements instead of raising an exception using the @NotFound

annotation. This annotation can be used on a @OneToOne (with FK), @ManyToOne, @OneToMany or
@ManyToMany association.

@Entity
public class Child {

...
@ManyToOne
@NotFound(action=NotFoundAction.IGNORE)
public Parent getParent() { ... }
...

}

Sometimes you want to delegate to your database the deletion of cascade when a given entity
is deleted.

@Entity
public class Child {

...
@ManyToOne
@OnDelete(action=OnDeleteAction.CASCADE)
public Parent getParent() { ... }
...

}

In this case Hibernate generates a cascade delete constraint at the database level.

Foreign key constraints, while generated by Hibernate, have a fairly unreadable name. You can
override the constraint name by use @ForeignKey.

@Entity
public class Child {

...
@ManyToOne
@ForeignKey(name="FK_PARENT")
public Parent getParent() { ... }
...

}

alter table Child add constraint FK_PARENT foreign key (parent_id)
references Parent

4.5.Lazy options and fetching modes. Lazy options and fetching
modes

Chapter 3. Entity Beans

50

EJB3 comes with the fetch option to define lazy loading and fetching modes, however
Hibernate has a much more option set in this area. To fine tune the lazy loading and fetching
strategies, some additional annotations have been introduced:

• @LazyToOne: defines the lazyness option on @ManyToOne and @OneToOne associations.
LazyToOneOption can be PROXY (ie use a proxy based lazy loading), NO_PROXY (use a
bytecode enhancement based lazy loading - note that build time bytecode processing is
necessary) and FALSE (association not lazy)

• @LazyCollection: defines the lazyness option on @ManyToMany and @OneToMany

associations. LazyCollectionOption can be TRUE (the collection is lazy and will be loaded
when its state is accessed), EXTRA (the collection is lazy and all operations will try to avoid the
collection loading, this is especially useful for huge collections when loading all the elements
is not necessary) and FALSE (association not lazy)

• @Fetch: defines the fetching strategy used to load the association. FetchMode can be SELECT

(a select is triggered when the association needs to be loaded), SUBSELECT (only available for
collections, use a subselect strategy - please refers to the Hibernate Reference
Documentation for more information) or JOIN (use a SQL JOIN to load the association while
loading the owner entity). JOIN overrides any lazy attribute (an association loaded through a
JOIN strategy cannot be lazy).

The Hibernate annotations overrides the EJB3 fetching options.

Annotations Lazy Fetch

@[One|Many]ToOne](fetch=FetchType.LAZY)@LazyToOne(PROXY) @Fetch(SELECT)

@[One|Many]ToOne](fetch=FetchType.EAGER)@LazyToOne(FALSE) @Fetch(JOIN)

@ManyTo[One|Many](fetch=FetchType.LAZY)@LazyCollection(TRUE) @Fetch(SELECT)

@ManyTo[One|Many](fetch=FetchType.EAGER)@LazyCollection(FALSE) @Fetch(JOIN)

Table 3.3. Lazy and fetch options equivalent

4.6. Collection related annotations

4.6.1. Enhance collection settings

It is possible to set

• the batch size for collections using @BatchSize

• the where clause, using @Where (applied on the target entity) or @WhereJoinTable (applied
on the association table)

• the check clause, using @Check

Collection related annotations

51

• the SQL order by clause, using @OrderBy

• the delete cascade strategy through @OnDelete(action=OnDeleteAction.CASCADE)

You can also declare a sort comparator. Use the @Sort annotation. Expressing the comparator
type you want between unsorted, natural or custom comparator. If you want to use your own
comparator implementation, you'll also have to express the implementation class using the
comparator attribute. Note that you need to use either a SortedSet or a SortedMap interface.

@OneToMany(cascade=CascadeType.ALL, fetch=FetchType.EAGER)
@JoinColumn(name="CUST_ID")
@Sort(type = SortType.COMPARATOR, comparator = TicketComparator.class)
@Where(clause="1=1")
@OnDelete(action=OnDeleteAction.CASCADE)
public SortedSet<Ticket> getTickets() {

return tickets;
}

Please refer to the previous descriptions of these annotations for more informations.

Foreign key constraints, while generated by Hibernate, have a fairly unreadable name. You can
override the constraint name by use @ForeignKey. Note that this annotation has to be placed on
the owning side of the relationship, inverseName referencing to the other side constraint.

@Entity
public class Woman {

...
@ManyToMany(cascade = {CascadeType.ALL})
@ForeignKey(name = "TO_WOMAN_FK", inverseName = "TO_MAN_FK")
public Set<Man> getMens() {

return mens;
}

}

alter table Man_Woman add constraint TO_WOMAN_FK foreign key (woman_id)
references Woman
alter table Man_Woman add constraint TO_MAN_FK foreign key (man_id)
references Man

4.6.2. Extra collection types

4.6.2.1. List

Beyond EJB3, Hibernate Annotations supports true List and Array. Map your collection the
same way as usual and add the @IndexColumn. This annotation allows you to describe the
column that will hold the index. You can also declare the index value in DB that represent the
first element (aka as base index). The usual value is 0 or 1.

@OneToMany(cascade = CascadeType.ALL)

Chapter 3. Entity Beans

52

@IndexColumn(name = "drawer_position", base=1)
public List<Drawer> getDrawers() {

return drawers;
}

Note

If you forgot to set @IndexColumn, the bag semantic is applied. If you want the
bag semantic without the limitations of it, consider using @CollectionId.

4.6.2.2. Map

Hibernate Annotations also supports true Map mappings, if @javax.persistence.MapKey is not
set, hibernate will map the key element or embeddable object in its/their own columns. To
overrides the default columns, you can use @org.hibernate.annotations.MapKey if your key
is a basic type (defaulted to mapkey) or an embeddable object, or you can use
@org.hibernate.annotations.MapKeyManyToMany if your key is an entity.

Both @org.hibernate.annotations.MapKey and
@org.hibernate.annotations.MapKeyManyToMany allows you to override the target element
to be used. This is especially useful if your collection does not use generics (or if you use
interfaces).

@CollectionOfElements(targetElement = SizeImpl.class)
@MapKeyManyToMany(targetEntity = LuggageImpl.class)
private Map<Luggage, Size> sizePerLuggage = new HashMap<Luggage,

Size>();

4.6.2.3. Bidirectional association with indexed collections

A bidirectional association where one end is represented as a @IndexColumn or
@org.hibernate.annotations.MapKey[ManyToMany] requires special consideration. If there is
a property of the child class which maps to the index column, no problem, we can continue
using mappedBy on the collection mapping:

@Entity
public class Parent {

@OneToMany(mappedBy="parent")
@org.hibernate.annotations.MapKey(columns=@Column(name="name"))
private Map<String, Child> children;
...

}

@Entity
public class Parent {

...

Collection related annotations

53

@Basic
private String name;

@ManyToOne
@JoinColumn(name="parent_id", nullable=false)
private Parent parent;
...

}

But, if there is no such property on the child class, we can't think of the association as truly
bidirectional (there is information available at one end of the association that is not available at
the other end). In this case, we can't map the collection mappedBy. Instead, we could use the
following mapping:

@Entity
public class Parent {

@OneToMany
@org.hibernate.annotations.MapKey(columns=@Column(name="name"))
@JoinColumn(name="parent_id", nullable=false)
private Map<String, Child> children;
...

}

@Entity
public class Parent {

...
@ManyToOne
@JoinColumn(name="parent_id", insertable=false, updatable=false,

nullable=false)
private Parent parent;
...

}

Note that in this mapping, the collection-valued end of the association is responsible for updates
to the foreign key.

4.6.2.4. Bag with primary key

Another interesting feature is the ability to define a surrogate primary key to a bag collection.
This remove pretty much all of the drawbacks of bags: update and removal are efficient, more
than one EAGER bag per query or per entity. This primary key will be contained in a additional
column of your collection table but will not be visible to the Java application. @CollectionId is
used to mark a collection as id bag, it also allow to override the primary key column(s), the
primary key type and the generator strategy. The strategy can be identity, or any defined
generator name of your application.

@Entity
@TableGenerator(name="ids_generator", table="IDS")
public class Passport {

...

Chapter 3. Entity Beans

54

@ManyToMany(cascade = CascadeType.ALL)
@JoinTable(name="PASSPORT_VISASTAMP")
@CollectionId(columns = @Column(name="COLLECTION_ID"),

type=@Type(type="long"),
generator = "ids_generator")
private Collection<Stamp> visaStamp = new ArrayList();
...

}

4.6.2.5. Collection of element or composite elements

Hibernate Annotations also supports collections of core types (Integer, String, Enums, ...),
collections of embeddable objects and even arrays of primitive types. This is known as
collection of elements.

A collection of elements has to be annotated as @CollectionOfElements (as a replacement of
@OneToMany) To define the collection table, the @JoinTable annotation is used on the
association property, joinColumns defines the join columns between the entity primary table
and the collection table (inverseJoincolumn is useless and should be left empty). For collection
of core types or array of primitive types, you can override the element column definition using a
@Column on the association property. You can also override the columns of a collection of
embeddable object using @AttributeOverride. To reach the collection element, you need to
append "element" to the attribute override name (eg "element" for core types, or "element.serial"
for the serial property of an embeddable element). To reach the index/key of a collection,
append "key" instead.

@Entity
public class Boy {

private Integer id;
private Set<String> nickNames = new HashSet<String>();
private int[] favoriteNumbers;
private Set<Toy> favoriteToys = new HashSet<Toy>();
private Set<Character> characters = new HashSet<Character>();

@Id @GeneratedValue
public Integer getId() {

return id;
}

@CollectionOfElements public Set<String> getNickNames() {
return nickNames;

}

@CollectionOfElements @JoinTable(
table=@Table(name="BoyFavoriteNumbers"),

joinColumns = @JoinColumn(name="BoyId")) @Column(name="favoriteNumber",
nullable=false)

@IndexColumn(name="nbr_index")
public int[] getFavoriteNumbers() {

return favoriteNumbers;
}

Collection related annotations

55

@CollectionOfElements @AttributeOverride(name="element.serial",
column=@Column(name="serial_nbr"))

public Set<Toy> getFavoriteToys() {
return favoriteToys;

}

@CollectionOfElements public Set<Character> getCharacters() {
return characters;

}
...

}

public enum Character {
GENTLE,
NORMAL,
AGGRESSIVE,
ATTENTIVE,
VIOLENT,
CRAFTY

}

@Embeddable
public class Toy {

public String name;
public String serial;
public Boy owner;

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

public String getSerial() {
return serial;

}

public void setSerial(String serial) {
this.serial = serial;

}

@Parent
public Boy getOwner() {

return owner;
}

public void setOwner(Boy owner) {
this.owner = owner;

}

public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;

Chapter 3. Entity Beans

56

final Toy toy = (Toy) o;

if (!name.equals(toy.name)) return false;
if (!serial.equals(toy.serial)) return false;

return true;
}

public int hashCode() {
int result;
result = name.hashCode();
result = 29 * result + serial.hashCode();
return result;

}
}

On a collection of embeddable objects, the embeddable object can have a property annotated
with @Parent. This property will then point back to the entity containing the collection.

Note

Previous versions of Hibernate Annotations used the @OneToMany to mark a
collection of elements. Due to semantic inconsistencies, we've introduced the
annotation @CollectionOfElements. Marking collections of elements the old
way still work but is considered deprecated and is going to be unsupported in
future releases

4.7. Cache

In order to optimize your database accesses, you can activave the so called second level cache
of Hibernate. This cache is configurable on a per entity and per collection basis.

@org.hibernate.annotations.Cache defines the caching strategy and region of a given
second level cache. This annotation can be applied on the root entity (not the sub entities), and
on the collections.

@Entity
@Cache(usage = CacheConcurrencyStrategy.NONSTRICT_READ_WRITE)
public class Forest { ... }

@OneToMany(cascade=CascadeType.ALL, fetch=FetchType.EAGER)
@JoinColumn(name="CUST_ID")
@Cache(usage = CacheConcurrencyStrategy.NONSTRICT_READ_WRITE)
public SortedSet<Ticket> getTickets() {

return tickets;
}

Cache

57

@Cache(
CacheConcurrencyStrategy usage();
String region() default "";
String include() default "all";

)

usage: the given cache concurrency strategy (NONE, READ_ONLY,
NONSTRICT_READ_WRITE, READ_WRITE, TRANSACTIONAL)
region (optional): the cache region (default to the fqcn of the class or the fq role name of
the collection)
include (optional): all to include all properties, non-lazy to only include non lazy properties
(default all).

4.8. Filters

Hibernate has the ability to apply arbitrary filters on top of your data. Those filters are applied at
runtime on a given session. First, you need to define them.

@org.hibernate.annotations.FilterDef or @FilterDefs define filter definition(s) used by
filter(s) using the same name. A filter definition has a name() and an array of parameters(). A
parameter will allow you to adjust the behavior of the filter at runtime. Each parameter is defined
by a @ParamDef which has a name and a type. You can also define a defaultCondition()
parameter for a given @FilterDef to set the default condition to use when none are defined in
each individual @Filter. A @FilterDef(s) can be defined at the class or package level.

We now need to define the SQL filter clause applied to either the entity load or the collection
load. @Filter is used and placed either on the entity or the collection element

@Entity
@FilterDef(name="minLength", parameters={ @ParamDef(name="minLength",
type="integer") })
@Filters({

@Filter(name="betweenLength", condition=":minLength <= length and
:maxLength >= length"),

@Filter(name="minLength", condition=":minLength <= length")
})
public class Forest { ... }

When the collection use an association table as a relational representation, you might want to
apply the filter condition to the association table itself or to the target entity table. To apply the
constraint on the target entity, use the regular @Filter annotation. However, if you wan to
target the association table, use the @FilterJoinTable annotation.

@OneToMany
@JoinTable
//filter on the target entity table
@Filter(name="betweenLength", condition=":minLength <= length and

Chapter 3. Entity Beans

58

:maxLength >= length")
//filter on the association table
@FilterJoinTable(name="security", condition=":userlevel >=

requredLevel")
public Set<Forest> getForests() { ... }

4.9. Queries

Since Hibernate has more features on named queries than the one defined in the EJB3
specification, @org.hibernate.annotations.NamedQuery,
@org.hibernate.annotations.NamedQueries,
@org.hibernate.annotations.NamedNativeQuery and
@org.hibernate.annotations.NamedNativeQueries have been introduced. They add some
attributes to the standard version and can be used as a replacement:

• flushMode: define the query flush mode (Always, Auto, Commit or Never)

• cacheable: whether the query should be cached or not

• cacheRegion: cache region used if the query is cached

• fetchSize: JDBC statement fetch size for this query

• timeout: query time out

• callable: for native queries only, to be set to true for stored procedures

• comment: if comments are activated, the comment seen when the query is sent to the
database.

• cacheMode: Cache interaction mode (get, ignore, normal, put or refresh)

• readOnly: whether or not the elements retrievent from the query are in read only mode.

Those hints can be set in a standard @javax.persistence.NamedQuery annotations through
the detyped @QueryHint. Another key advantage is the ability to set those annotations at a
package level.

4.10. Custom SQL for CRUD operations

Hibernate gives you the avility to override every single SQL statement generated. We have
seen native SQL query usage already, but you can also override the SQL statement used to
load or change the state of entities.

@Entity
@Table(name="CHAOS")

@SQLInsert(sql="INSERT INTO CHAOS(size, name, nickname, id)
VALUES(?,upper(?),?,?)") @SQLUpdate(sql="UPDATE CHAOS SET size = ?,

name = upper(?),

Queries

59

nickname = ? WHERE id = ?")
@SQLDelete(sql="DELETE CHAOS WHERE id = ?") @SQLDeleteAll(

sql="DELETE CHAOS")
@Loader(namedQuery = "chaos")

@NamedNativeQuery(name="chaos", query="select id, size, name, lower(
nickname)
as nickname from CHAOS where id= ?", resultClass = Chaos.class)
public class Chaos {

@Id
private Long id;
private Long size;
private String name;
private String nickname;

@SQLInsert, @SQLUpdate, @SQLDelete, @SQLDeleteAll respectively override the INSERT
statement, UPDATE statement, DELETE statement, DELETE statement to remove all entities.

If you expect to call a store procedure, be sure to set the callable attribute to true
(@SQLInsert(callable=true, ...)).

To check that the execution happens correctly, Hibernate allows you to define one of those
three strategies:

• NONE: no check is performed: the store procedure is expected to fail upon issues

• COUNT: use of rowcount to check that the update is successful

• PARAM: like COUNT but using an output parameter rather that the standard mechanism

To define the result check style, use the check parameter
(@SQLUpdate(check=ResultCheckStyle.COUNT, ...)).

You can also override the SQL load statement by a native SQL query or a HQL query. You just
have to refer to a named query with the @Loader annotation.

You can use the exact same set of annotations to override the collection related statements.

@OneToMany
@JoinColumn(name="chaos_fk")

@SQLInsert(sql="UPDATE CASIMIR_PARTICULE SET chaos_fk = ? where id
= ?")

@SQLDelete(sql="UPDATE CASIMIR_PARTICULE SET chaos_fk = null where
id = ?")
private Set<CasimirParticle> particles = new HashSet<CasimirParticle>();

The parameters order is important and is defined by the order Hibernate handle properties. You
can see the expected order by enabling debug logging for the
org.hibernate.persister.entity level. With this level enabled Hibernate will print out the
static SQL that is used to create, update, delete etc. entities. (To see the expected sequence,

Chapter 3. Entity Beans

60

remember to not include your custom SQL through annotations as that will override the
Hibernate generated static sql.)

Custom SQL for CRUD operations

61

62

Overriding metadata through XML
The primary target for metadata in EJB3 is annotations, but the EJB3 specification provides a
way to override or replace the annotation defined metadata through an XML deployment
descriptor. In the current release only pure EJB3 annotations overriding are supported. If you
wish to use Hibernate specific features in some entities, you'll have to either use annotations or
fallback to hbm files. You can of course mix and match annotated entities and entities describes
in hbm files.

The unit test suite shows some additional XML file samples.

1. Principles

The XML deployment descriptor structure has been designed to reflect the annotations one. So
if you know the annotations structure, using the XML schema will be straightforward for you.

You can define one ot more XML files describing your metadata, these files will be merged by
the overriding engine.

1.1. Global level metadata

You can define global level metadata available for all XML files. You must not define these
metadata more than once per deployment.

<?xml version="1.0" encoding="UTF-8"?>

<entity-mappings
xmlns="http://java.sun.com/xml/ns/persistence/orm"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence/orm

orm_1_0.xsd"
version="1.0">

<persistence-unit-metadata>
<xml-mapping-metadata-complete/>
<persistence-unit-defaults>

<schema>myschema</schema>
<catalog>mycatalog</catalog>
<cascade-persist/>

</persistence-unit-defaults>
</persistence-unit-metadata>

xml-mapping-metadata-complete means that all entity, mapped-superclasses and
embeddable metadata should be picked up from XML (ie ignore annotations).

schema / catalog will override all default definitions of schema and catalog in the metadata
(both XML and annotations).

cascade-persist means that all associations have PERSIST as a cascade type. We

Chapter Overriding metadata through XML.

63

recommend you to not use this feature.

1.2. Entity level metadata

You can either define or override metadata informations on a given entity.

<?xml version="1.0" encoding="UTF-8"?>

<entity-mappings
xmlns="http://java.sun.com/xml/ns/persistence/orm"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence/orm

orm_1_0.xsd"
version="1.0">

<package>org.hibernate.test.reflection.java.xml</package>
<entity class="Administration" access="PROPERTY"

metadata-complete="true">
<table name="tbl_admin">

<unique-constraint>
<column-name>firstname</column-name>
<column-name>lastname</column-name>

</unique-constraint>
</table>
<secondary-table name="admin2">

<primary-key-join-column name="admin_id"
referenced-column-name="id"/>

<unique-constraint>
<column-name>address</column-name>

</unique-constraint>
</secondary-table>
<id-class class="SocialSecurityNumber"/>
<inheritance strategy="JOINED"/>
<sequence-generator name="seqhilo" sequence-name="seqhilo"/>
<table-generator name="table" table="tablehilo"/>
...

</entity>

<entity class="PostalAdministration">
<primary-key-join-column name="id"/>
...

</entity>
</entity-mappings>

entity-mappings: entity-mappings is the root element for all XML files. You must declare
the xml schema, the schema file is included in the hibernate-annotations.jar file, no internet
access will be processed by Hibernate Annotations.
package (optional): default package used for all non qualified class names in the given
deployment descriptor file.
entity: desribes an entity.

metadata-complete defines whether the metadata description for this element is complete
or not (in other words, if annotations present at the class level should be considered or

Chapter Overriding metadata through XML. Overriding metadata through XML

64

not).

An entity has to have a class attribute refering the java class the metadata applies on.

You can overrides entity name through the name attribute, if none is defined and if an
@Entity.name is present, then it is used (provided that metadata complete is not set).

For netadata complete (see below) element, you can define an access (either FIELD or
PROPERTY (default)). For non medatada complete element, if access is not defined, the
@Id position will lead position, if access is defined, the value is used.
table: you can declare table properties (name, schema, catalog), if none is defined, the
java annotation is used.

You can define one or several unique constraints as seen in the example
secondary-table: defines a secondary table very much like a regular table except that
you can define the primary key / foreign key column(s) through the
primary-key-join-column element. On non metadata complete, annotation secondary
tables are used only if there is no secondary-table definition, annotations are ignored
otherwise.
id-class: defines the id class in a similar way @IdClass does
inheritance: defines the inheritance strategy (JOINED, TABLE_PER_CLASS,
SINGLE_TABLE), Available only at the root entity level
sequence-generator: defines a sequence generator
table-generator: defines a table generator
primary-key-join-column: defines the primary key join column for sub entities when
JOINED inheritance strategy is used

<?xml version="1.0" encoding="UTF-8"?>

<entity-mappings
xmlns="http://java.sun.com/xml/ns/persistence/orm"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence/orm

orm_1_0.xsd"
version="1.0">

<package>org.hibernate.test.reflection.java.xml</package>
<entity class="Music" access="PROPERTY" metadata-complete="true">

<discriminator-value>Generic</discriminator-value>
<discriminator-column length="34"/>
...

</entity>

<entity class="PostalAdministration">
<primary-key-join-column name="id"/>
<named-query name="adminById">

<query>select m from Administration m where m.id = :id</query>
<hint name="org.hibernate.timeout" value="200"/>

</named-query>
<named-native-query name="allAdmin" result-set-mapping="adminrs">

<query>select *, count(taxpayer_id) as taxPayerNumber
from Administration, TaxPayer
where taxpayer_admin_id = admin_id group by ...</query>

Entity level metadata

65

<hint name="org.hibernate.timeout" value="200"/>
</named-native-query>
<sql-result-set-mapping name="adminrs">

<entity-result entity-class="Administration">
<field-result name="name" column="fld_name"/>

</entity-result>
<column-result name="taxPayerNumber"/>

</sql-result-set-mapping>
<attribute-override name="ground">

<column name="fld_ground" unique="true" scale="2"/>
</attribute-override>
<association-override name="referer">

<join-column name="referer_id" referenced-column-name="id"/>
</association-override>
...

</entity>
</entity-mappings>

discriminator-value / discriminator-column: defines the discriminator value and
the column holding it when the SINGLE_TABLE inheritance strategy is chosen
named-query: defines named queries and possibly the hints associated to them. Those
definitions are additive to the one defined in annotations, if two definitions have the same
name, the XML one has priority.
named-native-query: defines an named native query and its sql result set mapping.
Alternatively, you can define the result-class. Those definitions are additive to the one
defined in annotations, if two definitions have the same name, the XML one has priority.
sql-result-set-mapping: describes the result set mapping structure. You can define
both entity and column mappings. Those definitions are additive to the one defined in
annotations, if two definitions have the same name, the XML one has priority
attribute-override / association-override: defines a column or join column
overriding. This overriding is additive to the one defined in annotations

Same applies for <embeddable> and <mapped-superclass>.

1.3. Property level metadata

You can of course defines XML overriding for properties. If metadata complete is defined, then
additional properties (ie at the Java level) will be ignored. Otherwise, once you start overriding a
property, all annotations on the given property are ignored. All property level metadata behave
in entity/attributes, mapped-superclass/attributes or embeddable/attributes.

<attributes>
<id name="id">

<column name="fld_id"/>
<generated-value generator="generator" strategy="SEQUENCE"/>
<temporal>DATE</temporal>
<sequence-generator name="generator" sequence-name="seq"/>

</id>
<version name="version"/>
<embedded name="embeddedObject">

<attribute-override name"subproperty">

Chapter Overriding metadata through XML. Overriding metadata through XML

66

<column name="my_column"/>
</attribute-override>

</embedded>
<basic name="status" optional="false">

<enumerated>STRING</enumerated>
</basic>
<basic name="serial" optional="true">

<column name="serialbytes"/>
<lob/>

</basic>
<basic name="terminusTime" fetch="LAZY">

<temporal>TIMESTAMP</temporal>
</basic>

</attributes>

You can override a property through id, embedded-id, version, embedded and basic. Each of
these elements can have subelements accordingly: lob, temporal, enumerated, column.

1.4. Association level metadata

You can define XML overriding for associations. All association level metadata behave in
entity/attributes, mapped-superclass/attributes or embeddable/attributes.

<attributes>
<one-to-many name="players" fetch="EAGER">

<map-key name="name"/>
<join-column name="driver"/>
<join-column name="number"/>

</one-to-many>
<many-to-many name="roads" target-entity="Administration">

<order-by>maxSpeed</order-by>
<join-table name="bus_road">

<join-column name="driver"/>
<join-column name="number"/>
<inverse-join-column name="road_id"/>
<unique-constraint>

<column-name>driver</column-name>
<column-name>number</column-name>

</unique-constraint>
</join-table>

</many-to-many>
<many-to-many name="allTimeDrivers" mapped-by="drivenBuses">

</attributes>

You can override an association through one-to-many, one-to-one, many-to-one, and
many-to-many. Each of these elements can have subelements accordingly: join-table (which
can have join-columns and inverse-join-columns), join-columns, map-key, and
order-by. mapped-by and target-entity can be defined as attributes when it makes sense.
Once again the structure is reflects the annotations structure. You can find all semantic
informations in the chapter describing annotations.

Association level metadata

67

68

Hibernate Validator
Annotations are a very convenient and elegant way to specify invariant constraints for a domain
model. You can, for example, express that a property should never be null, that the account
balance should be strictly positive, etc. These domain model constraints are declared in the
bean itself by annotating its properties. A validator can then read them and check for constraint
violations. The validation mechanism can be executed in different layers in your application
without having to duplicate any of these rules (presentation layer, data access layer). Hibernate
Validator has been designed for that purpose.

Hibernate Validator works at two levels. First, it is able to check in-memory instances of a class
for constraint violations. Second, it can apply the constraints to the Hibernate metamodel and
incorporate them into the generated database schema.

Each constraint annotation is associated to a validator implementation responsible for checking
the constraint on the entity instance. A validator can also (optionally) apply the constraint to the
Hibernate metamodel, allowing Hibernate to generate DDL that expresses the constraint. With
the appropriate event listener, you can execute the checking operation on inserts and updates
done by Hibernate. Hibernate Validator is not limited to use with Hibernate. You can easily use it
anywhere in your application.

When checking instances at runtime, Hibernate Validator returns information about constraint
violations in an array of InvalidValues. Among other information, the InvalidValue contains
an error description message that can embed the parameter values bundle with the annotation
(eg. length limit), and message strings that may be externalized to a ResourceBundle.

1. Constraints

1.1. What is a constraint?

A constraint is represented by an annotation. A constraint usually has some attributes used to
parameterize the constraints limits. The constraint apply to the annotated element.

1.2. Built in constraints

Hibernate Validator comes with some built-in constraints, which covers most basic data checks.
As we'll see later, you're not limited to them, you can in a minute write your own constraints.

Annotation Apply on Runtime checking Hibernate Metadata
impact

@Length(min=,
max=)

property (String) check if the string
length match the
range

Column length will be
set to max

@Max(value=) property (numeric or
string representation
of a numeric)

check if the value is
less than or equals to
max

Add a check
constraint on the
column

Chapter 5.

69

Annotation Apply on Runtime checking Hibernate Metadata
impact

@Min(value=) property (numeric or
string representation
of a numeric)

check if the value is
more than or equals
to min

Add a check
constraint on the
column

@NotNull property check if the value is
not null

Column(s) are not
null

@NotEmpty property check if the string is
not null nor empty.
Check if the
connection is not null
nor empty

Column(s) are not
null (for String)

@Past property (date or
calendar)

check if the date is in
the past

Add a check
constraint on the
column

@Future property (date or
calendar)

check if the date is in
the future

none

@Pattern(regex="regexp",
flag=)

property (string) check if the property
match the regular
expression given a
match flag (see
java.util.regex.Pattern

)

none

@Range(min=,
max=)

property (numeric or
string representation
of a numeric)

check if the value is
between min and max
(included)

Add a check
constraint on the
column

@Size(min=, max=) property (array,
collection, map)

check if the element
size is between min
and max (included)

none

@AssertFalse property check that the
method evaluates to
false (useful for
constraints expressed
in code rather than
annotations)

none

@AssertTrue property check that the
method evaluates to
true (useful for
constraints expressed
in code rather than
annotations)

none

@Valid property (object) perform validation
recursively on the

none

Chapter 5. Hibernate Validator

70

Annotation Apply on Runtime checking Hibernate Metadata
impact

associated object. If
the object is a
Collection or an array,
the elements are
validated recursively.
If the object is a Map,
the value elements
are validated
recursively.

@Email property (String) check whether the
string is conform to
the email address
specification

none

Table 5.1. Built-in constraints

1.3. Error messages

Hibernate Validator comes with a default set of error messages translated in about ten
languages (if yours is not part of it, please sent us a patch). You can override those messages
by creating a ValidatorMessages.properties or (ValidatorMessages_loc.properties) and
override the needed keys. You can even add your own additional set of messages while writing
your validator annotations. If Hibernate Validator cannot resolve a key from your
resourceBundle nor from ValidatorMessage, it falls back to the default built-in values.

Alternatively you can provide a ResourceBundle while checking programmatically the validation
rules on a bean or if you want a completly different interpolation mechanism, you can provide an
implementation of org.hibernate.validator.MessageInterpolator (check the JavaDoc for
more informations).

1.4. Writing your own constraints

Extending the set of built-in constraints is extremely easy. Any constraint consists of two pieces:
the constraint descriptor (the annotation) and the constraint validator (the implementation class).
Here is a simple user-defined descriptor:

@ValidatorClass(CapitalizedValidator.class)
@Target(METHOD)
@Retention(RUNTIME)
@Documented
public @interface Capitalized {

CapitalizeType type() default Capitalize.FIRST;
String message() default "has incorrect capitalization";

}

Error messages

71

type is a parameter describing how the property should to be capitalized. This is a user
parameter fully dependant on the annotation business.

message is the default string used to describe the constraint violation and is mandatory. You can
hard code the string or you can externalize part/all of it through the Java ResourceBundle
mechanism. Parameters values are going to be injected inside the message when the
{parameter} string is found (in our example Capitalization is not {type} would generate
Capitalization is not FIRST), externalizing the whole string in
ValidatorMessages.properties is considered good practice. See Error messages.

@ValidatorClass(CapitalizedValidator.class)
@Target(METHOD)
@Retention(RUNTIME)
@Documented
public @interface Capitalized {

CapitalizeType type() default Capitalize.FIRST;
String message() default "{validator.capitalized}";

}

...
#in ValidatorMessages.properties
validator.capitalized=Capitalization is not {type}

As you can see the {} notation is recursive.

To link a descriptor to its validator implementation, we use the @ValidatorClass

meta-annotation. The validator class parameter must name a class which implements
Validator<ConstraintAnnotation>.

We now have to implement the validator (ie. the rule checking implementation). A validation
implementation can check the value of the a property (by implementing PropertyConstraint)
and/or can modify the hibernate mapping metadata to express the constraint at the database
level (by implementing PersistentClassConstraint).

public class CapitalizedValidator
implements Validator<Capitalized>, PropertyConstraint {

private CapitalizeType type;

//part of the Validator<Annotation> contract,
//allows to get and use the annotation values
public void initialize(Capitalized parameters) {

type = parameters.type();
}

//part of the property constraint contract
public boolean isValid(Object value) {

if (value==null) return true;
if (!(value instanceof String)) return false;
String string = (String) value;
if (type == CapitalizeType.ALL) {

return string.equals(string.toUpperCase());
}

Chapter 5. Hibernate Validator

72

else {
String first = string.substring(0,1);
return first.equals(first.toUpperCase();

}
}

}

The isValid() method should return false if the constraint has been violated. For more
examples, refer to the built-in validator implementations.

We only have seen property level validation, but you can write a Bean level validation
annotation. Instead of receiving the return instance of a property, the bean itself will be passed
to the validator. To activate the validation checking, just annotated the bean itself instead. A
small sample can be found in the unit test suite.

1.5. Annotating your domain model

Since you are already familiar with annotations now, the syntax should be very familiar.

public class Address {
private String line1;
private String line2;
private String zip;
private String state;
private String country;
private long id;

// a not null string of 20 characters maximum
@Length(max=20)
@NotNull
public String getCountry() {

return country;
}

// a non null string
@NotNull
public String getLine1() {

return line1;
}

//no constraint
public String getLine2() {

return line2;
}

// a not null string of 3 characters maximum
@Length(max=3) @NotNull
public String getState() {

return state;
}

// a not null numeric string of 5 characters maximum
// if the string is longer, the message will

Annotating your domain model

73

//be searched in the resource bundle at key 'long'
@Length(max=5, message="{long}")
@Pattern(regex="[0-9]+")
@NotNull
public String getZip() {

return zip;
}

// should always be true
@AssertTrue
public boolean isValid() {

return true;
}

// a numeric between 1 and 2000
@Id @Min(1)
@Range(max=2000)
public long getId() {

return id;
}

}

While the example only shows public property validation, you can also annotate fields of any
kind of visibility.

@MyBeanConstraint(max=45)
public class Dog {

@AssertTrue private boolean isMale;
@NotNull protected String getName() { ... };
...

}

You can also annotate interfaces. Hibernate Validator will check all superclasses and interfaces
extended or implemented by a given bean to read the appropriate validator annotations.

public interface Named {
@NotNull String getName();
...

}

public class Dog implements Named {

@AssertTrue private boolean isMale;

public String getName() { ... };

}

The name property will be checked for nullity when the Dog bean is validated.

Chapter 5. Hibernate Validator

74

2. Using the Validator framework

Hibernate Validator is intended to be used to implement multi-layered data validation, where we
express constraints in one place (the annotated domain model) and apply them at various
different layers of the application.

2.1. Database schema-level validation

Out of the box, Hibernate Annotations will translate the constraints you have defined for your
entities into mapping metadata. For example, if a property of your entity is annotated @NotNull,
its columns will be declared as not null in the DDL schema generated by Hibernate.

2.2. Hibernate event-based validation

Hibernate Validator has two built-in Hibernate event listeners. Whenever a PreInsertEvent or
PreUpdateEvent occurs, the listeners will verify all constraints of the entity instance and throw
an exception if any constraint is violated. Basically, objects will be checked before any inserts
and before any updates made by Hibernate. This is the most convenient and the easiest way to
activate the validation process. On constraint violation, the event will raise a runtime
InvalidStateException which contains an array of InvalidValues describing each failure.

<hibernate-configuration>
...
<event type="pre-update">

<listener
class="org.hibernate.validator.event.ValidatePreUpdateEventListener"/>

</event>
<event type="pre-insert">

<listener
class="org.hibernate.validator.event.ValidatePreInsertEventListener"/>

</event>
</hibernate-configuration>

Note

When using Hibernate Entity Manager, the Validation framework is activated out
of the box. If the beans are not annotated with validation annotations, there is no
performance cost.

2.3. Application-level validation

Hibernate Validator can be applied anywhere in your application code.

ClassValidator personValidator = new ClassValidator(Person.class);
ClassValidator addressValidator = new ClassValidator(Address.class,
ResourceBundle.getBundle("messages", Locale.ENGLISH));

Database schema-level validation

75

InvalidValue[] validationMessages =
addressValidator.getInvalidValues(address);

The first two lines prepare the Hibernate Validator for class checking. The first one relies upon
the error messages embedded in Hibernate Validator (see Error messages), the second one
uses a resource bundle for these messages. It is considered a good practice to execute these
lines once and cache the validator instances.

The third line actually validates the Address instance and returns an array of InvalidValues.
Your application logic will then be able to react to the failure.

You can also check a particular property instead of the whole bean. This might be useful for
property per property user interaction

ClassValidator addressValidator = new ClassValidator(Address.class,
ResourceBundle.getBundle("messages", Locale.ENGLISH));

//only get city property invalid values
InvalidValue[] validationMessages =
addressValidator.getInvalidValues(address, "city");

//only get potential city property invalid values
InvalidValue[] validationMessages =
addressValidator.getPotentialInvalidValues

("city", "Paris")

2.4. Validation informations

As a validation information carrier, hibernate provide an array of InvalidValue. Each
InvalidValue has a buch of methods describing the individual issues.

getBeanClass() retrieves the failing bean type

getBean()retrieves the failing instance (if any ie not when using
getPotentianInvalidValues())

getValue() retrieves the failing value

getMessage() retrieves the proper internationalized error message

getRootBean() retrieves the root bean instance generating the issue (useful in conjunction with
@Valid), is null if getPotentianInvalidValues() is used.

getPropertyPath() retrieves the dotted path of the failing property starting from the root bean

Chapter 5. Hibernate Validator

76

1 http://lucene.apache.org

Hibernate Search: Apache Lucene
Integration
Apache Lucene1 is a high-performance Java search engine library available at the Apache
Software Foundation. Hibernate Annotations includes a package of annotations that allows you
to mark any domain model object as indexable and have Hibernate maintain a Lucene index of
any instances persisted via Hibernate. Apache Lucene is also integrated with the Hibernate
query facility.

Hibernate Search is a work in progress and new features are cooking in this area. So expect
some compatibility changes in subsequent versions.

1. Architecture

Hibernate Search is made of an indexing engine and an index search engine. Both are backed
by Apache Lucene.

When an entity is inserted, updated or removed to/from the database, Hibernate Search will
keep track of this event (through the Hibernate event system) and schedule an index update.
When out of transaction, the update is executed right after the actual database operation. It is
however recommended, for both your database and Hibernate Search, to execute your
operation in a transaction (whether JDBC or JTA). When in a transaction, the index update is
schedule for the transaction commit (and discarded in case of transaction rollback). You can
think of this as the regular (infamous) autocommit vs transactional behavior. From a
performance perspective, the in transaction mode is recommended. All the index updates are
handled for you without you having to use the Apache Lucene APIs.

To interact with Apache Lucene indexes, Hibernate Search has the notion of
DirectoryProvider. A directory provider will manage a given Lucene Directory type. You
can configure directory providers to adjust the directory target.

Hibernate Search can also use a Lucene index to search an entity and return a (list of)
managed entity saving you from the tedious Object / Lucene Document mapping and low level
Lucene APIs. The application code use the unified org.hibernate.Query API exactly the way
a HQL or native query would be done.

2. Configuration

2.1. Directory configuration

Apache Lucene has a notion of Directory where the index is stored. The Directory
implementation can be customized but Lucene comes bundled with a file system and a full

Chapter 6.

77

http://lucene.apache.org
http://lucene.apache.org

memory implementation. Hibernate Search has the notion of DirectoryProvider that handle
the configuration and the initialization of the Lucene Directory.

Class description Properties

org.hibernate.search.store.FSDirectoryProviderFile system based directory.
The directory used will be
<indexBase>/<@Indexed.name>

indexBase: Base directory

org.hibernate.search.store.RAMDirectoryProviderMemory based directory, the
directory will be uniquely
indentified by the
@Indexed.name element

none

Table 6.1. List of built-in Directory Providers

If the built-in directory providers does not fit your needs, you can write your own directory
provider by implementing the org.hibernate.store.DirectoryProvider interface

Each indexed entity is associated to a Lucene index (an index can be shared by several entities
but this is not usually the case). You can configure the index through properties prefixed by
hibernate.search.indexname. Default properties inherited to all indexes can be defined using
the prefix hibernate.search.default.

To define the directory provider of a given index, you use the
hibernate.search.indexname.directory_provider

hibernate.search.default.directory_provider
org.hibernate.search.store.FSDirectoryProvider
hibernate.search.default.indexDir=/usr/lucene/indexes

hibernate.search.Rules.directory_provider
org.hibernate.search.store.RAMDirectoryProvider

applied on

@Indexed(name="Status")
public class Status { ... }

@Indexed(name="Rules")
public class Rule { ... }

will create a file system directory in /usr/lucene/indexes/Status where the Status entities
will be indexed, and use an in memory directory named Rules where Rule entities will be
indexed.

So you can easily defined common rules like the directory provider and base directory, and
overide those default later on on a per index basis.

Chapter 6. Hibernate Search: Apache Lucene™ Integration

78

Writing your own DirectoryProvider, you can benefit this configuration mechanism too.

2.2. Enabling automatic indexing

Finally, we enable the SearchEventListener for the three Hibernate events that occur after
changes are executed to the database.

<hibernate-configuration>
...
<event type="post-update"

<listener
class="org.hibernate.search.event.FullTextIndexEventListener"/>

</event>
<event type="post-insert"

<listener
class="org.hibernate.search.event.FullTextIndexEventListener"/>

</event>
<event type="post-delete"

<listener
class="org.hibernate.search.event.FullTextIndexEventListener"/>

</event>
</hibernate-configuration>

3. Mapping entities to the index structure

All the metadata information related to indexed entities is described through some Java
annotations. There is no need for xml mapping files nor a list of indexed entities. The list is
discovered at startup time scanning the Hibernate mapped entities.

First, we must declare a persistent class as indexable. This is done by annotating the class with
@Indexed (all entities not annotated with @Indexed will be ignored by the indexing process):

@Entity@Indexed(index="indexes/essays")
public class Essay {

...
}

The index attribute tells Hibernate what the Lucene directory name is (usually a directory on
your file system). If you wish to define a base directory for all Lucene indexes, you can use the
hibernate.search.default.indexDir property in your configuration file. Each entity instance
will be represented by a Lucene Document inside the given index (aka Directory).

For each property (or attribute) of your entity, you have the ability to describe how it will be
indexed. The default (ie no annotation) means that the property is completly ignored by the
indexing process. @Field does declare a property as indexed. When indexing an element to a
Lucene document you can specify how it is indexed:

• name: describe under which name, the property should be stored in the Lucene Document.

Enabling automatic indexing

79

The default value is the property name (following the JavaBeans convention)

• store: describe whether or not the property is stored in the Lucene index. You can store the
value Store.YES (comsuming more space in the index), store it in a compressed way
Store.COMPRESS (this does consume more CPU), or avoid any storage Store.NO (this is the
default value). When a property is stored, you can retrieve it from the Lucene Document (note
that this is not related to whether the element is indexed or not).

• index: describe how the element is indexed (ie the process used to index the property and the
type of information store). The different values are Index.NO (no indexing, ie cannot be found
by a query), Index.TOKENIZED (use an analyzer to process the property),
Index.UN_TOKENISED (no analyzer pre processing), Index.NO_NORM (do not store the
normalization data).

These attributes are part of the @Field annotation.

Whether or not you want to store the data depends on how you wish to use the index query
result. As of today, for a pure Hibernate Search usage, storing is not necessary. Whether or not
you want to tokenize a property or not depends on whether you wish to search the element as
is, or only normalized part of it. It make sense to tokenize a text field, but it does not to do it for a
date field (or an id field).

Finally, the id property of an entity is a special property used by Hibernate Search to ensure
index unicity of a given entity. By design, an id has to be stored and must not be tokenized. To
mark a property as index id, use the @DocumentId annotation.

@Entity
@Indexed(index="indexes/essays")
public class Essay {

...

@Id
@DocumentId
public Long getId() { return id; }

@Field(name="Abstract", index=Index.TOKENIZED, store=Store.YES)
public String getSummary() { return summary; }

@Lob
@Field(index=Index.TOKENIZED)
public String getText() { return text; }

}

These annotations define an index with three fields: id, Abstract and text. Note that by
default the field name is decapitalized, following the JavaBean specification.

Note: you must specify @DocumentId on the identifier property of your entity class.

Lucene has the notion of boost factor. It's a way to give more weigth to a field or to an indexed

Chapter 6. Hibernate Search: Apache Lucene™ Integration

80

element over an other during the indexation process. You can use @Boost at the field or the
class level.

@Entity
@Indexed(index="indexes/essays")@Boost(2)
public class Essay {

...

@Id
@DocumentId
public Long getId() { return id; }

@Field(name="Abstract", index=Index.TOKENIZED, store=Store.YES)
@Boost(2.5f)
public String getSummary() { return summary; }

@Lob
@Field(index=Index.TOKENIZED)
public String getText() { return text; }

}

In our example, Essay's probability to reach the top of the search list will be multiplied by 2 and
the summary field will be 2.5 more important than the test field. Note that this explaination is
actually wrong, but it is simple and close enought to the reality. Please check the Lucene
documentation or the excellent Lucene In Action from Otis Gospodnetic and Erik Hatcher.

The analyzer class used to index the elements is configurable through the
hibernate.search.analyzer property. If none defined,
org.apache.lucene.analysis.standard.StandardAnalyzer is used as the default.

4. Property/Field Bridge

All field of a full text index in Lucene have to be represented as Strings. Ones Java properties
have to be indexed in a String form. For most of your properties, Hibernate Search does the
translation job for you thanks to a built-in set of bridges. In some cases, though you need a fine
grain control over the translation process.

4.1. Built-in bridges

Hibernate Search comes bundled with a set of built-in bridges between a Java property type
and its full text representation.

Null elements are not indexed (Lucene does not support null elements and it does not make
much sense either)

null
null elements are not indexed. Lucene does not support null elements and this does not
make much sense either.

Property/Field Bridge

81

2 Using a Range query is debattable and has drawbacks, an alternative approach is to use a Filter query which will filter
the result query to the appropriate range.

Hibernate Search will support a padding mechanism

java.lang.String
String are indexed as is

short, Short, integer, Integer, long, Long, float, Float, double, Double, BigInteger, BigDecimal
Numbers are converted in their String representation. Note that numbers cannot be
compared by Lucene (ie used in ranged queries) out of the box: they have to be padded 2

java.util.Date
Dates are stored as yyyyMMddHHmmssSSS in GMT time (200611072203012 for Nov 7th
of 2006 4:03PM and 12ms EST). You shouldn't really bother with the internal format. What
is important is that when using a DateRange Query, you should know that the dates have to
be expressed in GMT time.

Usually, storing the date up to the milisecond is not necessary. @DateBridge defines the
appropriate resolution you are willing to store in the index
(@DateBridge(resolution=Resolution.DAY)). The date pattern will then be truncated
accordingly.

@Entity @Indexed
public class Meeting {

@Field(index=Index.UN_TOKENIZED)
@DateBridge(resolution=Resolution.MINUTE)
private Date date;
...

}

Warning

A Date whose resolution is lower than MILLISECOND cannot be a @DocumentId

4.2. Custom Bridge

It can happen that the built-in bridges of Hibernate Search does not cover some of your property
types, or that the String representation used is not what you expect.

4.2.1. StringBridge

The simpliest custom solution is to give Hibernate Search an implementation of your expected
object to String bridge. To do so you need to implements the
org.hibernate.search.bridge.StringBridge interface

Chapter 6. Hibernate Search: Apache Lucene™ Integration

82

/**
* Padding Integer bridge.
* All numbers will be padded with 0 to match 5 digits
*
* @author Emmanuel Bernard
*/

public class PaddedIntegerBridge implements StringBridge {

private int PADDING = 5;

public String objectToString(Object object) {
String rawInteger = ((Integer) object).toString();
if (rawInteger.length() > PADDING) throw new

IllegalArgumentException(
"Try to pad on a number too big");
StringBuilder paddedInteger = new StringBuilder();
for (int padIndex = rawInteger.length() ; padIndex < PADDING ;

padIndex++) {
paddedInteger.append('0');

}
return paddedInteger.append(rawInteger).toString();

}
}

Then any property or field can use this bridge thanks to the @FieldBridge annotation

@FieldBridge(impl = PaddedIntegerBridge.class)
private Integer length;

Parameters can be passed to the Bridge implementation making it more flexible. The Bridge
implementation implements a ParameterizedBridge interface, and the parameters are passed
through the @FieldBridge annotation.

public class PaddedIntegerBridge implements StringBridge,
ParameterizedBridge {

public static String PADDING_PROPERTY = "padding";
private int padding = 5; //default

public void setParameterValues(Map parameters) {
Object padding = parameters.get(PADDING_PROPERTY);
if (padding != null) this.padding = (Integer) padding;

}

public String objectToString(Object object) {
String rawInteger = ((Integer) object).toString();
if (rawInteger.length() > padding) throw new

IllegalArgumentException(
"Try to pad on a number too big");
StringBuilder paddedInteger = new StringBuilder();
for (int padIndex = rawInteger.length() ; padIndex < padding ;

padIndex++) {
paddedInteger.append('0');

Custom Bridge

83

}
return paddedInteger.append(rawInteger).toString();

}
}

//property
@FieldBridge(impl = PaddedIntegerBridge.class,

params = @Parameter(name="padding", value="10"))
private Integer length;

The ParameterizedBridge interface can be implemented by StringBridge,
TwoWayStringBridge, FieldBridge implementations (see bellow).

If you expect to use your bridge implementation on for an id property (ie annotated with
@DocumentId), you need to use a slightly extended version of StringBridge named
TwoWayStringBridge. Hibernate Search needs to read the string representation of the
identifier and generate the object out of it. There is not difference in the way the @FieldBridge

annotation is used.

public class PaddedIntegerBridge implements TwoWayStringBridge,
ParameterizedBridge {

public static String PADDING_PROPERTY = "padding";
private int padding = 5; //default

public void setParameterValues(Map parameters) {
Object padding = parameters.get(PADDING_PROPERTY);
if (padding != null) this.padding = (Integer) padding;

}

public String objectToString(Object object) {
String rawInteger = ((Integer) object).toString();
if (rawInteger.length() > padding) throw new

IllegalArgumentException(
"Try to pad on a number too big");
StringBuilder paddedInteger = new StringBuilder();
for (int padIndex = rawInteger.length() ; padIndex < padding ;

padIndex++) {
paddedInteger.append('0');

}
return paddedInteger.append(rawInteger).toString();

}

public Object stringToObject(String stringValue) {
return new Integer(stringValue);

}
}

//id property
@DocumentId
@FieldBridge(impl = PaddedIntegerBridge.class,

params = @Parameter(name="padding", value="10"))

Chapter 6. Hibernate Search: Apache Lucene™ Integration

84

private Integer id;

It is critically important for the two-way process to be idempotent (ie object = stringToObject(
objectToString(object))).

4.2.2. FieldBridge

Some usecase requires more than a simple object to string translation when mapping a property
to a Lucene index. To give you most of the flexibility you can also implement a bridge as a
FieldBridge. This interface give you a property value and let you map it the way you want in
your Lucene Document.This interface is very similar in its concept to the HibernateUserType.

You can for example store a given property in two different document fields

/**
* Store the date in 3 different field year, month, day
* to ease Range Query per year, month or day
* (eg get all the elements of december for the last 5 years)
*
* @author Emmanuel Bernard
*/

public class DateSplitBridge implements FieldBridge {
private final static TimeZone GMT = TimeZone.getTimeZone("GMT");

public void set(String name, Object value, Document document,
Field.Store store,

Field.Index index, Float boost) {
Date date = (Date) value;
Calendar cal = GregorianCalendar.getInstance(GMT);
cal.setTime(date);
int year = cal.get(Calendar.YEAR);
int month = cal.get(Calendar.MONTH) + 1;
int day = cal.get(Calendar.DAY_OF_MONTH);
//set year
Field field = new Field(name + ".year", String.valueOf(year),

store, index);
if (boost != null) field.setBoost(boost);
document.add(field);
//set month and pad it if needed
field = new Field(name + ".month", month < 10 ? "0" : "" +
String.valueOf(month), store, index);
if (boost != null) field.setBoost(boost);
document.add(field);
//set day and pad it if needed
field = new Field(name + ".day", day < 10 ? "0" : "" +
String.valueOf(day), store, index);
if (boost != null) field.setBoost(boost);
document.add(field);

}
}

//property@FieldBridge(impl = DateSplitBridge.class)
private Integer length;

Custom Bridge

85

5. Querying

The second most important capability of Hibernate Search is the ability to execute a Lucene
query and retrieve entities managed by an Hibernate session, providing the power of Lucene
without living the Hibernate paradygm, and giving another dimension to the Hibernate classic
search mechanisms (HQL, Criteria query, native SQL query).

To access the Hibernate Search querying facilities, you have to use an Hibernate
FullTextSession. A SearchSession wrap an regular org.hibernate.Session to provide
query and indexing capabilities.

Session session = sessionFactory.openSession();
...
FullTextSession fullTextSession = Search.createFullTextSession(session);

The search facility is built on native Lucene queries.

org.apache.lucene.QueryParser parser = new QueryParser("title", new
StopAnalyzer());

org.hibernate.lucene.search.Query luceneQuery = parser.parse(
"summary:Festina Or brand:Seiko");

org.hibernate.Query fullTextQuery =
fullTextSession.createFullTextQuery(luceneQuery);

List result = fullTextQuery.list(); //return a list of managed objects

The Hibernate query built on top of the Lucene query is a regular org.hibernate.Query, you
are is the same paradygm as the other Hibernate query facilities (HQL, Native or Criteria). The
regular list(), uniqueResult(), iterate() and scroll() can be used.

If you expect a reasonnable result number and expect to work on all of them, list() or
uniqueResult() are recommanded. list() work best if the entity batch-size is set up
properly. Note that Hibernate Seach has to process all Lucene Hits elements when using
list(), uniqueResult() and iterate(). If you wish to minimize Lucene document loading,
scroll() is more appropriate, Don't forget to close the ScrollableResults object when you're
done, since it keeps Lucene resources.

An efficient way to work with queries is to use pagination. The pagination API is exactly the one
available in org.hibernate.Query:

org.hibernate.Query fullTextQuery = fullTextSession.createFullTextQuery(
luceneQuery);
fullTextQuery.setFirstResult(30);
fullTextQuery.setMaxResult(20);
fullTextQuery.list(); //will return a list of 20 elements starting from the

Chapter 6. Hibernate Search: Apache Lucene™ Integration

86

30th

Only the relevant Lucene Documents are accessed.

6. Indexing

It is sometimes useful to index an object event if this object is not inserted nor updated to the
database. This is especially true when you want to build your index the first time. You can
achieve that goal using the FullTextSession.

FullTextSession fullTextSession = Search.createFullTextSession(session);
Transaction tx = fullTextSession.beginTransaction();
for (Customer customer : customers) {

fullTextSession.index(customer);
}
tx.commit(); //index are written at commit time

For maximum efficiency, Hibernate Search batch index operations which and execute them at
commit time (Note: you don't need to use org.hibernate.Transaction in a JTA environment).

Indexing

87

88

	Hibernate Annotations Reference Guide
	Table of Contents
	Chapter 1. Feedback
	Preface
	Chapter 2. Setting up an annotations project
	1. Requirements
	2. Configuration

	Chapter 3. Entity Beans
	1. Intro
	2. Mapping with EJB3/JPA Annotations
	2.1. Declaring an entity bean
	2.1.1. Defining the table
	2.1.2. Versioning for optimistic locking

	2.2. Mapping simple properties
	2.2.1. Declaring basic property mappings
	2.2.2. Declaring column attributes
	2.2.3. Embedded objects (aka components)
	2.2.4. Non-annotated property defaults

	2.. Mapping identifier properties
	2.4. Mapping inheritance
	2.4.1. Table per class
	2.4.2. Single table per class hierarchy
	2.4.3. Joined subclasses
	2.4.4. Inherit properties from superclasses

	2.5. Mapping entity bean associations/relationships
	2.5.1. One-to-one
	2.5.2. Many-to-one
	2.5.3. Collections
	2.5.3.1. Overview
	2.5.3.2. One-to-many
	2.5.3.2.1. Bidirectional
	2.5.3.2.2. Unidirectional
	2.5.3.2.3. Unidirectional with join table
	2.5.3.2.4. Defaults

	2.5.3.3. Many-to-many
	2.5.3.3.1. Definition
	2.5.3.3.2. Default values

	2.5.4. Transitive persistence with cascading
	2.5.5. Association fetching

	2.6. Mapping composite primary and foreign keys
	2.7. Mapping secondary tables

	3. Mapping Queries
	3.Mapping JPAQL/HQL queries. Mapping JPAQL/HQL queries
	3.2. Mapping native queries

	4. Hibernate Annotation Extensions
	4.1. Entity
	4.Identifier. Identifier
	4.3. Property
	4.3.1. Access type
	4.3.2. Formula
	4.3.3. Type
	4.3.4. Index
	4.3.5. @Parent
	4.3.6. Generated properties
	4.3.7. @Target

	4.4. Inheritance
	4.5. Single Association related annotations
	4.5.Lazy options and fetching modes. Lazy options and fetching modes

	4.6. Collection related annotations
	4.6.1. Enhance collection settings
	4.6.2. Extra collection types
	4.6.2.1. List
	4.6.2.2. Map
	4.6.2.3. Bidirectional association with indexed collections
	4.6.2.4. Bag with primary key
	4.6.2.5. Collection of element or composite elements

	4.7. Cache
	4.8. Filters
	4.9. Queries
	4.10. Custom SQL for CRUD operations

	Chapter Overriding metadata through XML. Overriding metadata through XML
	1. Principles
	1.1. Global level metadata
	1.2. Entity level metadata
	1.3. Property level metadata
	1.4. Association level metadata

	Chapter 5. Hibernate Validator
	1. Constraints
	1.1. What is a constraint?
	1.2. Built in constraints
	1.3. Error messages
	1.4. Writing your own constraints
	1.5. Annotating your domain model

	2. Using the Validator framework
	2.1. Database schema-level validation
	2.2. Hibernate event-based validation
	2.3. Application-level validation
	2.4. Validation informations

	Chapter 6. Hibernate Search: Apache Lucene™ Integration
	1. Architecture
	2. Configuration
	2.1. Directory configuration
	2.2. Enabling automatic indexing

	3. Mapping entities to the index structure
	4. Property/Field Bridge
	4.1. Built-in bridges
	4.2. Custom Bridge
	4.2.1. StringBridge
	4.2.2. FieldBridge

	5. Querying
	6. Indexing

