
JBoss SOA Platform 4.3

JBPM Reference Guide
Your guide to using JBoss jBPM with
the JBoss Enterprise SOA Platform

JBPM Reference Guide

JBoss SOA Platform 4.3 JBPM Reference Guide
Your guide to using JBoss jBPM with the JBoss Enterprise SOA
Platform
Edition 1

Copyright © 2008 Red Hat, Inc. This material may only be distributed subject to the terms and
conditions set forth in the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported
License (which is presently available at http://creativecommons.org/licenses/by-nc-sa/3.0/).

Red Hat and the Red Hat "Shadow Man" logo are registered trademarks of Red Hat, Inc. in the United
States and other countries.

All other trademarks referenced herein are the property of their respective owners.

The GPG fingerprint of the security@redhat.com key is:

CA 20 86 86 2B D6 9D FC 65 F6 EC C4 21 91 80 CD DB 42 A6 0E

 1801 Varsity Drive
 Raleigh, NC 27606-2072USAPhone: +1 919 754 3700
 Phone: 888 733 4281
 Fax: +1 919 754 3701
 PO Box 13588Research Triangle Park, NC 27709USA

The JBPM jPDL 3.2 user guide for use with the JBoss SOA Platform 4.3

http://creativecommons.org/licenses/by-nc-sa/3.0/

iii

Preface ix
1. Document Conventions ... ix

1.1. Typographic Conventions ... ix
1.2. Pull-quote Conventions ... x
1.3. Notes and Warnings .. xi

2. We Need Feedback! .. xii

1. Introduction 1
1.1. Overview ... 1
1.2. The jPDL suite ... 1
1.3. The jPDL graphical process designer .. 2
1.4. The jBPM console web application .. 2
1.5. The jBPM core library .. 3
1.6. The JBoss jBPM identity component ... 3
1.7. The JBoss jBPM Job Executor .. 3

2. Tutorial 5
2.1. Hello World example .. 5
2.2. Database example ... 6
2.3. Context example: process variables .. 11
2.4. Task assignment example ... 12
2.5. Custom action example .. 13

3. Graph Oriented Programming 17
3.1. Introduction .. 17

3.1.1. Domain specific languages ... 17
3.1.2. Features of graph based languages .. 18

3.2. Graph Oriented Programming ... 20
3.2.1. The graph structure ... 20
3.2.2. An execution ... 20
3.2.3. A process language ... 22
3.2.4. Actions .. 24
3.2.5. Synchronous execution .. 25
3.2.6. Code example ... 25

3.3. Extending Graph Oriented Programming .. 25
3.3.1. Process variables .. 25
3.3.2. Concurrent executions ... 26
3.3.3. Process composition .. 27
3.3.4. Asynchronous continuations ... 28
3.3.5. Persistence and Transactions ... 29
3.3.6. Services and environment .. 29

3.4. Considerations ... 30
3.4.1. Runtime data isolation ... 30
3.4.2. GOP compared to other techniques .. 30
3.4.3. GOP compared to petri nets .. 30

3.5. Application domains ... 31
3.5.1. Business Process Management (BPM) ... 31
3.5.2. Service orchestration ... 33

3.6. Embedding graph based languages .. 34
3.7. Market ... 34

3.7.1. The ultimate process language ... 34
3.7.2. Fragmentation ... 34

JBPM Reference Guide

iv

4. Deployment 37
4.1. jBPM libraries ... 37
4.2. Java runtime environment ... 37
4.3. Third party libraries .. 37
4.4. Web application .. 38
4.5. Enterprise archive .. 38
4.6. The jPDL Runtime and Suite .. 42

4.6.1. The runtime ... 42
4.6.2. The suite ... 42
4.6.3. Configuring the logs in the suite server ... 42
4.6.4. Debugging a process in the suite ... 43

5. Configuration 45
5.1. Customizing factories ... 47
5.2. Configuration properties .. 48
5.3. Other configuration files .. 48

5.3.1. Hibernate Configuration xml file .. 48
5.3.2. Hibernate queries configuration file ... 48
5.3.3. Node types configuration file .. 48
5.3.4. Action types configuration file ... 48
5.3.5. Business calendar configuration file .. 49
5.3.6. Variable mapping configuration file .. 49
5.3.7. Converter configuration file ... 49
5.3.8. Default modules configuration file ... 49
5.3.9. Process archive parsers configuration file .. 49

5.4. jBPM debug logs in JBoss .. 49
5.5. Logging of optimistic concurrency exceptions ... 49
5.6. Object factory ... 50

6. Persistence 53
6.1. The persistence API ... 53

6.1.1. Relation to the configuration framework .. 53
6.1.2. Convenience methods on JbpmContext .. 54
6.1.3. Managed transactions .. 57
6.1.4. Injecting the hibernate session ... 57
6.1.5. Injecting resources programmatically .. 58
6.1.6. Advanced API usage ... 58

6.2. Configuring the persistence service ... 58
6.2.1. The DbPersistenceServiceFactory .. 58
6.2.2. The hibernate session factory ... 59
6.2.3. Configuring a c3po connection pool .. 60
6.2.4. Configuring a ehcache cache provider .. 60

6.3. Hibernate transactions .. 60
6.4. JTA transactions ... 61
6.5. Customizing queries ... 62
6.6. Database compatibility .. 62

6.6.1. Isolation level of the JDBC connection .. 62
6.6.2. Changing the jBPM DB .. 62
6.6.3. The jBPM DB schema ... 62
6.6.4. Known Issues .. 63

6.7. Combining your hibernate classes ... 63
6.8. Customizing the jBPM hibernate mapping files ... 63

v

6.9. Second level cache .. 64

7. The jBPM Database 65
7.1. Switching the Database Backend .. 65

7.1.1. Isolation level .. 65
7.1.2. Installing the PostgreSQL Database Manager .. 65
7.1.3. Installing the MySQL Database Manager .. 68
7.1.4. Creating the JBoss jBPM Database with your new PostGreSQL or MySQL 69
7.1.5. Last Steps ... 74
7.1.6. Update the JBoss jBPM Server Configuration .. 74

7.2. Database upgrades .. 76
7.3. Starting hsqldb manager on JBoss .. 78

8. Process Modeling 83
8.1. Overview .. 83
8.2. Process graph .. 83
8.3. Nodes .. 85

8.3.1. Node responsibilities .. 85
8.3.2. Nodetype task-node ... 86
8.3.3. Nodetype state .. 86
8.3.4. Nodetype decision ... 86
8.3.5. Nodetype fork .. 87
8.3.6. Nodetype join .. 87
8.3.7. Nodetype node .. 87

8.4. Transitions ... 87
8.5. Actions ... 88

8.5.1. Action configuration ... 89
8.5.2. Action references ... 89
8.5.3. Events ... 89
8.5.4. Event propagation .. 89
8.5.5. Script .. 90
8.5.6. Custom events .. 91

8.6. Superstates .. 91
8.6.1. Superstate transitions .. 91
8.6.2. Superstate events .. 91
8.6.3. Hierarchical names .. 91

8.7. Exception handling ... 92
8.8. Process composition ... 92
8.9. Custom node behavior .. 93
8.10. Graph execution ... 94
8.11. Transaction demarcation ... 95

9. Context 99
9.1. Accessing variables .. 99
9.2. Variable lifetime .. 100
9.3. Variable persistence .. 100
9.4. Variables scopes .. 100

9.4.1. Variables overloading ... 100
9.4.2. Variables overriding .. 101
9.4.3. Task instance variable scope .. 101

9.5. Transient variables ... 101
9.6. Customizing variable persistence ... 101

JBPM Reference Guide

vi

10. Task management 105
10.1. Tasks ... 105
10.2. Task instances .. 105

10.2.1. Task instance life-cycle ... 105
10.2.2. Task instances and graph execution .. 106

10.3. Assignment .. 107
10.3.1. Assignment interfaces .. 107
10.3.2. The assignment data model ... 108
10.3.3. The personal task list ... 108
10.3.4. The group task list ... 108

10.4. Task instance variables ... 109
10.5. Task controllers .. 109
10.6. Swimlanes .. 111
10.7. Swimlane in start task ... 111
10.8. Task events .. 112
10.9. Task timers ... 112
10.10. Customizing task instances ... 113
10.11. The identity component ... 113

10.11.1. The identity model .. 114
10.11.2. Assignment expressions ... 114
10.11.3. Removing the identity component .. 115

11. Document management 117

12. Scheduler 119
12.1. Timers .. 119
12.2. Scheduler deployment ... 119

13. Asynchronous continuations 121
13.1. The concept ... 121
13.2. An example .. 121
13.3. The command executor .. 124
13.4. jBPM's built-in asynchronous messaging .. 125
13.5. JMS for asynchronous architectures .. 126
13.6. Future directions ... 126

14. Business calendar 127
14.1. Duedate ... 127

14.1.1. Duration .. 127
14.1.2. Base date .. 127
14.1.3. Examples .. 127

14.2. Calendar configuration .. 128

15. Email support 129
15.1. Mail in jPDL ... 129

15.1.1. Mail action ... 129
15.1.2. Mail node .. 130
15.1.3. Task assign mails .. 130
15.1.4. Task reminder mails ... 130

15.2. Expressions in mails ... 130
15.3. Specifying mail recipients .. 131

15.3.1. Multiple recipients .. 131
15.3.2. Address resolving .. 131

15.4. Mail templates .. 131

vii

15.5. Mail server configuration ... 132
15.6. From address configuration ... 133
15.7. Customizing mail support .. 133
15.8. Mail server ... 133

16. Logging 135
16.1. Creation of logs .. 135
16.2. Log configurations .. 136
16.3. Log retrieval ... 137
16.4. Database warehousing .. 137

17. jBPM Process Definition Language (JPDL) 139
17.1. The process archive ... 139

17.1.1. Deploying a process archive ... 139
17.1.2. Process versioning ... 140
17.1.3. Changing deployed process definitions .. 140
17.1.4. Migrating process instances .. 140
17.1.5. Process conversion .. 141

17.2. Delegation .. 141
17.2.1. The jBPM class loader ... 141
17.2.2. The process class loader ... 141
17.2.3. Configuration of delegations ... 142

17.3. Expressions .. 143
17.4. jPDL xml schema ... 144

17.4.1. Validation ... 144
17.4.2. process-definition ... 144
17.4.3. node .. 145
17.4.4. common node elements ... 146
17.4.5. start-state .. 146
17.4.6. end-state ... 147
17.4.7. state .. 147
17.4.8. task-node .. 147
17.4.9. process-state ... 148
17.4.10. super-state ... 148
17.4.11. fork .. 148
17.4.12. join .. 149
17.4.13. decision ... 149
17.4.14. event ... 149
17.4.15. transition .. 150
17.4.16. action .. 150
17.4.17. script ... 151
17.4.18. expression ... 152
17.4.19. variable .. 152
17.4.20. handler .. 152
17.4.21. timer .. 153
17.4.22. create-timer .. 154
17.4.23. cancel-timer ... 154
17.4.24. task ... 154
17.4.25. swimlane ... 155
17.4.26. assignment .. 156
17.4.27. controller .. 157
17.4.28. sub-process ... 157

JBPM Reference Guide

viii

17.4.29. condition .. 158
17.4.30. exception-handler ... 158

18. Security 159
18.1. TODOS .. 159
18.2. Authentication ... 159
18.3. Authorization .. 159

19. Test Driven Development for Workflow 161
19.1. Introducing TDD for workflow .. 161
19.2. XML sources .. 162

19.2.1. Parsing a process archive .. 162
19.2.2. Parsing an xml file ... 163
19.2.3. Parsing an xml String ... 163

19.3. Testing sub processes .. 163

20. Pluggable architecture 165

A. Revision History 167

Index 169

ix

Preface

1. Document Conventions
This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts1 set. The
Liberation Fonts set is also used in HTML editions if the set is installed on your system. If not,
alternative but equivalent typefaces are displayed. Note: Red Hat Enterprise Linux 5 and later includes
the Liberation Fonts set by default.

1.1. Typographic Conventions
Four typographic conventions are used to call attention to specific words and phrases. These
conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to highlight
key caps and key-combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current
working directory, enter the cat my_next_bestselling_novel command at the
shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a key cap, all presented in Mono-spaced Bold
and all distinguishable thanks to context.

Key-combinations can be distinguished from key caps by the hyphen connecting each part of a key-
combination. For example:

Press Enter to execute the command.

Press Ctrl-Alt-F1 to switch to the first virtual terminal. Press Ctrl-Alt-F7 to return
to your X-Windows session.

The first sentence highlights the particular key cap to press. The second highlights two sets of three
key caps, each set pressed simultaneously.

If source code is discussed, class names, methods, functions, variable names and returned values
mentioned within a paragraph will be presented as above, in Mono-spaced Bold. For example:

File-related classes include filesystem for file systems, file for files, and dir for
directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialogue
box text; labelled buttons; check-box and radio button labels; menu titles and sub-menu titles. For
example:

1 https://fedorahosted.org/liberation-fonts/

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

x

Choose System > Preferences > Mouse from the main menu bar to launch Mouse
Preferences. In the Buttons tab, click the Left-handed mouse check box and click
Close to switch the primary mouse button from the left to the right (making the mouse
suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications > Accessories
> Character Map from the main menu bar. Next, choose Search > Find… from the
Character Map menu bar, type the name of the character in the Search field and click
Next. The character you sought will be highlighted in the Character Table. Double-
click this highlighted character to place it in the Text to copy field and then click the
Copy button. Now switch back to your document and choose Edit > Paste from the
gedit menu bar.

The above text includes application names; system-wide menu names and items; application-specific
menu names; and buttons and text found within a GUI interface, all presented in Proportional Bold and
all distinguishable by context.

Note the > shorthand used to indicate traversal through a menu and its sub-menus. This is to avoid
the difficult-to-follow 'Select Mouse from the Preferences sub-menu in the System menu of the main
menu bar' approach.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether Mono-spaced Bold or Proportional Bold, the addition of Italics indicates replaceable or
variable text. Italics denotes text you do not input literally or displayed text that changes depending on
circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name at
a shell prompt. If the remote machine is example.com and your username on that
machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file
system. For example, to remount the /home file system, the command is mount -o
remount /home.

To see the version of a currently installed package, use the rpm -q package
command. It will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version and
release. Each word is a placeholder, either for text you enter when issuing a command or for text
displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and
important term. For example:

When the Apache HTTP Server accepts requests, it dispatches child processes
or threads to handle them. This group of child processes or threads is known as
a server-pool. Under Apache HTTP Server 2.0, the responsibility for creating and
maintaining these server-pools has been abstracted to a group of modules called
Multi-Processing Modules (MPMs). Unlike other modules, only one module from the
MPM group can be loaded by the Apache HTTP Server.

1.2. Pull-quote Conventions
Two, commonly multi-line, data types are set off visually from the surrounding text.

Notes and Warnings

xi

Output sent to a terminal is set in Mono-spaced Roman and presented thus:

books Desktop documentation drafts mss photos stuff svn
books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in Mono-spaced Roman but are presented and highlighted as
follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient
{
 public static void main(String args[])
 throws Exception
 {
 InitialContext iniCtx = new InitialContext();
 Object ref = iniCtx.lookup("EchoBean");
 EchoHome home = (EchoHome) ref;
 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
 }

}

1.3. Notes and Warnings
Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

Note
A note is a tip or shortcut or alternative approach to the task at hand. Ignoring a note
should have no negative consequences, but you might miss out on a trick that makes
your life easier.

Important
Important boxes detail things that are easily missed: configuration changes that only
apply to the current session, or services that need restarting before an update will
apply. Ignoring Important boxes won't cause data loss but may cause irritation and
frustration.

Preface

xii

Warning
A Warning should not be ignored. Ignoring warnings will most likely cause data loss.

2. We Need Feedback!
If you find a typographical error in this manual, or if you have thought of a way to make this manual
better, we would love to hear from you! Please submit a report in Bugzilla: http://bugzilla.redhat.com/
bugzilla/ against the product JBoss_SOA_Platform.

When submitting a bug report, be sure to mention the manual's identifier: JBPM_Reference_Manual

If you have a suggestion for improving the documentation, try to be as specific as possible when
describing it. If you have found an error, please include the section number and some of the
surrounding text so we can find it easily.

http://bugzilla.redhat.com/bugzilla/
http://bugzilla.redhat.com/bugzilla/

Chapter 1.

1

Introduction
JBoss jBPM is a flexible, extensible framework for process languages. jPDL is one process language
that is build on top of that common framework. It is an intuitive process language to express business
processes graphically in terms of tasks, wait states for asynchronous communication, timers,
automated actions,... To bind these operations together, jPDL has the most powerful and extensible
control flow mechanism.

jPDL has minimal dependencies and can be used as easy as using a java library. But it can also
be used in environments where extreme throughput is crucial by deploying it on a J2EE clustered
application server.

jPDL can be configured with any database and it can be deployed on any application server.

1.1. Overview
The core workflow and BPM functionality is packaged as a simple java library. This library includes a
service to manage and execute processes in the jPDL database.

Figure 1.1. Overview of the jPDL components

1.2. The jPDL suite
The suite is a download that contains all the jBPM components bundled in one easy download. The
download includes:

• config, configuration files for a standard java environment

• db, SQL scripts for DB creation and compatibility information

Chapter 1. Introduction

2

• designer, the eclipse plugin to author jPDL processes and installation scripts (this is not part of the
plain jpdl download) See also Section 1.3, “The jPDL graphical process designer”.

• doc, userguide and javadocs

• examples

• lib, libraries on which jbpm depends. For more information on this see Section 4.3, “Third party
libraries”

• server, a pre-configured jboss that contains jbpm inside the console web application (this is not part
of the plain jpdl download)

• src, the jbpm and identity component java sources

The pre-configured JBoss application server has the following components installed :

• The jBPM web console, packaged as a web archive. That console can be used by process
participants as well as jBPM administrators.

• The Job Executor for the execution of timers and messages. The job executor is a part of the
console web application. There is a servlet that launches the Job Executor. The Job Executor
spawns a thread pool for monitoring and executing timers and asynchronous messages.

• The jBPM tables, in the database: the default hypersonic database that contains the jBPM tables
and already contains a process.

• One example process is already deployed into the jBPM database.

• Identity component. The identity component libraries are part of the console web application. The
tables of the identity component are available in the database (those are the tables that start with
JBPM_ID_...)

1.3. The jPDL graphical process designer
jPDL also includes a graphical designer tool. The designer is a graphical tool for authoring business
processes. It's an eclipse plugin.

The most important feature of the graphical designer tool is that it includes support for both the
business analyst as well as the technical developer. This enables a smooth transition from business
process modeling to the practical implementation.

The plugin is available as a local update site (plain zip file) for installation via the standard eclipse
software updates mechanism. And there is also a feature package that you can unzip in your eclipse
home directory.

1.4. The jBPM console web application
The jBPM console web application serves two purposes. First, it serves as a central user interface for
interacting with runtime tasks generated by the process executions. Secondly, it is an administration
and monitoring console that allows to inspect and manipulate runtime instances. The third functionality
is Business Activity Monitoring. These are statistics about process executions. This is useful
information for managers to find bottlenecks or other kinds of optimizations.

The jBPM core library

3

1.5. The jBPM core library
The JBoss jBPM core component is the plain java (J2SE) library for managing process definitions and
the runtime environment for execution of process instances.

JBoss jBPM is a java library. As a consequence, it can be used in any java environment like e.g. a web
application, a swing application, an EJB, a webservice,... The jBPM library can also be packaged and
exposed as a stateless session EJB. This allows clustered deployment and scalability for extreme high
throughput. The stateless session EJB will be written against the J2EE 1.3 specifications so that it is
deployable on any application server.

Depending on the functionality that you use, the library jbpm-jpdl.jar has some dependencies
on other third party libraries such as e.g. hibernate, dom4j and others. We have done great efforts
to require only those dependent libraries that you actually use. The dependencies are further
documented in Chapter 4, Deployment

For its persistence, jBPM uses hibernate internally. Apart from traditional O/R mapping, hibernate also
resolves the SQL dialect differences between the different databases, making jBPM portable across all
current databases.

The JBoss jBPM API can be accessed from any custom java software in your project, like e.g. your
web application, your EJB's, your web service components, your message driven beans or any other
java component.

1.6. The JBoss jBPM identity component
JBoss jBPM can integrate with any company directory that contains users and other organizational
information. But for projects where no organizational information component is readily available, JBoss
jBPM includes this component. The model used in the identity component is richer than the traditional
servlet-, ejb- and portlet models.

For more information, see Section 10.11, “The identity component”

1.7. The JBoss jBPM Job Executor
The JBoss jBPM Job Scheduler is a component for monitoring and executing jobs in a standard Java
environment. Jobs are used for timers and asynchronous messages. In an enterprise environment,
JMS and the EJB TimerService can be used for that purpose. But the Job Executor can be used in a
standard environment.

The Job Executor component is packaged in the core jbpm-jpdl library, but it needs to be deployed in
one of the following environments: either you have to configure the JbpmThreadsServlet to start the
Job Executor or you have to start up a separate JVM and run the Job Executor thread in there.

4

Chapter 2.

5

Tutorial
This tutorial will show you basic process constructs in jpdl and the usage of the API for managing the
runtime executions.

The format of this tutorial is explaining a set of examples. The examples focus on a particular topic
and contain extensive comments. The examples can also be found in the jBPM download package in
the directory src/java.examples.

The best way to learn is to create a project and experiment by creating variations on the examples
given.

To get started for eclipse users: download jbpm-3.0-[version].zip and unzip it to your system. Then do
"File" --> "Import..." --> "Existing Project into Workspace". Click "Next" Then, browse for the jBPM root
directory and click "Finish". Now you have a jbpm.3 project in your workspace. You can now find the
examples of the tutorial in src/java.examples/.... When you open these examples, you can run
them with "Run" --> "Run As..." --> "JUnit Test"

jBPM includes a graphical designer tool for authoring the XML that is shown in the examples. You
don't need the graphical designer tool to complete this tutorial.

State machines can be

2.1. Hello World example
A process definition is a directed graph, made up of nodes and transitions. The hello world process
has 3 nodes. To see how the pieces fit together, we're going to start with a simple process without the
use of the designer tool. The following picture shows the graphical representation of the hello world
process:

Figure 2.1. The hello world process graph

public void testHelloWorldProcess() {
// This method shows a process definition and one execution
// of the process definition. The process definition has
// 3 nodes: an unnamed start-state, a state 's' and an
// end-state named 'end'.
// The next line parses a piece of xml text into a
// ProcessDefinition. A ProcessDefinition is the formal
// description of a process represented as a java object.

Chapter 2. Tutorial

6

ProcessDefinition processDefinition = ProcessDefinition.parseXmlString(
 "<process-definition>" +
 " <start-state>" +
 " <transition to='s' />" +
 " </start-state>" +
 " <state name='s'>" +
 " <transition to='end' />" +
 " </state>" +
 " <end-state name='end' />" +
 "</process-definition>"
);

 // The next line creates one execution of the process definition.
 // After construction, the process execution has one main path
 // of execution (=the root token) that is positioned in the
 // start-state.
 ProcessInstance processInstance =
 new ProcessInstance(processDefinition);

 // After construction, the process execution has one main path
 // of execution (=the root token).
 Token token = processInstance.getRootToken();

 // Also after construction, the main path of execution is positioned
 // in the start-state of the process definition.
 assertSame(processDefinition.getStartState(), token.getNode());

 // Let's start the process execution, leaving the start-state
 // over its default transition.
 token.signal();
 // The signal method will block until the process execution
 // enters a wait state.

 // The process execution will have entered the first wait state
 // in state 's'. So the main path of execution is now
 // positioned in state 's'
 assertSame(processDefinition.getNode("s"), token.getNode());

 // Let's send another signal. This will resume execution by
 // leaving the state 's' over its default transition.
 token.signal();
 // Now the signal method returned because the process instance
 // has arrived in the end-state.

 assertSame(processDefinition.getNode("end"), token.getNode());
}

2.2. Database example
One of the basic features of jBPM is the ability to persist executions of processes in the database
when they are in a wait state. The next example will show you how to store a process instance in the

Database example

7

jBPM database. The example also suggests a context in which this might occur. Separate methods
are created for different pieces of user code. E.g. an piece of user code in a web application starts a
process and persists the execution in the database. Later, a message driven bean loads the process
instance from the database and resumes its execution.

More about the jBPM persistence can be found in Chapter 6, Persistence.

public class HelloWorldDbTest extends TestCase {

 static JbpmConfiguration jbpmConfiguration = null;

 static {
 // An example configuration file such as this can be found in
 // 'src/config.files'. Typically the configuration information is in
 the
 // resource file 'jbpm.cfg.xml', but here we pass in the
 configuration
 // information as an XML string.

 // First we create a JbpmConfiguration statically. One
 JbpmConfiguration
 // can be used for all threads in the system, that is why we can
 safely
 // make it static.

 jbpmConfiguration = JbpmConfiguration.parseXmlString(
 "<jbpm-configuration>" +

 // A jbpm-context mechanism separates the jbpm core
 // engine from the services that jbpm uses from
 // the environment.

 " <jbpm-context>" +
 " <service name='persistence' " +
 "
 factory='org.jbpm.persistence.db.DbPersistenceServiceFactory' />" +
 " </jbpm-context>" +

 // Also all the resource files that are used by jbpm are
 // referenced from the jbpm.cfg.xml

 " <string name='resource.hibernate.cfg.xml' " +
 " value='hibernate.cfg.xml' />" +
 " <string name='resource.business.calendar' " +
 " value='org/jbpm/calendar/
jbpm.business.calendar.properties' />" +
 " <string name='resource.default.modules' " +
 " value='org/jbpm/graph/def/
jbpm.default.modules.properties' />" +
 " <string name='resource.converter' " +

Chapter 2. Tutorial

8

 " value='org/jbpm/db/hibernate/
jbpm.converter.properties' />" +
 " <string name='resource.action.types' " +
 " value='org/jbpm/graph/action/action.types.xml' />" +
 " <string name='resource.node.types' " +
 " value='org/jbpm/graph/node/node.types.xml' />" +
 " <string name='resource.varmapping' " +
 " value='org/jbpm/context/exe/jbpm.varmapping.xml' />" +
 "</jbpm-configuration>"
);
 }

 public void setUp() {
 jbpmConfiguration.createSchema();
 }

 public void tearDown() {
 jbpmConfiguration.dropSchema();
 }

 public void testSimplePersistence() {
 // Between the 3 method calls below, all data is passed via the
 // database. Here, in this unit test, these 3 methods are executed
 // right after each other because we want to test a complete process
 // scenario. But in reality, these methods represent different
 // requests to a server.

 // Since we start with a clean, empty in-memory database, we have to
 // deploy the process first. In reality, this is done once by the
 // process developer.
 deployProcessDefinition();

 // Suppose we want to start a process instance (=process execution)
 // when a user submits a form in a web application...
 processInstanceIsCreatedWhenUserSubmitsWebappForm();

 // Then, later, upon the arrival of an asynchronous message the
 // execution must continue.
 theProcessInstanceContinuesWhenAnAsyncMessageIsReceived();
 }

 public void deployProcessDefinition() {
 // This test shows a process definition and one execution
 // of the process definition. The process definition has
 // 3 nodes: an unnamed start-state, a state 's' and an
 // end-state named 'end'.
 ProcessDefinition processDefinition =
 ProcessDefinition.parseXmlString(
 "<process-definition name='hello world'>" +
 " <start-state name='start'>" +
 " <transition to='s' />" +

Database example

9

 " </start-state>" +
 " <state name='s'>" +
 " <transition to='end' />" +
 " </state>" +
 " <end-state name='end' />" +
 "</process-definition>"
);

 // Lookup the POJO persistence context-builder that is configured
 above
 JbpmContext jbpmContext = jbpmConfiguration.createJbpmContext();
 try {
 // Deploy the process definition in the database
 jbpmContext.deployProcessDefinition(processDefinition);

 } finally {
 // Tear down the POJO persistence context.
 // This includes flush the SQL for inserting the process definition

 // to the database.
 jbpmContext.close();
 }
 }

 public void processInstanceIsCreatedWhenUserSubmitsWebappForm() {
 // The code in this method could be inside a struts-action
 // or a JSF managed bean.

 // Lookup the POJO persistence context-builder that is configured
 above
 JbpmContext jbpmContext = jbpmConfiguration.createJbpmContext();
 try {

 GraphSession graphSession = jbpmContext.getGraphSession();

 ProcessDefinition processDefinition =
 graphSession.findLatestProcessDefinition("hello world");

 // With the processDefinition that we retrieved from the database,
 we
 // can create an execution of the process definition just like in
 the
 // hello world example (which was without persistence).
 ProcessInstance processInstance =
 new ProcessInstance(processDefinition);

 Token token = processInstance.getRootToken();
 assertEquals("start", token.getNode().getName());
 // Let's start the process execution
 token.signal();
 // Now the process is in the state 's'.

Chapter 2. Tutorial

10

 assertEquals("s", token.getNode().getName());

 // Now the processInstance is saved in the database. So the
 // current state of the execution of the process is stored in the
 // database.
 jbpmContext.save(processInstance);
 // The method below will get the process instance back out
 // of the database and resume execution by providing another
 // external signal.

 } finally {
 // Tear down the POJO persistence context.
 jbpmContext.close();
 }
 }

 public void theProcessInstanceContinuesWhenAnAsyncMessageIsReceived() {
 // The code in this method could be the content of a message driven
 bean.

 // Lookup the POJO persistence context-builder that is configured
 above
 JbpmContext jbpmContext = jbpmConfiguration.createJbpmContext();
 try {

 GraphSession graphSession = jbpmContext.getGraphSession();
 // First, we need to get the process instance back out of the
 database.
 // There are several options to know what process instance we are
 dealing
 // with here. The easiest in this simple test case is just to look
 for
 // the full list of process instances. That should give us only
 one
 // result. So let's look up the process definition.

 ProcessDefinition processDefinition =
 graphSession.findLatestProcessDefinition("hello world");

 // Now, we search for all process instances of this process
 definition.
 List processInstances =
 graphSession.findProcessInstances(processDefinition.getId());

 // Because we know that in the context of this unit test, there is
 // only one execution. In real life, the processInstanceId can be
 // extracted from the content of the message that arrived or from
 // the user making a choice.
 ProcessInstance processInstance =
 (ProcessInstance) processInstances.get(
<xslthl:number>0</xslthl:number>

Context example: process variables

11

);

 // Now we can continue the execution. Note that the
 processInstance
 // delegates signals to the main path of execution (=the root
 token).
 processInstance.signal();

 // After this signal, we know the process execution should have
 // arrived in the end-state.
 assertTrue(processInstance.hasEnded());

 // Now we can update the state of the execution in the database
 jbpmContext.save(processInstance);

 } finally {
 // Tear down the POJO persistence context.
 jbpmContext.close();
 }
 }
}

2.3. Context example: process variables
The process variables contain the context information during process executions. The process
variables are similar to a java.util.Map that maps variable names to values, which are java
objects. The process variables are persisted as a part of the process instance. To keep things simple,
in this example we only show the API to work with variables, without persistence.

More information about variables can be found in Chapter 9, Context

// This example also starts from the hello world process.
// This time even without modification.
ProcessDefinition processDefinition = ProcessDefinition.parseXmlString(
 "<process-definition>" +
 " <start-state>" +
 " <transition to='s' />" +
 " </start-state>" +
 " <state name='s'>" +
 " <transition to='end' />" +
 " </state>" +
 " <end-state name='end' />" +
 "</process-definition>"
);

ProcessInstance processInstance =
 new ProcessInstance(processDefinition);

// Fetch the context instance from the process instance
// for working with the process variables.
ContextInstance contextInstance =

Chapter 2. Tutorial

12

 processInstance.getContextInstance();

// Before the process has left the start-state,
// we are going to set some process variables in the
// context of the process instance.
contextInstance.setVariable("amount", new Integer(
<xslthl:number>500</xslthl:number>
));
contextInstance.setVariable("reason", "i met my deadline");

// From now on, these variables are associated with the
// process instance. The process variables are now accessible
// by user code via the API shown here, but also in the actions
// and node implementations. The process variables are also
// stored into the database as a part of the process instance.

processInstance.signal();

// The variables are accessible via the contextInstance.

assertEquals(new Integer(
<xslthl:number>500</xslthl:number>
),
 contextInstance.getVariable("amount"));
assertEquals("i met my deadline",
 contextInstance.getVariable("reason"));

2.4. Task assignment example
In the next example we'll show how you can assign a task to a user. Because of the separation
between the jBPM workflow engine and the organizational model, an expression language for
calculating actors would always be too limited. Therefore, you have to specify an implementation of
AssignmentHandler for including the calculation of actors for tasks.

public void testTaskAssignment() {
 // The process shown below is based on the hello world process.
 // The state node is replaced by a task-node. The task-node
 // is a node in JPDL that represents a wait state and generates
 // task(s) to be completed before the process can continue to
 // execute.
 ProcessDefinition processDefinition = ProcessDefinition.parseXmlString(
 "<process-definition name='the baby process'>" +
 " <start-state>" +
 " <transition name='baby cries' to='t' />" +
 " </start-state>" +
 " <task-node name='t'>" +
 " <task name='change nappy'>" +
 " <assignment
 class='org.jbpm.tutorial.taskmgmt.NappyAssignmentHandler' />" +
 " </task>" +
 " <transition to='end' />" +

Custom action example

13

 " </task-node>" +
 " <end-state name='end' />" +
 "</process-definition>"
);

 // Create an execution of the process definition.
 ProcessInstance processInstance =
 new ProcessInstance(processDefinition);
 Token token = processInstance.getRootToken();

 // Let's start the process execution, leaving the start-state
 // over its default transition.
 token.signal();
 // The signal method will block until the process execution
 // enters a wait state. In this case, that is the task-node.
 assertSame(processDefinition.getNode("t"), token.getNode());

 // When execution arrived in the task-node, a task 'change nappy'
 // was created and the NappyAssignmentHandler was called to determine
 // to whom the task should be assigned. The NappyAssignmentHandler
 // returned 'papa'.

 // In a real environment, the tasks would be fetched from the
 // database with the methods in the org.jbpm.db.TaskMgmtSession.
 // Since we don't want to include the persistence complexity in
 // this example, we just take the first task-instance of this
 // process instance (we know there is only one in this test
 // scenario).
 TaskInstance taskInstance = (TaskInstance)
 processInstance
 .getTaskMgmtInstance()
 .getTaskInstances()
 .iterator().next();

 // Now, we check if the taskInstance was actually assigned to 'papa'.
 assertEquals("papa", taskInstance.getActorId());

 // Now we suppose that 'papa' has done his duties and mark the task
 // as done.
 taskInstance.end();
 // Since this was the last (only) task to do, the completion of this
 // task triggered the continuation of the process instance execution.

 assertSame(processDefinition.getNode("end"), token.getNode());
}

2.5. Custom action example
Actions are a mechanism to bind your custom java code into a jBPM process. Actions can be
associated with its own nodes (if they are relevant in the graphical representation of the process). Or
actions can be placed on events like e.g. taking a transition, leaving a node or entering a node. In that

Chapter 2. Tutorial

14

case, the actions are not part of the graphical representation, but they are executed when execution
fires the events in a runtime process execution.

We'll start with a look at the action implementation that we are going to use in our example :
MyActionHandler. This action handler implementation does not do really spectacular things... it
just sets the boolean variable isExecuted to true. The variable isExecuted is static so it can be
accessed from within the action handler as well as from the action to verify it's value.

More information about actions can be found in Section 8.5, “Actions”

// MyActionHandler represents a class that could execute
// some user code during the execution of a jBPM process.
public class MyActionHandler implements ActionHandler {

 // Before each test (in the setUp), the isExecuted member
 // will be set to false.
 public static boolean isExecuted = false;

 // The action will set the isExecuted to true so the
 // unit test will be able to show when the action
 // is being executed.
 public void execute(ExecutionContext executionContext) {
 isExecuted = true;
 }
}

As mentioned before, before each test, we'll set the static field MyActionHandler.isExecuted to
false;

 // Each test will start with setting the static isExecuted
 // member of MyActionHandler to false.
 public void setUp() {
 MyActionHandler.isExecuted = false;
 }

We'll start with an action on a transition.

public void testTransitionAction() {
 // The next process is a variant of the hello world process.
 // We have added an action on the transition from state 's'
 // to the end-state. The purpose of this test is to show
 // how easy it is to integrate java code in a jBPM process.
 ProcessDefinition processDefinition =
 ProcessDefinition.parseXmlString(
 "<process-definition>" +
 " <start-state>" +
 " <transition to='s' />" +
 " </start-state>" +
 " <state name='s'>" +
 " <transition to='end'>" +

Custom action example

15

 " <action class='org.jbpm.tutorial.action.MyActionHandler' />"
 +
 " </transition>" +
 " </state>" +
 " <end-state name='end' />" +
 "</process-definition>"
);

 // Let's start a new execution for the process definition.
 ProcessInstance processInstance =
 new ProcessInstance(processDefinition);

 // The next signal will cause the execution to leave the start
 // state and enter the state 's'
 processInstance.signal();

 // Here we show that MyActionHandler was not yet executed.
 assertFalse(MyActionHandler.isExecuted);
 // ... and that the main path of execution is positioned in
 // the state 's'
 assertSame(processDefinition.getNode("s"),
 processInstance.getRootToken().getNode());

 // The next signal will trigger the execution of the root
 // token. The token will take the transition with the
 // action and the action will be executed during the
 // call to the signal method.
 processInstance.signal();

 // Here we can see that MyActionHandler was executed during
 // the call to the signal method.
 assertTrue(MyActionHandler.isExecuted);
 }

The next example shows the same action, but now the actions are placed on the enter-node and
leave-node events respectively. Note that a node has more than one event type in contrast to a
transition, which has only one event. Therefore actions placed on a node should be put in an event
element.

ProcessDefinition processDefinition = ProcessDefinition.parseXmlString(
 "<process-definition>" +
 " <start-state>" +
 " <transition to='s' />" +
 " </start-state>" +
 " <state name='s'>" +
 " <event type='node-enter'>" +
 " <action class='org.jbpm.tutorial.action.MyActionHandler' />" +
 " </event>" +
 " <event type='node-leave'>" +
 " <action class='org.jbpm.tutorial.action.MyActionHandler' />" +
 " </event>" +

Chapter 2. Tutorial

16

 " <transition to='end'/>" +
 " </state>" +
 " <end-state name='end' />" +
 "</process-definition>"
);

ProcessInstance processInstance =
 new ProcessInstance(processDefinition);

assertFalse(MyActionHandler.isExecuted);
// The next signal will cause the execution to leave the start
// state and enter the state 's'. So the state 's' is entered
// and hence the action is executed.
processInstance.signal();
assertTrue(MyActionHandler.isExecuted);

// Let's reset the MyActionHandler.isExecuted
MyActionHandler.isExecuted = false;

// The next signal will trigger execution to leave the
// state 's'. So the action will be executed again.
processInstance.signal();
// Voila.
assertTrue(MyActionHandler.isExecuted);

Chapter 3.

17

Graph Oriented Programming

3.1. Introduction
This chapter can be considered the manifest for JBoss jBPM. It gives a complete overview of the
vision and ideas behind current strategy and future directions of the JBoss jBPM project. This vision
significantly differs from the traditional approach.

First of all, we believe in multiple process languages. There are different environments and different
purposes that require a their own specific process language.

Secondly, Graph Oriented Programming is a new implementation technique that serves as a basis for
all graph based process languages.

The main benefit of our approach is that it defines one base technology for all types of process
languages.

Current software development relies more and more on domain specific languages. A typical Java
developer will use quite a few domain specific languages. The XML-files in a project that are input for
various frameworks can be considered domain specific languages.

Figure 3.1. Positioning of graph based languages

Domain specific languages for workflow, BPM, orchestration and page-flow are based on the
execution of a directed graph. Others like hibernate mapping files, ioc-configuration are not. Graph
Oriented Programming is the foundation for all domain specific languages that are based on executing
a graph.

Graph Oriented Programming is a very simple technique that describes how graphs can be defined
and executed on a plain object-oriented programming language.

In Section 3.5, “Application domains”, we'll cover the most often used process languages that can be
implemented using Graph Oriented Programming like workflow, BPM, orchestration and pageflow.

3.1.1. Domain specific languages
Each process language can be considered a Domain Specific Language (DSL). The DSL perspective
gives developers good insight in how process languages are related to plain object-oriented
programming.

This section might give the impression that we're focused solely on programming environments.
None is less true. Graph Oriented Programming includes the whole BPM product continuum from API

Chapter 3. Graph Oriented Programming

18

libraries to fully fledged BPM suite products. BPM suite products are complete software development
environments that are centered around business processes. In that type of products, coding in
programming languages is avoided as much as possible.

An important aspect of domain specific languages is that each language has a certain grammar.
That grammar can be expressed as a domain model. In case of java this is Class, Method, Field,
Constructor,... In jPDL this is Node, Transition, Action,... In rules, this is condition, consequence,...

The main idea of DSL is that developers think in those grammars when authoring artifacts for a
specific language. The IDE is built around the grammar of a language. Then, there can be different
editors to author the artifacts. E.g. a jPDL process has a graphical editor and a XML source view
editor. Also there can be different ways to store the same artifact: for jPDL, this could be a process
XML file or the serialized object graph of nodes and transition objects. Another (theoretic) example is
java: you could use the java class file format on the system. When a user starts the editor, the sources
are generated. When a user saves the compiled class is saved....

Ten years ago, most of a developer's time was spend on writing code. Now a shift has taken place
towards learning and using domain specific languages. This trend will still continue and the result is
that developers will have a big choice between frameworks and writing software in the host platform.
JBoss SEAM is a very big step in that direction.

Some of those languages are based on execution of a graph. E.g. jPDL for workflow in Java, BPEL for
service orchestration, SEAM pageflow,... Graph Oriented Programming is a common foundation for all
these type of domain specific languages.

In the future, for each language, a developer will be able to choose an editor that suites him/her best.
E.g. a hard core programmer probably will prefer to edit java in the src file format cause that works
really fast. But a less experienced java developer might choose a point and click editor to compose a
functionality that will result in a java class. The java source editing will be much more flexible.

Another way of looking at these domain specific languages (including the programming languages) is
from the perspective of structuring software. Object Oriented Programming (OOP) adds structure by
grouping methods with their data. Aspect Oriented Programming (AOP) adds a way to extract cross
cutting concerns. Dependency Injection (DI) and Inversion of Control (IoC) frameworks adds easy
wiring of object graphs. Also graph based execution languages (as covered here) can be helpful to
tackle complexity by structuring part of your software project around the execution of a graph.

An initial explanation on Domain Specific Languages (DSL) can be found on Martin Fowler's bliki1. But
the vision behind it is better elaborated in Martin's article about 'Language Workbenches'2.

3.1.2. Features of graph based languages
There are numerous graph based process languages. There are big differences in the environment
and focus. For instance, BPEL is intended as an XML based service orchestration component on top
of an Enterprise Service Bus (ESB) architecture. And a pageflow process language might define how
the pages of a web application can be navigated. These are two completely different environments.

Despite all these differences, there are two features that you'll find in almost every process language:
support for wait states and a graphical representation. This is no coincidence because it's exactly
those two features that are not sufficiently supported in plain Object Oriented (OO) programming
languages like Java.

1 http://www.martinfowler.com/bliki/DomainSpecificLanguage.html
2 http://www.martinfowler.com/articles/languageWorkbench.html

http://www.martinfowler.com/bliki/DomainSpecificLanguage.html
http://www.martinfowler.com/articles/languageWorkbench.html
http://www.martinfowler.com/bliki/DomainSpecificLanguage.html
http://www.martinfowler.com/articles/languageWorkbench.html

Features of graph based languages

19

Graph Oriented Programming is a technique to implement these two features in an OO programming
language. The dependency of Graph Oriented Programming on OO programming implies that all
concrete process languages, implemented on top of Graph Oriented Programming, will have to be
developed in OOP. But this does not mean that the process languages themselves expose any of this
OOP nature. E.g. BPEL doesn't have any relation to OO programming and it can be implemented on
top of Graph Oriented Programming.

3.1.2.1. Support for wait states
An imperative programming language like Java are used to express a sequence of instructions to be
executed by one system. There is no wait instruction. An imperative language is perfect for describing
e.g. one request response cycle in a server. The system is continuously executing the sequence of
instructions till the request is handled and the response is complete.

But one such request is typically part of a bigger scenario. E.g. a client submits a purchase order, this
purchase order is to be validated by a purchase order manager. After approval, the information must
be entered in the ERP system. Many requests to the server are part of the same bigger scenario.

So process languages are languages to describe the bigger scenario. A very important distinction we
must make here is scenarios that are executable on one system (orchestration) and scenarios that
describe the protocol between multiple systems (choreography). The Graph Oriented Programming
implementation technique only targets process languages that are executable on one machine
(orchestration).

So an orchestration process describes the overall scenario in terms of one system. For example: A
process is started when a client submits an order. The next step in the process is the order manager's
approval. So the system must add an entry in the task list of the order manager and the wait till
the order manager provides the required input. When the input is received, the process continues
execution. Now a message is sent to the ERP system and again this system will wait until the
response comes back.

So to describe the overall scenario for one system, we need a mechanism to cope with wait states.

In most of the application domains, the execution must be persisted during the wait states. That is why
blocking threads is not sufficient. Clever Java programmers might think about the Object.wait() and
Object.notify(); methods. Those could be used to simulate wait states but the problem is that threads
are not able to be persisted.

Continuations is a technique to make the thread (and the context variables) able to be persisted. This
could be a sufficient to solve the wait state problem. But as we will discuss in the next section, also
a graphical representation is important for many of the application domains. And continuations is a
technique that is based on imperative programming, so it's unsuitable for the graphical representation.

So an important aspect of the support for wait states is that executions need to be able to be
persisted. Different application domains might have different requirements for persisting such an
execution. For most workflow, BPM and orchestration applications, the execution needs to be
persisted in a relational database. Typically, a state transition in the process execution will correspond
with one transaction in the database.

3.1.2.2. Graphical representation
Some aspects of software development can benefit very well from a graph based approach. Business
Process Management is one of the most obvious application domains of graph based languages. In
that example, the communication between a business analyst and the developer is improved using

Chapter 3. Graph Oriented Programming

20

the graph based diagram of the business process as the common language. See also Section 3.5.1,
“Business Process Management (BPM)”.

Another aspect that can benefit from a graphical representation is pageflow. In this case, the pages,
navigation and action commands are shown and linked together in the graphical representation.

In Graph Oriented Programming we target graph diagrams that represent some form of execution.
That is a clear differentiation with for instance UML class diagrams, which represent a static model of
the OO data structure.

Also the graphical representation can be seen as a missing feature in OO programming. There is no
sensible way in which the execution of an OO program can be represented graphically. So there is no
direct relation between an OO program and the graphical view.

In Graph Oriented Programming, the description of the graph is central and it is a real software artifact
like e.g. an XML file that describes the process graph. Since the graphical view is an intrinsic part
of the software, it is always in sync. There is no need for a manual translation from the graphical
requirements into a software design. The software is structured around the graph.

3.2. Graph Oriented Programming
What we present here is an implementation technique for graph based execution languages. The
technique presented here is based on runtime interpretation of a graph. Other techniques for graph
execution are based on message queues or code generation.

This section will explain the strategy on how graph execution can be implemented on top of an OO
programming language. For those who are familiar with design patterns, it's a combination of the
command pattern and the chain of responsibility pattern.

We'll start off with the simplest possible model and then extend it bit by bit.

3.2.1. The graph structure
First of all, the structure of the graph is represented with the classes Node and Transition. A
transition has a direction so the nodes have leaving- and arriving transitions.

Figure 3.2. Node and Transition classes

A node is a command and has an execute method. Subclasses of Node are supposed to override
the execute method to implement some specific behavior for that node type.

3.2.2. An execution
The execution model that we defined on this graph structure might look similar to finite state machines
or UML state diagrams. In fact Graph Oriented Programming can be used to implement those kinds of
behaviors, but it also can do much more.

An execution

21

An execution (also known as a token) is represented with a class called Execution. An execution
has a reference to the current node.

Figure 3.3. The Execution class

Transitions are able to pass the execution from a source node to a destination node with the method
take.

Figure 3.4. The Transition take method

When an execution arrives in a node, that node is executed. The Node's execute method is also
responsible for propagating the execution. Propagating the execution means that a node can pass the
execution that arrived in the node over one of its leaving transitions to the next node.

Figure 3.5. The Node execute method

When a node's execute method does not propagate the execution, it behaves as a wait state. Also
when a new execution is created, it is initialized in some start node and then waits for an event.

An event is given to an execution and it can trigger the execution to start moving. If the event given to
an execution relates to a leaving transition of the current node, the execution takes that transition. The
execution then will continue to propagate until it enters another node that behaves as a wait state.

Figure 3.6. The Execution event method

Chapter 3. Graph Oriented Programming

22

3.2.3. A process language
So now we can already see that the two main features are supported : wait states and a graphical
representation. During wait states, an Execution just points to a node in the graph. Both the process
graph and the Execution can be persisted: E.g. to a relational database with an O/R mapper like
hibernate or by serializing the object graph to a file. Also you can see that the nodes and transitions
form a graph and hence there is a direct coupling with a graphical representation.

A process language is nothing more than a set of Node-implementations. Each Node-implementation
corresponds with a process construct. The exact behavior of the process construct is implemented by
overriding the execute method.

Here we show an example process language with 4 process constructs: a start state, a decision, a
task and an end state. This example is unrelated to the jPDL process language.

Figure 3.7. An example process language

Concrete node objects can now be used to create process graphs in our example process language.

A process language

23

Figure 3.8. An example process

When creating a new execution for this process, we start by positioning the execution in the start
node. So as long as the execution does not receive an event, the execution will remain positioned in
the start state.

Figure 3.9. A new execution

Now let's look at what happens when an event is fired. In this initial situation, we fire the default event
that will correspond with the default transition.

That is done by invoking the event method on the execution object. The event method will propagate
find the default leaving transition and pass the execution over the transition by invoking the take
method on the transition and passing itself in as a parameter.

The transition will pass on the execution to the decision node and invoke the execute method. Let's
assume the decision's execute implementation performs a calculation and decides to propagate the

Chapter 3. Graph Oriented Programming

24

execution by sending the 'yes'-event to the execution. That will cause the execution to continue over
the 'yes' transition and the execution will arrive in the task 'doubleCheck'.

Let's assume that the execute implementation of the doubleCheck's task node adds an entry into the
checker's task list and then waits for the checker's input by not propagating the execution further.

Now, the execution will remain positioned in the doubleCheck task node. All nested invocations will
start to return until the original event method returns.

Figure 3.10. An execution in the 'doubleCheck' wait state

3.2.4. Actions
In some application domains there must be a way to include the execution of programming logic
without introducing a node for it. In Business Process Management for example this is a very
important aspect. The business analyst is in charge of the graphical representation and the developer
is responsible for making it executable. It is not acceptable if the developer must change the graphical
diagram to include a technical detail in which the business analyst is not interested.

An Action is also a command with an execute method. Actions can be associated with events.

There are 2 basic events fired by the Node class while an execution is executing: node-leave and
node-enter. Along with the events that cause transitions to be taken this gives already a good
freedom of injecting programming logic into the execution of a graph.

Figure 3.11. Actions that are normally hidden from the graphical view

Each event can be associated with a list of actions. All the actions will be executed when the event
fires.

Synchronous execution

25

3.2.5. Synchronous execution
The default propagation of execution is synchronous. In Section 3.3.4, “Asynchronous continuations”
we'll see how this default behavior can be changed.

An execution starts when an event is sent to the execution. That execution will start to propagate
over a transition and enters a node. If the node decides to propagate the execution, the take method
is invoked on a leaving transition and the execution propagates further. By default, all of these
propagations are done as nested method calls. Which means that the original event-method will only
return when the execution has entered a new wait state. So the execution can have travelled over
multiple nodes during one invocation of the event-method.

Typically, a signal method is invoked inside of a transaction. This implies that in one transaction, the
execution can potentially move over multiple nodes on the process graph. That results in significant
performance benefits over systems that need one transaction per node.

Another benefit of synchronous execution is more options for exception handling. If all nodes are
executed synchronously, all propagation's of executions will be nested method invocations. The caller
that invoked the signal method will know that a new wait state has been reached without problems
when the signal method returns.

3.2.6. Code example
In order for people to get acquainted with the principles of Graph Oriented Programming, we have
developed these 4 classes in less then 130 lines of code. You can just read the code to get an idea or
you can actually start playing with them and implement your own node types.

Here's the example code:

• Execution.java3

• Node.java4

• Transition.java5

• Action.java6

You can also download the whole (297KB) source project7 and start playing with it yourself. It includes
an eclipse project so just importing it in your eclipse as a project should get you going. Also there are a
set of tests that show basic process execution and the advanced graph execution concepts covered in
the next section.

3.3. Extending Graph Oriented Programming
The previous section introduced the plain Graph Oriented Programming model in its simplest
form. This section will discuss various aspects of graph based languages and how Graph Oriented
Programming can be used or extended to meet these requirements.

3.3.1. Process variables
Process variables maintain the contextual data of a process execution. In an insurance claim process,
the 'claimed amount', 'approved amount' and 'isPaid' could be good examples of process variables. In
many ways, they are similar to the member fields of a class.

7 http://docs.jboss.com/jbpm/gop/jbpm.gop.zip

http://docs.jboss.com/jbpm/gop/Execution.java.html
http://docs.jboss.com/jbpm/gop/Node.java.html
http://docs.jboss.com/jbpm/gop/Transition.java.html
http://docs.jboss.com/jbpm/gop/Action.java.html
http://docs.jboss.com/jbpm/gop/jbpm.gop.zip
http://docs.jboss.com/jbpm/gop/jbpm.gop.zip

Chapter 3. Graph Oriented Programming

26

Graph Oriented Programming can be easily extended with support for process variables by
associating a set of key-value pairs that are associated with an execution. Concurrent execution paths
(see Section 3.3.2, “Concurrent executions”) and process composition (see Section 3.3.3, “Process
composition”) will complicate things a bit. Scoping rules will define the visibility of process variables in
case of concurrent paths of execution or sub-processes.

'Workflow Data Patterns'8 is an extensive research report on the types of scoping that can be applied
to process variables in the context of sub-processing and concurrent executions.

3.3.2. Concurrent executions
Suppose that you're developing a 'sale' process with a graph based process language for workflow.
After the client submitted the order, there is a sequence of activities for billing the client and there's
also a sequence of activities for shipping the items to the client. As you can imagine, the billing
activities and shipping activities can be done in parallel.

In that case, one execution will not be sufficient to keep track of the whole process state. Let's go
through the steps to extend the Graph Oriented Programming model and add support for concurrent
executions.

First, let's rename the execution to an execution path. Then we can introduce a new concept called
a process execution. A process execution represents one complete execution of a process and it
contains many execution paths.

The execution paths can be ordered hierarchically. Meaning that one root execution path is
created when a new process execution is instantiated. When the root execution path is forked into
multiple concurrent execution paths, the root is the parent and the newly created execution paths
are all children of the root. This way, implementation of a join can become straightforward: the
implementation of the join just has to verify if all sibling-execution-paths are already positioned in the
join node. If that is the case, the parent execution path can resume execution leaving the join node.

While the hierarchical execution paths and the join implementation based on sibling execution paths
covers a large part of the use cases, other concurrency behavior might be desirable in specific
circumstances. For example when multiple merges relate to one split. In such a situation, other
combinations of runtime data and merge implementations are required.

8 http://is.tm.tue.nl/research/patterns/download/data_patterns%20BETA%20TR.pdf

http://is.tm.tue.nl/research/patterns/download/data_patterns%20BETA%20TR.pdf
http://is.tm.tue.nl/research/patterns/download/data_patterns%20BETA%20TR.pdf

Process composition

27

Figure 3.12. Concurrent paths of execution

Multiple concurrent paths of execution are often mixed up with multi-threaded programming. Especially
in the context of workflow and BPM, these are quite different. A process specifies a state machine.
Consider for a moment a state machine as being always in a stable state and state transitions are
instantaneous. Then you can interpret concurrent paths of execution by looking at the events that
cause the state transitions. Concurrent execution then means that the events that can be handled are
unrelated between the concurrent paths of execution. Now let's assume that state transitions in the
process execution relates to a database transition (as explained in Section 3.3.5, “Persistence and
Transactions”), then you see that multi-threaded programming is actually not even required to support
concurrent paths of execution.

3.3.3. Process composition
Process composition is the ability to include a sub process as part of a super process. This advanced
feature makes it possible to add abstraction to process modeling. For the business analyst, this
feature is important to handle break down large models in smaller blocks.

The main idea is that the super process has a node in the graph that represents a complete execution
of the sub process. When an execution enters the sub-process-node in the super process, several
things are to be considered:

• First of all, a new execution is created for the sub process.

• Optionally some of information stored in the process variables of the super process can be injected
from the super process execution into the sub process execution. The most easy form is that the
sub process node is configured with a set of variables that are just copied from the super process
variables to the sub process variables.

• The start-node of the sub process should have only one leaving transition. Process languages that
support multiple leaving transitions must have a mechanism to choose one of those transitions
based on the process variables of the super process.

Chapter 3. Graph Oriented Programming

28

• The sub process execution is launched by sending an event that corresponds to the default leaving
transition of its start state.

After the sub process entered a wait state, the super process execution will be pointing to the sub-
process-node and the sub process execution will be pointing to some wait state.

When the sub process execution finishes, the super process execution can continue. The following
aspects need to be considered at that time:

• Process variable information may need to be copied back from the sub process execution into the
super process execution.

• The super process execution should continue. Typically, process languages allow only one leaving
transition on a sub process node. In that case the super process execution is propagated over that
default single leaving transition.

• In case a sub process node is allowed more than one leaving transition, a mechanism has to be
introduced to select a leaving transition. This selection can be based on either the sub process
execution's variables or the end state of the sub process (a typical state machine can have multiple
end states).

WS-BPEL has an implicit notion of sub-processing, rather then an explicit. An invoke will start a new
sub process. Then the super process will have a receive activity that will wait till the sub process
ends. So the usual invoke and receive are used instead of a special activity.

3.3.4. Asynchronous continuations
Above, we saw that the default behavior is to execute processes synchronously until there is a wait
state. And typically this overall state-change is packaged in one transaction. In this section, you'll see
how you can demarcate transaction boundaries in the process language. Asynchronous continuations
means that a process can continue asynchronously. This means that the first transaction will send a
message. That message represents a continuation command. Then the message receiver executes
the command in a second transaction. Then the process has continued its automatic execution, but it
was split over 2 transactions.

To add asynchronous continuations to graph oriented programming, a messaging system is required.
Such a system that integrates with your programming logic and allows for transactional sending and
receiving of messages. Messaging systems are also know as message oriented middleware (MOM)
and Java Message Service (JMS) is the standard API to use such systems.

There are 3 places where execution can be continued asynchronously:

• Just before the node's execute method. Which is after entering the node.

• When execution is about to be propagated over a transition. Which is before leaving a node.

• Every action can be executed asynchronously as well.

Let's consider the first situation in detail as it is indicated in the following figure. Suppose some event
caused an execution to start propagating over the graph and now a transition is about to invoke
the execute method on the 'generatePdf' node. Instead of invoking the execute method on the
'generatePdf' node directly, a new command message is being created with a pointer to the execution.
The command message should be interpreted as "continue this execution by executing the node".
This message is sent over the message queue to the command executor. The command executor

Persistence and Transactions

29

takes the message from the queue and invokes the node's execute method with the execution as a
parameter.

Figure 3.13. Asynchronous continuation

Note that there are two separate transactions involved now. One transaction that originated from the
original event. That transaction contains moving the execution in the 'generatePdf' node and sending
the command message. In a second transaction, the command message was consumed and the
node's execute method was invoked with the execution as a parameter. Between the two transactions,
the execution should be blocked for incoming events.

3.3.5. Persistence and Transactions
Both process definition information (like Node, Transition and Action) and execution information (like
Execution) can be stored in a relational database. An ORM solution (like eg Hibernate/EJB3) can be
used to perform the mapping between the database records and the OOP objects.

All process definition information is static. Hence it can be cached in memory. This gives a serious
performance boost. Only the runtime execution data will have to be loaded from the DB in each
transaction.

A transaction typically corresponds to the event method on the Execution. A transaction starts when
an event is being processed. The event method will trigger execution to continue till a new wait state is
reached. When that happens, the Execution's event method returns and the transaction can be ended.

The overall change of the event method invocation is that the Execution has moved it's node pointer
from one node to another. The ORM solution can calculate the difference between the original
database state and the updated java objects. Those changes are then flushed to the database at the
end of the Execution's event method. In our example here this will be a SQL update statement on the
execution, that sets the node pointer to the new (wait-state)node.

ORM solutions like hibernate/EJB3 work with a different set of objects in each session. This implies
that all access to Node implementations is serialized and removes the necessity to write thread safe
code as long as the node uses the execution data (and not static variables, for instance).

3.3.6. Services and environment
Nodes might want to make use of pluggable services or new node implementations might want to use
new services, unknown at design time. To accommodate this, a services framework can be added to
Graph Oriented Programming so that nodes can access arbitrary services and configurations.

Chapter 3. Graph Oriented Programming

30

Basically, there are 2 options:
• Passing down an execution context object (that would wrap the Execution object that is passed in

the explanation above)

• A thread local execution context

The execution context contains access to services that are made available by 'the environment'. The
environment is the client code (the code that invokes the Execution.event(String) plus an
optional container in which this client code runs.

Examples of services are a timer service, an asynchronous messaging service, a database service
(java.sql.Connection),...

3.4. Considerations

3.4.1. Runtime data isolation
Graph oriented programming clearly separates the definition data (nodes, transitions and actions) from
the runtime data (execution).

So instead of just propagating the execution that entered the node, any node implementation can
decide to rearrange the whole runtime data that represents the execution. This creates a lot of
flexibility for implementing different flavors of fork.split and join/merge behavior.

Also, the definition information is static and never changes. This is important for all kinds of
performance optimizations.

3.4.2. GOP compared to other techniques
In this section we describe how graph oriented programming compares to other implementation
techniques used for graph based execution languages.

In MOM based execution engines, an execution is represented by a message that travels along
message queues. Each node in a process graph is represented by a message queue in the system.
Actually, graph oriented programming is a super-set of MOM based execution. In GOP, by default, the
calculation to move an execution from one wait state to another is done synchronously. Later in this
paper, we’ll cover the asynchronous continuations extension that explains how MOM can be used to
make one step in the process asynchronous. So MOM based execution is similar to graph oriented
programming where all the nodes are executed asynchronously.

Another technique used to implement workflow, BPM and orchestration systems is code generation.
In that approach, the graph based process is translated into imperative programming logic like Java.
The generated programming logic has a method for each external trigger that can be given after a
wait state. Those methods will calculate the transition to a new wait state. This technique is limitated in
process versioning capabilities and in practice, the code generation has proved to be impractical and a
bottleneck in the software development process.

3.4.3. GOP compared to petri nets
The academic world, for a long time, has focused on petri nets for workflow and business process
modeling, mainly because petri nets was the only mathematically defined model that supports

Application domains

31

concurrent paths of execution. Because of the mathematical foundations, many interesting algorithms
for validation and completeness could be defined.

The biggest difference between petri nets and graph oriented programming is their nature. Petri nets is
a mathematical model, while graph oriented programming is an implementation technique or a design
pattern.

Graph oriented programming can be used to implement petri nets. Petri net places and petri net
transitions can be implemented as two different node types. Petri net arcs correspond to GOP
transitions. A petri net token corresponds to a GOP execution.

The higher level extensions that have been defined on top of petri nets can also be defined in terms of
graph oriented programming.

Graph oriented programming by itself does not support analytical algorithms as they are defined on
petri nets. That is because graph oriented programming does not’t have a concrete interpretation.
Analytical algorithms can only be defined on models that have a deterministic design time
interpretation. Graph oriented programming on the other hand also supports nodes that have an
undeterministic design time interpretation. GOP node implementations can potentially do any type of
calculation at runtime and decide only then how the execution is propagated. Analytical algorithms
can only be defined on concrete process languages, for which the nodes implementations give a
deterministic design-time interpretation to the node types.

3.5. Application domains

3.5.1. Business Process Management (BPM)

3.5.1.1. Different aspects of BPM
The goal of BPM is to make an organization run more efficient. The first step is analyzing and
describing how work gets done in an organization. "Defining a business process" is a description of
the way that people and systems work together to get a particular job done. Once business processes
are described, the search for optimizations can begin.

Sometimes business processes have evolved organically and merely looking at the overall business
process shows some obvious inefficiencies. Searching for modifications that make a business process
more efficient is called Business Process Re-engineering (BPR). Once a large part of a business
process is automated, statistics and audit trails can help to find and identify these inefficiencies.

Another way to improve efficiency can be to automate whole or parts of the business process using
information technology.

Automating and modifying business processes are the most common ways of making an organization
run more efficient. Important is to note that those are parts of business process management in
general.

Managers continuously break down jobs into steps to be executed by their team members. For
example a software development manager that organizes a team-building event. In that case, the
description of the business process might be done only in the head of the manager. Other situations
like handling an insurance claim for a large insurance company require a more formal approach to
BPM.

Chapter 3. Graph Oriented Programming

32

The total gain that can be obtained from managing business processes is the efficiency improvements
times the number of executions of the process. The cost of managing business processes formally
is the extra effort that is spent on analyzing, describing, improving and automating the business
processes. So that cost has to be taken into consideration when determining which processes will be
selected for formal management and/or automation. This explains the focus on procedures with a high
recurrence rate.

3.5.1.2. Goals of BPM systems
The main goal of BPM systems is to facilitate the automation of business processes. In building
software for business processes, two roles can be distinguished: The business analyst and the
developer. In small teams, these two roles can of course be fulfilled by one person. The business
analyst studies and describes the business process and specifies the software requirements, while the
developer creates executable software.

Traditional BPM suites try to start from the business analyst's model and work their way down towards
executable software. They try to minimize the need for technical skills so that the business analyst
can produce executable software. All of this is centralized around the graphical diagram so inevitably,
technical details ripple through in the analyst's world.

Figure 3.14. Traditional BPM approach

In our vision, the central idea is that the business analyst and the developer communicate in a
common language with the help of the graphical view of the process. Technical skills will always be

Service orchestration

33

necessary when developing software. The business analyst is responsible for the graphical view and
should not be forced to deal with technical aspects of the process. Without those technical aspects the
process will not be fully defined and hence it won't be executable. The developer is responsible for the
technical implementation aspects. Technical aspects should not require diagram changes.

Figure 3.15. Improved BPM approach

3.5.2. Service orchestration
The most recognized name in service orchestration languages is BPEL. Service orchestration is to be
seen in the context of an Enterprise Service Bus. An enterprise service bus is a central communication
backbone on a corporate level. It integrates many diverse systems and it is based on XML technology.

Suppose you have services A, B and C on your enterprise service bus. Service orchestration is a
graph based execution language for writing a new services as a function of existing services. E.g. A
new service D can be written as a function of existing services A, B and C in an orchestration script.

Chapter 3. Graph Oriented Programming

34

Figure 3.16. Service

3.6. Embedding graph based languages
When the BPM engine can be completely integrated into a software development project and when
even the BPM engine's database tables are integrated into the project's database, then we speak of
an Embeddable BPM engine. That is the goal we target with Graph Oriented Programming: a common
foundation for implementing graph based languages.

3.7. Market

3.7.1. The ultimate process language
Traditionally, the vendors have been searching for the ultimate process language. The approach is to
specify a process language as a set of constructs. Each construct has a graphical representation and
a runtime behavior. In other words, each construct is a node type in the process graph. And a process
language is just a set of node constructs.

The idea was that the vendors were searching for the best set of process constructs to form a
universally applicable process language. This vision is still found a lot today and we call it searching
for the ultimate process language.

We believe that the focus should not be on trying to find the ultimate process language, but rather in
finding a common foundation that can be used as a basis for process languages in different scenarios
and different environment. Graph Oriented Programming as we present it next is to be seen as such a
foundation.

3.7.2. Fragmentation
The current landscape of workflow, BPM and orchestration solutions is completely fragmented. In
this section we'll describe two dimensions in this fragmentation. The first dimension is called the BPM

Fragmentation

35

product continuum and it's shown in the next picture. The term was originally coined by Derek Miers
and Paul Harmon in 'The 2005 BPM Suites Report'.

On the left, you can see the programming languages. This side of the continuum is targeted towards
the IT developers. Programming languages are the most flexible and it integrates completely with the
other software developed for a particular project. But it takes quite a bit of programming to implement
a business process.

On the right, there are the BPM suites. These BPM suites are complete software development
environments targeted to be used by business analysts. Software is developed around business
processes. No programming has to be done to create executable software in these BPM suites.

Figure 3.17. The BPM product continuum.

Traditional products mark 1 spot in the BPM product continuum. To be complete, these products tend
to aim for the far right of the continuum. This is problematic because it results in monolithic system that
is very hard to integrate into a project combines plain OOP software with business processes.

Graph Oriented Programming can be built as a simple library that integrates nice with plain
programming environment. On the other hand, this library can be packaged and pre-deployed on a
server to become a BPM server. Then other products are added and packaged together with the BPM
server to become a complete BPM suite.

The net result is that solutions based on Graph Oriented Programming can target the whole
continuum. Depending on the requirements in a particular project, the BPM suite can be peeled and
customized to the right level of integration with the software development environment.

The other dimension of fragmentation is the application domain. As show above, a BPM application
domain is completely different from service orchestration or pageflow. Also in this dimension,
traditional products target one single application domain, where Graph Oriented Programming covers
the whole range.

If we set this out in a graph, this gives a clear insight in the current market fragmentation. In the graph
based languages market, prices are high and volumes are low. Consolidation is getting started and
this technology aims to be a common foundation for what is now a fragmented and confusing market
landscape.

Chapter 3. Graph Oriented Programming

36

Figure 3.18. Two dimensions of fragmentation.

Chapter 4.

37

Deployment
jPDL is an embeddable BPM engine, which means that you can take the jPDL libraries and embed it
into your own Java project, rather then installing a separate product and integrate with it. One of the
key aspects that make this possible is minimizing the dependencies. This chapter discusses the jbpm
libraries and their dependencies.

4.1. jBPM libraries
jbpm-jpdl.jar is the library with the core jpdl functionality.

jbpm-identity.jar is the (optional) library containing an identity component as described in
Section 10.11, “The identity component”.

4.2. Java runtime environment
jBPM 3 requires J2SE 1.4.2+

4.3. Third party libraries
All the libraries on which jPDL might have a dependency, are located in the lib directory.

In a minimal deployment, you can create and run processes with jBPM by putting only the commons-
logging and dom4j library in your classpath. Beware that persisting processes to a database is not
supported. The dom4j library can be removed if you don't use the process xml parsing, but instead
build your object graph programatically.

Library Usage Description

commons-logging.jar logging in jbpm and
hibernate

The jBPM code logs to commons logging. The
commons logging library can be configured
to dispatch the logs to e.g. java 1.4 logging,
log4j, ... See the Apache commons user
guide1 for more information on how to configure
commons logging. if you're used to log4j,
the easiest way is to put the log4j lib and a
log4j.properties in the classpath. commons
logging will automatically detect this and use that
configuration.

dom4j.jar process definitions and
hibernate persistence

xml parsing

Table 4.1. Minimal Dependencies

A typical deployment for jBPM will include persistent storage of process definitions and process
executions. In that case, jBPM does not have any dependencies outside hibernate and its dependent
libraries.

Of course, Hibernate's required libraries depend on the environment and what features you use. For
details refer to the hibernate documentation. The next table gives an indication for a plain standalone
POJO development environment.

http://jakarta.apache.org/commons/logging/guide.html
http://jakarta.apache.org/commons/logging/guide.html

Chapter 4. Deployment

38

Library Usage Description

hibernate3.jar hibernate persistence the best O/R mapper

antlr-2.7.6rc1.jar used in query
parsing by hibernate
persistence

parser library

cglib.jar hibernate persistence reflection library used for hibernate proxies

commons-
collections.jar

hibernate persistence

asm.jar hibernate persistence asm byte code library

Table 4.2. Typical Dependencies

The beanshell library is optional. If you don't include it, you won't be able to use the beanshell
integration in the jBPM process language and you'll get a log message saying that jbpm couldn't load
the Script class and hence, the script element won't be available.

Library Usage Description

bsh.jar beanshell script
interpreter

Only used in the script's and decision's. When
you don't use these process elements, the
beanshell lib can be removed, but then you have
to comment out the Script.hbm.xml mapping line
in the hibernate.cfg.xml

Table 4.3. Optional Dependencies

4.4. Web application
In the deploy directory of the downloads, you can find jbpm-console.war. That web console contains
the jPDL libraries, configuration files and the required libraries to run this web application on JBoss.

This war file does NOT include the hibernate libraries. That is because JBoss already includes the
hibernate libraries. To run this web application on other servers like Tomcat, all you have to do is get
the hibernate libraries in the WEB-INF/lib directory in the war file. Simplest way to do that is to use
the ant build script in this directory.

Also, this war file can give you a good indication of how you could deploy jbpm libraries and
configuration files into your own web application.

In the web.xml of this web application, the JobExecutorServlet is configured. This will start the
JobExecutor when the jbpm-console.war is deployed. The JobExecutor serves as the basis for
executing timers and asynchronous messages on the standard java platform.

4.5. Enterprise archive
In the deploy directory of the downloads, you can find jbpm-enterprise.ear. That J2EE 1.4 compliant
enterprise archive includes: jPDL libraries, jBPM configuration files, the jBPM web console, and a
couple of enterprise beans. In this package, jBPM is configured for usage in an application server
like e.g. JBoss. Asynchronous messaging service is here bound to JMS and the scheduler service
is bound to the EJB Timer Service. So here in this .ear file, there is no JobExecutor started. Also the
hibernate session that jBPM uses is configured to participate in the overall JTA transaction.

Within jbpm-enterprise.ear there are the following files:

Enterprise archive

39

• jbpm-console.war - the jbpm console web application

• jbpm-enterprise.jar - several jBPM EJB compnents

• lib/jbpm-configs.jar - jBPM configuration files

• lib/jbpm-identity.jar - jBPM identity component classes

• lib/jbpm-jpdl.jar - jBPM jpdl classes

• meta-inf/application.xml

jbpm-enterprise.jar contains the following EJB components:

• CommandListenerBean - a Message Driven Bean that listens on the jbpmCommandQueue for jBPM
command messages.

• CommandServiceBean - a Stateless Session Bean that executes jBPM Commands.

• JobListenerBean - a Message Driven Bean that listeners on the jbpmJobQueue for jBPM job
messages to support asynchronous continuations.

• TimerServiceBean - a TimerBean that implements the jBPM timer service.

These beans are J2EE 1.4 / EJB 2.1 compliant, to allow them to be deployed on a variety of
application servers. Note however that jBPM only provide deployment descriptors for JBoss
Application Servers. All beans are deployed without specifying transaction-attribute, therefore by
default they have transaction-attribute "Required".

The CommandListenerBean delegates Command execution to the CommandServiceBean, which
in turn delegates to a CommandServiceImpl class that executes the command class by calling it's
execute method.

The source for these classes is in: src/enterprise. The javadocs in doc/javadoc-enterprise.

jbpm-enterprise.jar also contains JmsMessageServiceFactoryImpl, which is responsible for sending
Jobs as JMS messages to support asynchronous continuations.

jbpm-configs.jar contains the following files:

• jbpm.cfg.xml

• jbpm.mail.templates.xml

• hibernate.cfg.xml includes the following configuration items that may require modification to
support other databases or application servers.

<!-- hibernate dialect -->
 <property name="hibernate.dialect">
 org.hibernate.dialect.HSQLDialect
 </property>

 <!-- JDBC connection properties (begin) ===
 <property
 name="hibernate.connection.driver_class">org.hsqldb.jdbcDriver</
property>

Chapter 4. Deployment

40

 <property name="hibernate.connection.url">jdbc:hsqldb:mem:jbpm</
property>
 <property name="hibernate.connection.username">sa</property>
 <property name="hibernate.connection.password"></property>
 ==== JDBC connection properties (end) -->

 <property name="hibernate.cache.provider_class">
 org.hibernate.cache.HashtableCacheProvider
 </property>

 <!-- JBoss transaction manager lookup (begin) -->
 <property name="hibernate.transaction.manager_lookup_class">
 org.hibernate.transaction.JBossTransactionManagerLookup
 </property>
 <!-- JBoss transaction manager lookup (end) -->

 <!-- DataSource properties (begin) -->
 <property name="hibernate.connection.datasource">
 java:/JbpmDS
 </property>
 <!-- DataSource properties (end) -->

 <!-- JTA transaction properties (begin) ===
 <property
 name="hibernate.transaction.factory_class">org.hibernate.transaction.JTATransactionFactory</
property>
 <property name="jta.UserTransaction">java:comp/UserTransaction</
property>
 ==== JTA transaction properties (end) -->

 <!-- CMT transaction properties (begin) -->
 <property name="hibernate.transaction.factory_class">
 org.hibernate.transaction.CMTTransactionFactory
 </property>
 <property name="hibernate.transaction.manager_lookup_class">
 org.hibernate.transaction.JBossTransactionManagerLookup
 </property>
 <!-- CMT transaction properties (end) -->

 <!-- logging properties (begin) ===
 <property name="hibernate.show_sql">true</property>
 <property name="hibernate.format_sql">true</property>
 <property name="hibernate.use_sql_comments">true</property>
 ==== logging properties (end) -->

You may replace the hibernate.dialect with one that corresponds to your database management
system.

You may replace the HashtableCacheProvider with other Hibernate supported cache providers,
such as EhCache.

Enterprise archive

41

The transaction.manager.lookup may be replace with values appropriate to other applications
servers, e.g. WebSphereTransactionManagerLookup or WebLogicTransactionManagerLookup
when deploying to those application servers.

Similarly, if deploying on another application server you must change the name of the
hibernate.connection.datasource to the jndi name of the datasource on that application server.

Out-of-the-box jBPM is configured to use CMTTransactionFactory. CMTTransactionFactory
always assumes that the container has started a JTA transaction. This will be true if you use
the jBPM CommandListener or CommandService beans, or your own EJBs that use container
managed transaction. If this is not always the case, then change this configuration to use the
JTATransactionFactory. When JTATransactionFactory is configured, Hibernate will use the JTA
transaction if it already exists, but will start a JTA transaction if it does not.

• jbpm.cfg.xml included the following configuration items:

<jbpm-context>
 <service name="persistence">
 <factory>

 <bean class="org.jbpm.persistence.db.DbPersistenceServiceFactory">
 <field name="isCurrentSessionEnabled"><true /></field>
 <field name="isTransactionEnabled"><false /></field>
 </bean>
 </factory>
 </service>
 <service name="message">
 <factory>
 <bean class="org.jbpm.msg.jms.JmsMessageServiceFactoryImpl">
 <field name="connectionFactoryJndiName">
 <string value="java:/JmsXA"/>
 </field>
 <field name="destinationJndiName">
 <string value="queue/JbpmJobQueue"/>
 </field>
 </bean>
 </factory>
 </service>
<service name="scheduler"
 factory="org.jbpm.scheduler.ejbtimer.EjbSchedulerServiceFactory" />

isCurrentSessionEnabled true means jBPM will request Hibernate to use the current session
associated with the current transaction. If there is no current transaction, an exception will be thrown
stating no session is active. In this case, you may want to set this isCurrentSessionEnabled to
false, and inject the current session into the JbpmContext via the JbpmContext.setSession(session)
method. This will also insure that jBPM uses the same Hibernate session as other parts of your
application. Note, the Hibernate session can be injected into a stateless session bean via a
persistence context, for example.

isTransactionEnabled true means jBPM will begin Hibernate transaction upon
JbpmConfiguraiton().createJbpmContext and commit Hibernate transactions and close Hibernate

Chapter 4. Deployment

42

sessions upon jbpmContext.close()..This is NOT the desired behavior when jBPM is deployed as an
ear, hence the value of isTransactionEnabled is set to false by default in this configuration.

4.6. The jPDL Runtime and Suite

4.6.1. The runtime
The jPDL runtime is all you need to get started with jPDL: jpdl libraries, third party libraries, examples
and documentation. It doesn't include the graphical designer and web console tooling, which is added
in the suite package.

Directory Content

config Contains all the configuration files. Note that for easy testing and development,
the current hibernate configuration points to the in-memory jbpm database.

db Contains the scripts to create the jPDL tables in your DB. It includes a copy of
the wiki page about database compatibility.

doc Contains the userguide and the javadocs for the jpdl sources and identity
sources

examples Each example is a separate project that you can compile and run with ant or
eclipse.

lib All the third party libs and their licenses.

src The sources for jpdl and the identity components.

Table 4.4. jPDL runtime directories

4.6.2. The suite
The jPDL suite is an extension of the jPDL runtime with 2 tools: a graphical designer plugin for eclipse
and a JBoss server that is pre-configured with a deployed version of the jPDL runtime and console
web app. The included tools are all pre-configured to work nicely together out of the box.

Directory Content

designer The designer is the eclipse plugin that allows for graphical process editing of
jPDL process files. Look in the designer/readme.html for more instructions on
installing the designer.

server The server is actually a JBoss application server which has the jPDL runtime
and the jPDL console web application deployed.

Table 4.5. jPDL suite extra directories

4.6.3. Configuring the logs in the suite server
If you want to see debug logs in the suite server, update file jpdl-suite-home/server/server/
jbpm/config/log4j.xml Look for

<!-- ============================== -->
<!-- Append messages to the console -->
<!-- ============================== -->

Debugging a process in the suite

43

<appender name="CONSOLE" class="org.apache.log4j.ConsoleAppender">
 <errorHandler class="org.jboss.logging.util.OnlyOnceErrorHandler"/>
 <param name="Target" value="System.out"/>
 <param name="Threshold" value="INFO"/>

And in param Threshold, change INFO to DEBUG.

Then you'll get debug logs of all the components. To limit the number of debug logs, look a bit further
down that file until you see 'Limit categories'. You might want to add thresholds there for specific
packages like e.g.

<category name="org.hibernate">
 <priority value="INFO"/>
</category>

<category name="org.jboss">
 <priority value="INFO"/>
</category>

4.6.4. Debugging a process in the suite
First of all, in case you're just starting to develop a new process, it is much easier to use plain JUnit
tests and run the process in memory like explained in Chapter 2, Tutorial.

But if you want to run the process in the console and debug it there here are the 2 steps that you need
to do:

1) in jpdl-suite-home/server/server/bin/run.bat, somewhere at the end, there is a line
like this:

rem set JAVA_OPTS=-Xdebug -
Xrunjdwp:transport=dt_socket,address=8787,server=y,suspend=y %JAVA_OPTS%

For backup reasons, just start by making a copy of that line, then remove the first 'rem' and change
suspend=y to suspend=n. Then you get something like

rem set JAVA_OPTS=-Xdebug -
Xrunjdwp:transport=dt_socket,address=8787,server=y,suspend=y %JAVA_OPTS%
set JAVA_OPTS=-Xdebug -
Xrunjdwp:transport=dt_socket,address=8787,server=y,suspend=n %JAVA_OPTS%

2) In your IDE debug by connecting to a remote Java application on localhost on port 8787. Then you
can start adding break points and run through the processes with the console until the breakpoint is
hit.

44

Chapter 5.

45

Configuration
The simplest way to configure jBPM is by putting the jbpm.cfg.xml configuration file in the root of
the classpath. If that file is not found as a resource, the default minimal configuration will be used that
is included in the jbpm library. Note that the minimal configuration does not have any configurations for
persistence.

The jBPM configuration is represented by the java class org.jbpm.JbpmConfiguration. Most
easy way to get a hold of the JbpmConfiguration is to make use of the singleton instance method
JbpmConfiguration.getInstance().

If you want to load a configuration from another source, you can use the
JbpmConfiguration.parseXxxx methods.

static JbpmConfinguration jbpmConfiguration =
 JbpmConfinguration.getInstance();

The JbpmConfiguration is threadsafe and hence can be kept in a static member. All threads can use
the JbpmConfiguration as a factory for JbpmContext objects. A JbpmContext typically represents one
transaction. The JbpmContext makes services available inside of a context block. A context block
looks like this:

JbpmContext jbpmContext = jbpmConfiguration.createJbpmContext();
try {
 // This is what we call a context block.
 // Here you can perform workflow operations

} finally {
 jbpmContext.close();
}

The JbpmContext makes a set of services and the configuration available to jBPM. These services
are configured in the jbpm.cfg.xml configuration file and make it possible for jBPM to run in any
Java environment and use whatever services are available in that environment.

Here's a typical configuration for the JbpmContext as you can find it in src/config.files/
jbpm.cfg.xml:

<jbpm-configuration>

 <jbpm-context>

 <service name='persistence' factory='org.jbpm.persistence.db.DbPersistenceServiceFactory'
 />

 <service name='message' factory='org.jbpm.msg.db.DbMessageServiceFactory'
 />

 <service name='scheduler' factory='org.jbpm.scheduler.db.DbSchedulerServiceFactory'
 />

Chapter 5. Configuration

46

 <service name='logging' factory='org.jbpm.logging.db.DbLoggingServiceFactory'
 />

 <service name='authentication' factory='org.jbpm.security.authentication.DefaultAuthenticationServiceFactory'
 />
 </jbpm-context>

 <!-- configuration resource files pointing to default configuration
 files in jbpm-{version}.jar -->
 <string name='resource.hibernate.cfg.xml' value='hibernate.cfg.xml' />
 <!-- <string name='resource.hibernate.properties'
 value='hibernate.properties' /> -->
 <string name='resource.business.calendar' value='org/jbpm/calendar/
jbpm.business.calendar.properties' />
 <string name='resource.default.modules' value='org/jbpm/graph/def/
jbpm.default.modules.properties' />
 <string name='resource.converter' value='org/jbpm/db/hibernate/
jbpm.converter.properties' />
 <string name='resource.action.types' value='org/jbpm/graph/action/
action.types.xml' />
 <string name='resource.node.types' value='org/jbpm/graph/node/
node.types.xml' />
 <string name='resource.parsers' value='org/jbpm/jpdl/par/
jbpm.parsers.xml' />
 <string name='resource.varmapping' value='org/jbpm/context/exe/
jbpm.varmapping.xml' />

 <int name='jbpm.byte.block.size' value="1024" singleton="true" />
 <bean name='jbpm.task.instance.factory' class='org.jbpm.taskmgmt.impl.DefaultTaskInstanceFactoryImpl' singleton='true'
 />
 <bean name='jbpm.variable.resolver' class='org.jbpm.jpdl.el.impl.JbpmVariableResolver' singleton='true'
 />

</jbpm-configuration>

In this configuration file you can see 3 parts:

• The first part configures the jbpm context with a set of service implementations. The possible
configuration options are covered in the chapters that cover the specific service implementations.

• The second part are all mappings of references to configuration resources. These resource
references can be updated if you want to customize one of these configuration files. Typically, you
make a copy the default configuration which is in the jbpm-3.x.jar and put it somewhere on the
classpath. Then you update the reference in this file and jbpm will use your customized version of
that configuration file.

• The third part are some miscellaneous configurations used in jbpm. These configuration options are
described in the chapters that cover the specific topic.

The default configured set of services is targeted at a simple web-app environment and minimal
dependencies. The persistence service will obtain a jdbc connection and all the other services will use

Customizing factories

47

the same connection to perform their services. So all of your workflow operations are centralized into 1
transaction on a JDBC connection without the need for a transaction manager.

JbpmContext contains convenience methods for most of the common process operations:

public void deployProcessDefinition(ProcessDefinition processDefinition)
 {...}
 public List getTaskList() {...}
 public List getTaskList(String actorId) {...}
 public List getGroupTaskList(List actorIds) {...}
 public TaskInstance loadTaskInstance(long taskInstanceId) {...}
 public TaskInstance loadTaskInstanceForUpdate(long taskInstanceId)
 {...}
 public Token loadToken(long tokenId) {...}
 public Token loadTokenForUpdate(long tokenId) {...}
 public ProcessInstance loadProcessInstance(long processInstanceId)
 {...}
 public ProcessInstance loadProcessInstanceForUpdate(long
 processInstanceId) {...}
 public ProcessInstance newProcessInstance(String processDefinitionName)
 {...}
 public void save(ProcessInstance processInstance) {...}
 public void save(Token token) {...}
 public void save(TaskInstance taskInstance) {...}
 public void setRollbackOnly() {...}

Note that the XxxForUpdate methods will register the loaded object for auto-save so that you don't
have to call one of the save methods explicitly.

It's possible to specify multiple jbpm-contexts, but then you have to make sure that each
jbpm-context is given a unique name attribute. Named contexts can be retrieved with
JbpmConfiguration.createContext(String name);

A service element specifies the name of a service and the service factory
for that service. The service will only be created in case it's asked for with
JbpmContext.getServices().getService(String name).

The factories can also be specified as an element instead of an attribute. That might be necessary to
inject some configuration information in the factory objects. The component responsible for parsing the
XML, creating and wiring the objects is called the object factory.

5.1. Customizing factories
A common mistake when customizing factories is to mix the short and the long notation. Examples of
the short notation can be seen in the default configuration file and above: E.g.

<service name='persistence' factory='org.jbpm.persistence.db.DbPersistenceServiceFactory'
 />

If specific properties on a service need to be specified, the short notation can't be used, but instead,
the long notation has to be used like this: E.g.

Chapter 5. Configuration

48

 <service name="persistence">
 <factory>
 <bean class="org.jbpm.persistence.db.DbPersistenceServiceFactory">
 <field name="dataSourceJndiName"><string value="java:/
myDataSource"/></field>
 <field name="isCurrentSessionEnabled"><true /></field>
 <field name="isTransactionEnabled"><false /></field>
 </bean>
 </factory>
 </service>

5.2. Configuration properties
jbpm.byte.block.size: File attachments and binary variables are stored in the database. Not as
blobs, but as a list of fixed sized binary objects. This is done to improve portability amongst different
databases and improve overall embeddability of jBPM. This parameter controls the size of the fixed
length chunks.

jbpm.task.instance.factory: To customize the way that task instances are created, specify a fully
qualified class name in this property. This might be necessary when you want to customize the
TaskInstance bean and add new properties to it. See also Section 10.10, “Customizing task instances”
The specified class should implement org.jbpm.taskmgmt.TaskInstanceFactory.

jbpm.variable.resolver: To customize the way that jBPM will look for the first term in JSF-like
expressions.

5.3. Other configuration files
Here's a short description of all the configuration files that are customizable in jBPM.

5.3.1. Hibernate Configuration xml file
This file contains hibernate configurations and references to the hibernate mapping resource files.

Location: hibernate.cfg.xml unless specified otherwise in the jbpm.hibernate.cfg.xml property
in the jbpm.properties file. In the jbpm project the default hibernate configuration xml file is located in
directory src/config.files/hibernate.cfg.xml

5.3.2. Hibernate queries configuration file
This file contains hibernate queries that are used in the jBPM sessions org.jbpm.db.*Session.

Location: org/jbpm/db/hibernate.queries.hbm.xml

5.3.3. Node types configuration file
This file contains the mapping of XML node elements to Node implementation classes.

Location: org/jbpm/graph/node/node.types.xml

5.3.4. Action types configuration file
This file contains the mapping of XML action elements to Action implementation classes.

Business calendar configuration file

49

Location: org/jbpm/graph/action/action.types.xml

5.3.5. Business calendar configuration file
Contains the definition of business hours and free time.

Location: org/jbpm/calendar/jbpm.business.calendar.properties

5.3.6. Variable mapping configuration file
Specifies how the values of the process variables (java objects) are converted to variable instances for
storage in the jbpm database.

Location: org/jbpm/context/exe/jbpm.varmapping.xml

5.3.7. Converter configuration file
Specifies the id-to-classname mappings. The id's are stored in the database. The
org.jbpm.db.hibernate.ConverterEnumType is used to map the ids to the singleton objects.

Location: org/jbpm/db/hibernate/jbpm.converter.properties

5.3.8. Default modules configuration file
specifies which modules are added to a new ProcessDefinition by default.

Location: org/jbpm/graph/def/jbpm.default.modules.properties

5.3.9. Process archive parsers configuration file
specifies the phases of process archive parsing

Location: org/jbpm/jpdl/par/jbpm.parsers.xml

5.4. jBPM debug logs in JBoss
When running jPDL in JBoss and you want to see the debug logs of jBPM, replace the file conf/
log4j.xml in the jboss server configuration take with the file deploy/log4j.xml in your jPDL
distribution. In the suite, the full location of the file to be replaced is [jpdl.home]/server/server/
jbpm/conf/log4j.xml.

5.5. Logging of optimistic concurrency exceptions
When running in a cluster, jBPM synchronizes on the database. By default with optimistic
locking. This means that each operation is performed in a transaction. And if at the end a
collision is detected, then the transaction is rolled back and has to be handled. E.g. by a retry. So
optimistic locking exceptions are usually part of the normal operation. Therefor, by default, the
org.hibernate.StateObjectStateExceptions the that hibernate throws in that case are not
logged with error and a stack trace, but instead a simple info message 'optimistic locking failed' is
displayed.

Hibernate itself will log the StateObjectStateException including a
stack trace. If you want to get rid of these stack traces, put the level of

Chapter 5. Configuration

50

org.hibernate.event.def.AbstractFlushingEventListener to FATAL. If you use log4j
following line of configuration can be used for that:

log4j.logger.org.hibernate.event.def.AbstractFlushingEventListener=FATAL

If you want to enable logging of the jBPM stack traces, add the following line to your jbpm.cfg.xml:

<boolean name="jbpm.hide.stale.object.exceptions" value="false" />

.

5.6. Object factory
The object factory can create objects according to a beans-like xml configuration file. The
configuration file specifies how objects should be created, configured and wired together to form a
complete object graph. The object factory can inject the configurations and other beans into a bean.

In its simplest form, the object factory is able to create basic types and java beans from such a
configuration:

<beans>
 <bean name="task" class="org.jbpm.taskmgmt.exe.TaskInstance"/>
 <string name="greeting">hello world</string>
 <int name="answer">42</int>
 <boolean name="javaisold">true</boolean>
 <float name="percentage">10.2</float>
 <double name="salary">100000000.32</double>
 <char name="java">j</char>
 <null name="dusttodust" />
</beans>

ObjectFactory of = ObjectFactory.parseXmlFromAbove();
assertEquals(TaskInstance.class, of.getNewObject("task").getClass());
assertEquals("hello world", of.getNewObject("greeting"));
assertEquals(new Integer(42), of.getNewObject("answer"));
assertEquals(Boolean.TRUE, of.getNewObject("javaisold"));
assertEquals(new Float(10.2), of.getNewObject("percentage"));
assertEquals(new Double(100000000.32), of.getNewObject("salary"));
assertEquals(new Character('j'), of.getNewObject("java"));
assertNull(of.getNewObject("dusttodust"));

Also you can configure lists:

<beans>
 <list name="numbers">
 <string>one</string>
 <string>two</string>
 <string>three</string>

Object factory

51

 </list>
</beans>

and maps

<beans>
 <map name="numbers">
 <entry><key><int>1</int></key><value><string>one</string></value></
entry>
 <entry><key><int>2</int></key><value><string>two</string></value></
entry>
 <entry><key><int>3</int></key><value><string>three</string></value></
entry>
 </map>
</beans>

Beans can be configured with direct field injection and via property setters.

<beans>
 <bean name="task" class="org.jbpm.taskmgmt.exe.TaskInstance" >
 <field name="name"><string>do dishes</string></field>
 <property name="actorId"><string>theotherguy</string></property>
 </bean>
</beans>

Beans can be referenced. The referenced object doesn't have to be a bean, it can be a string, integer
or any other object.

<beans>
 <bean name="a" class="org.jbpm.A" />
 <ref name="b" bean="a" />
</beans>

Beans can be constructed with any constructor

<beans>
 <bean name="task" class="org.jbpm.taskmgmt.exe.TaskInstance" >
 <constructor>
 <parameter class="java.lang.String">
 <string>do dishes</string>
 </parameter>
 <parameter class="java.lang.String">
 <string>theotherguy</string>
 </parameter>
 </constructor>
 </bean>
</beans>

... or with a factory method on a bean ...

Chapter 5. Configuration

52

<beans>
 <bean name="taskFactory"
 class="org.jbpm.UnexistingTaskInstanceFactory"
 singleton="true"/>

 <bean name="task" class="org.jbpm.taskmgmt.exe.TaskInstance" >
 <constructor factory="taskFactory" method="createTask" >
 <parameter class="java.lang.String">
 <string>do dishes</string>
 </parameter>
 <parameter class="java.lang.String">
 <string>theotherguy</string>
 </parameter>
 </constructor>
 </bean>
</beans>

... or with a static factory method on a class ...

<beans>
 <bean name="task" class="org.jbpm.taskmgmt.exe.TaskInstance" >
 <constructor factory-
class="org.jbpm.UnexistingTaskInstanceFactory" method="createTask" >
 <parameter class="java.lang.String">
 <string>do dishes</string>
 </parameter>
 <parameter class="java.lang.String">
 <string>theotherguy</string>
 </parameter>
 </constructor>
 </bean>
</beans>

Each named object can be marked as singleton with the attribute singleton="true". That means
that a given object factory will always return the same object for each request. Note that singletons are
not shared between different object factories.

The singleton feature causes the differentiation between the methods getObject and
getNewObject. Typical users of the object factory will use the getNewObject. This means that
first the object factory's object cache is cleared before the new object graph is constructed. During
construction of the object graph, the non-singleton objects are stored in the object factory's object
cache to allow for shared references to one object. The singleton object cache is different from the
plain object cache. The singleton cache is never cleared, while the plain object cache is cleared at the
start of every getNewObject method.

Chapter 6.

53

Persistence
In most scenarios, jBPM is used to maintain execution of processes that span a long time. In this
context, "a long time" means spanning several transactions. The main purpose of persistence is to
store process executions during wait states. So think of the process executions as state machines. In
one transaction, we want to move the process execution state machine from one state to the next.

A process definition can be represented in 3 different forms : as xml, as java objects and as records in
the jBPM database. Execution (or runtime) information and logging information can be represented in
2 forms : as java objects and as records in the jBPM database.

Figure 6.1. The transformations and different forms

For more information about the xml representation of process definitions and process archives, see
Chapter 17, jBPM Process Definition Language (JPDL).

More information on how to deploy a process archive to the database can be found in Section 17.1.1,
“Deploying a process archive”

6.1. The persistence API

6.1.1. Relation to the configuration framework
The persistence API is an integrated with the configuration framework1 by exposing some
convenience persistence methods on the JbpmContext. Persistence API operations can therefore be
called inside a jBPM context block like this:

JbpmContext jbpmContext = jbpmConfiguration.createJbpmContext();
try {

 // Invoke persistence operations here

} finally {

1 Chapter 5, Configuration.

Chapter 6. Persistence

54

 jbpmContext.close();
}

In what follows, we suppose that the configuration includes a persistence service similar to this one
(as in the example configuration file src/config.files/jbpm.cfg.xml):

<jbpm-configuration>

 <jbpm-context>

 <service name='persistence' factory='org.jbpm.persistence.db.DbPersistenceServiceFactory'
 />
 </jbpm-context>
</jbpm-configuration>

6.1.2. Convenience methods on JbpmContext
The three most common persistence operations are:
• Deploying a process

• Starting a new execution of a process

• Continuing an execution

First deploying a process definition. Typically, this will be done directly from the graphical process
designer or from the deployprocess ant task. But here you can see how this is done programmatically:

JbpmContext jbpmContext = jbpmConfiguration.createJbpmContext();
try {
 ProcessDefinition processDefinition = ...;
 jbpmContext.deployProcessDefinition(processDefinition);
} finally {
 jbpmContext.close();
}

For the creation of a new process execution, we need to specify of which process definition this
execution will be an instance. The most common way to specify this is to refer to the name of the
process and let jBPM find the latest version of that process in the database:

JbpmContext jbpmContext = jbpmConfiguration.createJbpmContext();
try {
 String processName = ...;
 ProcessInstance processInstance =
 jbpmContext.newProcessInstance(processName);
} finally {
 jbpmContext.close();
}

For continuing a process execution, we need to fetch the process instance, the token or the
taskInstance from the database, invoke some methods on the POJO jBPM objects and afterward save
the updates made to the processInstance into the database again.

Convenience methods on JbpmContext

55

JbpmContext jbpmContext = jbpmConfiguration.createJbpmContext();
try {
 long processInstanceId = ...;
 ProcessInstance processInstance =
 jbpmContext.loadProcessInstance(processInstanceId);
 processInstance.signal();
 jbpmContext.save(processInstance);
} finally {
 jbpmContext.close();
}

Note that if you use the xxxForUpdate methods in the JbpmContext, an explicit invocation of
the jbpmContext.save is not necessary any more because it will then occur automatically during
the close of the jbpmContext. E.g. suppose we want to inform jBPM about a taskInstance that
has been completed. Note that task instance completion can trigger execution to continue so the
processInstance related to the taskInstance must be saved. The most convenient way to do this is to
use the loadTaskInstanceForUpdate method:

JbpmContext jbpmContext = jbpmConfiguration.createJbpmContext();
try {
 long taskInstanceId = ...;
 TaskInstance taskInstance =
 jbpmContext.loadTaskInstanceForUpdate(taskInstanceId);
 taskInstance.end();
} finally {
 jbpmContext.close();
}

Just as background information, the next part is an explanation of how jBPM manages the persistence
and uses hibernate.

The JbpmConfiguration maintains a set of ServiceFactorys. The service factories
are configured in the jbpm.cfg.xml as shown above and instantiated lazy. The
DbPersistenceServiceFactory is only instantiated the first time when it is needed. After that,
service factories are maintained in the JbpmConfiguration. A DbPersistenceServiceFactory
manages a hibernate SessionFactory. But also the hibernate session factory is created lazy when
requested the first time.

Chapter 6. Persistence

56

Figure 6.2. The persistence related classes

During the invocation of jbpmConfiguration.createJbpmContext(), only the
JbpmContext is created. No further persistence related initializations are done at that time. The
JbpmContext manages a DbPersistenceService, which is instantiated upon first request. The
DbPersistenceService manages the hibernate session. Also the hibernate session inside the
DbPersistenceService is created lazy. As a result, a hibernate session will be only be opened
when the first operation is invoked that requires persistence and not earlier.

Managed transactions

57

6.1.3. Managed transactions
The most common scenario for managed transactions is when using jBPM in a JEE application server
like JBoss. The most common scenario is the following:

• Configure a DataSource in your application server

• Configure hibernate to use that data source for its connections

• Use container managed transactions

• Disable transactions in jBPM

A stateless session facade in front of jBPM is a good practice. The easiest way on how to bind the
jbpm transaction to the container transaction is to make sure that the hibernate configuration used by
jbpm refers to an xa-datasource. So jbpm will have its own hibernate session, there will only be 1 jdbc
connection and 1 transaction.

The transaction attribute of the jbpm session facade methods should be 'required'

The the most important configuration property to specify in the hibernate.cfg.xml that is used by
jbpm is hibernate.connection.datasource. Set this to you datasource JNDI name, e.g. java:/DefaultDS

More information on how to configure jdbc connections in hibernate, see the hibernate reference
manual, section 'Hibernate provided JDBC connections'2

For more information on how to configure xa datasources in jboss, see the jboss application server
guide, section 'Configuring JDBC DataSources'3

6.1.4. Injecting the hibernate session
In some scenarios, you already have a hibernate session and you want to combine all the persistence
work from jBPM into that hibernate session.

Then the first thing to do is make sure that the hibernate configuration is aware of all the jBPM
mapping files. You should make sure that all the hibernate mapping files that are referenced in the file
src/config.files/hibernate.cfg.xml are provided in the used hibernate configuration.

Then, you can inject a hibernate session into the jBPM context as is shown in the following API
snippet:

JbpmContext jbpmContext = jbpmConfiguration.createJbpmContext();
try {
 jbpmContext.setSession(SessionFactory.getCurrentSession());

 // your jBPM operations on jbpmContext

} finally {
 jbpmContext.close();
}

2 http://www.hibernate.org/hib_docs/reference/en/html/session-configuration.html#configuration-hibernatejdbc
3 http://docs.jboss.org/jbossas/jboss4guide/r4/html/ch7.chapt.html#ch7.jdbc.sect

http://www.hibernate.org/hib_docs/reference/en/html/session-configuration.html#configuration-hibernatejdbc
http://www.hibernate.org/hib_docs/reference/en/html/session-configuration.html#configuration-hibernatejdbc
http://docs.jboss.org/jbossas/jboss4guide/r4/html/ch7.chapt.html#ch7.jdbc.sect
http://docs.jboss.org/jbossas/jboss4guide/r4/html/ch7.chapt.html#ch7.jdbc.sect
http://www.hibernate.org/hib_docs/reference/en/html/session-configuration.html#configuration-hibernatejdbc
http://docs.jboss.org/jbossas/jboss4guide/r4/html/ch7.chapt.html#ch7.jdbc.sect

Chapter 6. Persistence

58

That will pass in the current hibernate session used by the container to the jBPM context. No hibernate
transaction is initiated when a session is injected in the context. So this can be used with the default
configurations.

The hibernate session that is passed in, will not be closed in the jbpmContext.close() method. This is
in line with the overall philosophy of programmatic injection which is explained in the next section.

6.1.5. Injecting resources programmatically
The configuration of jBPM provides the necessary information for jBPM to create a hibernate session
factory, hibernate session, jdbc connections, jbpm required services,... But all of these resources can
also be provided to jBPM programmatically. Just inject them in the jbpmContext. Injected resources
always are taken before creating resources from the jbpm configuration information.

The main philosophy is that the API-user remains responsible for all the things that the user injects
programmatically in the jbpmContext. On the other hand, all items that are opened by jBPM, will be
closed by jBPM. There is one exception. That is when fetching a connection that was created by
hibernate. When calling jbpmContext.getConnection(), this transfers responsibility for closing the
connection from jBPM to the API user.

JbpmContext jbpmContext = jbpmConfiguration.createJbpmContext();
try {
 // to inject resources in the jbpmContext before they are used, you can
 use
 jbpmContext.setConnection(connection);
 // or
 jbpmContext.setSession(session);
 // or
 jbpmContext.setSessionFactory(sessionFactory);

} finally {
 jbpmContext.close();
}

6.1.6. Advanced API usage
The DbPersistenceService maintains a lazy initialized hibernate session. All database access is done
through this hibernate session. All queries and updates done by jBPM are exposed by the XxxSession
classes like e.g. GraphSession, SchedulerSession, LoggingSession,... These session classes refer to
the hibernate queries and all use the same hibernate session underneath.

The XxxxSession classes are accessible via the JbpmContext as well.

6.2. Configuring the persistence service

6.2.1. The DbPersistenceServiceFactory
The DbPersistenceServiceFactory itself has 3 more configuration properties: isTransactionEnabled,
sessionFactoryJndiName and dataSourceJndiName. To specify any of these properties in the
jbpm.cfg.xml, you need to specify the service factory as a bean in the factory element like this:

The hibernate session factory

59

IMPORTANT: don't mix the short and long notation for configuring the factories. See also Section 5.1,
“Customizing factories”. If the factory is just a new instance of a class, you can use the factory attribute
to refer to the factory class name. But if properties in a factory must be configured, the long notation
must be used and factory and bean must be combined as nested elements. Like this:

 <jbpm-context>
 <service name="persistence">
 <factory>

 <bean class="org.jbpm.persistence.db.DbPersistenceServiceFactory">
 <field name="isTransactionEnabled"><false /></field>
 <field name="sessionFactoryJndiName">
 <string value="java:/myHibSessFactJndiName" />
 </field>
 <field name="dataSourceJndiName">
 <string value="java:/myDataSourceJndiName" />
 </field>
 </bean>
 </factory>
 </service>
 ...
 </jbpm-context>

• isTransactionEnabled: by default, jBPM will begin a hibernate transaction when the session is
fetched the first time and if the jbpmContext is closed, the hibernate transaction will be ended. The
transaction is then committed or rolled back depending on wether jbpmContext.setRollbackOnly
was called. The isRollbackOnly property is maintained in the TxService. To disable transactions
and prohibit jBPM from managing transactions with hibernate, configure the isTransactionEnabled
property to false as in the example above. This property only controls the behavior of the
jbpmContext, you can still call the DbPersistenceService.beginTransaction() directly with the API,
which ignores the isTransactionEnabled setting. For more info about transactions, see Section 6.3,
“Hibernate transactions”.

• sessionFactoryJndiName: by default, this is null, meaning that the session factory is not fetched
from JNDI. If set and a session factory is needed to create a hibernate session, the session factory
will be fetched from jndi using the provided JNDI name.

• dataSourceJndiName: by default, this is null and creation of JDBC connections will be delegated to
hibernate. By specifying a datasource, jBPM will fetch a JDBC connection from the datasource and
provide that to hibernate while opening a new session.

6.2.2. The hibernate session factory
By default, the DbPersistenceServiceFactory will use the resource hibernate.cfg.xml in the root of the
classpath to create the hibernate session factory. Note that the hibernate configuration file resource is
mapped in the property 'jbpm.hibernate.cfg.xml' and can be customized in the jbpm.cfg.xml. This is the
default configuration:

<jbpm-configuration>
 <!-- configuration resource files pointing to default configuration
 files in jbpm-{version}.jar -->

Chapter 6. Persistence

60

 <string name='resource.hibernate.cfg.xml'
 value='hibernate.cfg.xml' />
 <!-- <string name='resource.hibernate.properties'
 value='hibernate.properties' /> -->
</jbpm-configuration>

When the property resource.hibernate.properties is specified, the properties in that resource file
will overwrite all the properties in the hibernate.cfg.xml. Instead of updating the hibernate.cfg.xml to
point to your DB, the hibernate.properties can be used to handle jbpm upgrades conveniently: The
hibernate.cfg.xml can then be copied without having to reapply the changes.

6.2.3. Configuring a c3po connection pool
Please refer to the hibernate documentation: http://www.hibernate.org/214.html

6.2.4. Configuring a ehcache cache provider
If you want to configure jBPM with JBossCache, have a look at the jBPM configuration wiki page4

For more information about configuring a cache provider in hibernate, take a look at the hibernate
documentation, section 'Second level cache'5

The hibernate.cfg.xml that ships with jBPM includes the following line:

<property name="hibernate.cache.provider_class">org.hibernate.cache.HashtableCacheProvider</
property>

This is done to get people up and running as fast as possible without having to worry about
classpaths. Note that hibernate contains a warning that states not to use the HashtableCacheProvider
in production.

To use ehcache instead of the HashtableCacheProvider, simply remove that line and put ehcache.jar
on the classpath. Note that you might have to search for the right ehcache library version that is
compatible with your environmment. Previous incompatibilities between a JBoss version and a
particular ehcache version were the reason to change the default to HashtableCacheProvider.

6.3. Hibernate transactions
By default, jBPM will delegate transaction to hibernate and use the session per transaction pattern.
jBPM will begin a hibernate transaction when a hibernate session is opened. This will happen the first
time when a persistent operation is invoked on the jbpmContext. The transaction will be committed
right before the hibernate session is closed. That will happen inside the jbpmContext.close().

Use jbpmContext.setRollbackOnly() to mark a transaction for rollback. In that case, the
transaction will be rolled back right before the session is closed inside of the jbpmContext.close().

To prohibit jBPM from invoking any of the transaction methods on the hibernate API,
set the isTransactionEnabled property to false as explained in Section 6.2.1, “The
DbPersistenceServiceFactory” above.

4 http://wiki.jboss.org/wiki/Wiki.jsp?page=JbpmConfiguration
5 http://www.hibernate.org/hib_docs/reference/en/html/performance.html#performance-cache

http://www.hibernate.org/214.html
http://wiki.jboss.org/wiki/Wiki.jsp?page=JbpmConfiguration
http://www.hibernate.org/hib_docs/reference/en/html/performance.html#performance-cache
http://www.hibernate.org/hib_docs/reference/en/html/performance.html#performance-cache
http://wiki.jboss.org/wiki/Wiki.jsp?page=JbpmConfiguration
http://www.hibernate.org/hib_docs/reference/en/html/performance.html#performance-cache

JTA transactions

61

6.4. JTA transactions
The most common scenario for managed transactions is when using jBPM in a JEE application server
like JBoss. The most common scenario to bind your transactions to JTA is the following:

 <jbpm-context>
 <service name="persistence">
 <factory>

 <bean class="org.jbpm.persistence.db.DbPersistenceServiceFactory">
 <field name="isTransactionEnabled"><false /></field>
 <field name="isCurrentSessionEnabled"><true /></field>
 <field name="sessionFactoryJndiName">
 <string value="java:/myHibSessFactJndiName" />
 </field>
 </bean>
 </factory>
 </service>
 </jbpm-context>

Then you should specify in your hibernate session factory to use a datasource and bind hibernate
to the transaction manager. Make sure that you bind the datasource to an XA datasource in case
you are using more than one resource. For more information about binding hibernate to your
transaction manager, please, refer to paragraph 'Transaction strategy configuration' in the hibernate
documentation6.

<hibernate-configuration>
 <session-factory>

 <!-- hibernate dialect -->

 <property name="hibernate.dialect">org.hibernate.dialect.HSQLDialect</
property>

 <!-- DataSource properties (begin) -->
 <property name="hibernate.connection.datasource">java:/JbpmDS</
property>

 <!-- JTA transaction properties (begin) -->

 <property name="hibernate.transaction.factory_class">org.hibernate.transaction.JTATransactionFactory</
property>

 <property name="hibernate.transaction.manager_lookup_class">org.hibernate.transaction.JBossTransactionManagerLookup</
property>
 <property name="jta.UserTransaction">java:comp/UserTransaction</
property>

 </session-factory>

6 http://www.hibernate.org/hib_docs/v3/reference/en/html_single/#configuration-optional-transactionstrategy

http://www.hibernate.org/hib_docs/v3/reference/en/html_single/#configuration-optional-transactionstrategy
http://www.hibernate.org/hib_docs/v3/reference/en/html_single/#configuration-optional-transactionstrategy
http://www.hibernate.org/hib_docs/v3/reference/en/html_single/#configuration-optional-transactionstrategy

Chapter 6. Persistence

62

</hibernate-configuration>

Then make sure that you have configured hibernate to use an XA datasource.

These configurations allow for the enterprise beans to use CMT and still allow the web console to use
BMT. That is why the property 'jta.UserTransaction' is also specified.

6.5. Customizing queries
All the HQL queries that jBPM uses are centralized in one configuration file. That resource file is
referenced in the hibernate.cfg.xml configuration file like this:

<hibernate-configuration>
 <!-- hql queries and type defs -->
 <mapping resource="org/jbpm/db/hibernate.queries.hbm.xml" />
</hibernate-configuration>

To customize one or more of those queries, take a copy of the original file and put your
customized version somewhere on the classpath. Then update the reference 'org/jbpm/db/
hibernate.queries.hbm.xml' in the hibernate.cfg.xml to point to your customized version.

6.6. Database compatibility
jBPM runs on any database that is supported by hibernate.

The example configuration files in jBPM (src/config.files) specify the use of the hypersonic
in-memory database. That database is ideal during development and for testing. The hypersonic in-
memory database keeps all its data in memory and doesn't store it on disk.

6.6.1. Isolation level of the JDBC connection
Make sure that the database isolation level that you configure for your JDBC connection is at least
READ_COMMITTED.

Almost all features run OK even with READ_UNCOMMITTED (isolation level 0 and the only
isolation level supported by HSQLDB). But race conditions might occur in the job executor and with
synchronizing multiple tokens.

6.6.2. Changing the jBPM DB
Following is an indicative list of things to do when changing jBPM to use a different database:

• put the jdbc-driver library archive in the classpath

• update the hibernate configuration used by jBPM

• create the schema in the new database

6.6.3. The jBPM DB schema
The jbpm.db sub-project, contains a number of drivers, instructions and scripts to help you getting
started on your database of choice. Please, refer to the readme.html in the root of the jbpm.db project
for more information.

Known Issues

63

While jBPM is capable of generating DDL scripts for all database, these schemas are not always
optimized. So you might want to have your DBA review the DDL that is generated to optimize the
column types and use of indexes.

In development you might be interested in the following hibernate configuration: If you set hibernate
configuration property 'hibernate.hbm2ddl.auto' to 'create-drop' (e.g. in the hibernate.cfg.xml), the
schema will be automatically created in the database the first time it is used in an application. When
the application closes down, the schema will be dropped.

The schema generation can also be invoked programmatically with
jbpmConfiguration.createSchema() and jbpmConfiguration.dropSchema().

6.6.4. Known Issues
This section highlights the known-issues in databases that have been tested with jBPM.

6.6.4.1. Sybase Issues
Some Sybase distributions have a known issue with truncating binary files resulting in misbehavior
of the system. This limitation is resulting from the storage mechanism of binaries into the Sybase
database.

6.7. Combining your hibernate classes
In your project, you might use hibernate for your persistence. Combining your persistent classes with
the jBPM persistent classes is optional. There are two major benefits when combining your hibernate
persistence with jBPM's hibernate persistence:

First, session, connection and transaction management become easier. By combining jBPM and your
persistence into one hibernate session factory, there is one hibernate session, one jdbc connection
that handles both yours and jBPM's persistence. So automatically the jBPM updates are in the same
transaction as the updates to your own domain model. This can eliminates the need for using a
transaction manager.

Secondly, this enable you to drop your Hibernate persistent object in to the process variables without
any further hassle.

The easiest way to integrate your persistent classes with the jBPM persistent classes is by creating
one central hibernate.cfg.xml. You can take the jBPM src/config.files/hibernate.cfg.xml
as a starting point and add references to your own hibernate mapping files in there.

6.8. Customizing the jBPM hibernate mapping files
To customize any of the jBPM hibernate mapping files, you can proceed as follows:

• copy the jBPM hibernate mapping file(s) you want to copy from the sources (src/
java.jbpm/...) or from inside of the jbpm jar.

• put the copy anywhere you want on the classpath

• update the references to the customized mapping files in the hibernate.cfg.xml configuration file

Chapter 6. Persistence

64

6.9. Second level cache
jBPM uses Hibernate's second level cache for keeping the process definitions in memory after loading
them once. The process definition classes and collections are configured in the jBPM hibernate
mapping files with the cache element like this:

<cache usage="nonstrict-read-write"/>

Since process definitions (should) never change, it is ok to keep them in the second level cache. See
also Section 17.1.3, “Changing deployed process definitions”.

The second level cache is an important aspect of the JBoss jBPM implementation. If it weren't for
this cache, JBoss jBPM could have a serious drawback in comparison to the other techniques to
implement a BPM engine.

The caching strategy is set to nonstrict-read-write. At runtime, the caching strategy could be
set to read-only. But in that case, you would need a separate set of hibernate mapping files for
deploying a process. That is why we opted for the nonstrict-read-write.

Chapter 7.

65

The jBPM Database

7.1. Switching the Database Backend
Switching the JBoss jBPM database backend is reasonably straightforward. We will step through this
process using PostgreSQL and MySQL as an example. The process is identical for all other supported
databases. For a number of these supported databases, a number of JDBC drivers, Hibernate
configuration files and Ant build files to generate the database creation scripts are present in the jBPM
distribution in the DB sub-project. If you cannot find these files for the database you wish to use, you
should first make sure if Hibernate supports your database. If this is the case you can have a look at
files for one of the databases present in the DB project and mimic this using your own database.

For this document, we will use the JBoss jBPM Starter's Kit distribution. We will assume that this
starter's kit was extracted to a location on your machine named ${JBPM_SDK_HOME}. You will find
the DB sub-project of jBPM in the ${JBPM_SDK_HOME}/jbpm-db.

After installing the database, you will have to run the database creation scripts. These will create
the jBPM tables in the database. To make the default web app running with this new database, we
will have to update some configuration files of the server included in the Starter's Kit. For these
configuration changes, we will not go into too much detail. If you want to know more about the different
configuration settings in the server, we advise you to have a look at the JBoss documentation.

7.1.1. Isolation level
Whatever database that you use, make sure that the isolation level of the configured JDBC
connection is at least READ_COMMITTED, as explained in Section 6.6.1, “Isolation level of the JDBC
connection”.

7.1.2. Installing the PostgreSQL Database Manager
To install PostgreSQL or any other database you may be using, we refer to the installation manual of
these products. For Windows PostgreSQL installation is pretty straightforward. The installer creates
a dedicated Windows user and allows to define the database administrator. PostgreSQL comes with
an administration tool called pgAdmin III that we will use to create the jBPM database. A screenshot of
this tool right after creating the JbpmDB database with it is shown in the figure below.

Chapter 7. The jBPM Database

66

Figure 7.1. The PostgreSQL pgAdmin III tool after creating the JbpmDB database

After the installation of the database, we can use a database viewer tool like DBVisualizer to look
at the contents of the database. Before you can define a database connection with DBVisualizer,
you might have to add the PostgreSQL JDBC driver to the driver manager. Select 'Tools->Driver
Manager...' to open the driver manager window. Look at the figure below for an example of how to add
the PostgreSQL JDBC driver.

Installing the PostgreSQL Database Manager

67

Figure 7.2. Adding the JDBC driver to the driver manager

Now everything is set to define a database connection in DBVisualizer to our newly created
database. We will use this tool further in this document to make sure the creation scripts and process
deployment are working as expected. For an example of creating the connection in DBVisualizer we
refer to the following figure. As you can see, there are no tables present yet in this database. We will
create them in the following section.

Chapter 7. The jBPM Database

68

Figure 7.3. Create the connection to the jBPM database

Another thing worth mentioning is the Database URL above : 'jdbc:postgresql://localhost:5432/
JbpmDB'. If you created the JbpmDB database with another name, or if PostgreSQL is not running on
the localhost machine or on another port, you'll have to adapt your Database URL accordingly.

7.1.3. Installing the MySQL Database Manager
To install the MySQL database, please refer to the documentation provided by MySQL. The installation
is very easy and straightforward and only takes a few minutes in windows. You will need to use the
database Administration console provided by MySQL.

Creating the JBoss jBPM Database with your new PostGreSQL or MySQL

69

Figure 7.4. The MySQL Administrator

7.1.4. Creating the JBoss jBPM Database with your new
PostGreSQL or MySQL
In order to get the proper database script generated for your database, you should use the scripts
provided in the jBPM Starter's Kit. In the Starter's Kit under the ${JBPM_SSTARTERSKIT_HOME}/
jbpm-db/build/${DATABASE_TYPE}/scripts you will find create scripts for all the major databases.
Using your database admin console, navigate to the database and then open and execute the create
script we just referenced. Below are screen shots doing this for PostGreSQL and MySQL under their
respective admin consoles

7.1.4.1. Creating the JBoss jBPM Database with PostGreSQL
As already mentioned you will find the database scripts for a lot of the supported databases in the DB
sub project. The database scripts for PostgreSQL are found in the folder '${JBPM_SDK_HOME}/jbpm-
db/build/mysql/scripts. The creation script is called 'postgresql.create.sql'. Using DBVisualizer, you
can load this script by switching to the 'SQL Commander' tab and then selecting 'File->Load...'. In the
following dialog, navigate to the creation script file. The result of doing so is shown in the figure below.

Chapter 7. The jBPM Database

70

Figure 7.5. Load the database creation script

To execute this script with DBVisualizer, you select 'Database->Execute'. After this step all JBoss
jBPM tables are created. The situation is illustrated in the figure below.

Creating the JBoss jBPM Database with your new PostGreSQL or MySQL

71

Figure 7.6. Running the database creation script

7.1.4.2. Creating the JBoss jBPM Database with your new MySQL
Once you have installed MySQL go ahead and create a jbpm database, use any name you like for this
DB. In this example "jbpmdb" was used. A screenshot of the database is below.

Chapter 7. The jBPM Database

72

Figure 7.7. The MySQL Administrator after creating the jbpm database under MySQL

You will use the MySQL command line tool to load the database scripts. Open a DOS box or terminal
window and type the following command:

$ mysql -u root -p

You will be prompted for your MySQL password for the root account or whatever account you are
using to modify this database. After logging in, type the following command to use the newly created
jbpmdb:

use jbpmdb

Creating the JBoss jBPM Database with your new PostGreSQL or MySQL

73

Figure 7.8. Loading the database create scripts for MySQL

Now you can load the database script for jBPM by executing the following command:

source mysql.drop.create.sql

Once the script executes, you should have the following output in the MySQL command window:

Figure 7.9. Loading the database create scripts for MySQL

Chapter 7. The jBPM Database

74

7.1.5. Last Steps
After these steps, there is not yet any data present in the tables. For the jBPM web app to work, you
should at least create some records in the jbpm_id_user table. In order to have exactly the same
entries in this table as the default distribution of the starter's kit running on HSQLDB, we suggest to
run the script below.

insert into JBPM_ID_USER (ID_, CLASS_, NAME_, EMAIL_, PASSWORD_)
 values ('1', 'U', 'user', 'sample.user@sample.domain', 'user');
insert into JBPM_ID_USER (ID_,CLASS_, NAME_, EMAIL_, PASSWORD_)
 values ('2', 'U', 'manager', 'sample.manager@sample.domain',
 'manager');
insert into JBPM_ID_USER (ID_,CLASS_, NAME_, EMAIL_, PASSWORD_)
 values ('3', 'U', 'shipper', 'sample.shipper@sample.domain',
 'shipper');
insert into JBPM_ID_USER (ID_,CLASS_, NAME_, EMAIL_, PASSWORD_)
 values ('4', 'U', 'admin', 'sample.admin@sample.domain', 'admin');

7.1.6. Update the JBoss jBPM Server Configuration
Before we can really use our newly created database with the JBoss jBPM default web app
we will have to do some updates to the JBoss jBPM configuration. The location of the server is
'${JBPM_SDK_HOME}/jbpm-server'. The first thing we will be doing to update this configuration is
create a new datasource that points to our JbpmDB database. In a second step, we will make sure
that the default web app is talking to this datasource and not to the HSQLDB datasource anymore.

<?xml version="1.0" encoding="UTF-8"?>

<datasources>
 <local-tx-datasource>
 <jndi-name>JbpmDS</jndi-name>
 <connection-url>jdbc:postgresql://localhost:5432/JbpmDB</connection-
url>
 <driver-class>org.postgresql.Driver</driver-class>
 <user-name>user</user-name>
 <password>password</password>
 <metadata>
 <type-mapping>PostgreSQL 8.1</type-mapping>
 </metadata>
 </local-tx-datasource>
</datasources>

For MySQL, the datasource definition would look as follows:

<?xml version="1.0" encoding="UTF-8"?>

<datasources>
 <local-tx-datasource>
 <jndi-name>JbpmDS</jndi-name>
 <connection-url>jdbc:mysql://localhost:3306/jbpmdb</connection-url>
 <driver-class>com.mysql.jdbc.Driver</driver-class>

Update the JBoss jBPM Server Configuration

75

 <user-name>root</user-name>
 <password>root</password>
 <metadata>
 <type-mapping>MySQL</type-mapping>
 </metadata>
 </local-tx-datasource>
</datasources>

In order to create a new datasource, you should create a file named e.g. jbpm-ds.xml with the contents
shown in the program listing above. Of course it is possible that you have to change some of the
values in this file to accommodate for your particular situation. You then simply save this file in the
${JBPM_SDK_HOME}/jbpm-server/server/jbpm/deploy folder. Congratulations, you just created a
new DataSource for your JBoss jBPM server. Well, almost... To make things really work you will have
to copy the correct JDBC driver to the ${JBPM_SDK_HOME}/jbpm-server/server/jbpm/lib folder. We
already used this JDBC driver above when we were installing it in DBVisualizer to be able to browse
our newly created database. The file is named 'postgresql-8.1-*.jdbc3.jar' and it can be found in the
jdbc sub folder of your PostgreSQL installation folder.

For MySQL, copy the jdbc driver installed from the MySQL ConnectorJ package. The version you
need to use is currently the MySQL Connector/J 3.1 available from http://www.mysql.com/products/
connector/j/

If you are not using PostgreSQL or MySQL and are wondering how to create your own data source
definition for your particular database, you can find sample data source definitions in the JBoss
Application Server distribution under the 'docs/examples/jca' folder. if your database has a JDBC
driver available for it, you should have no problems using it with jBPM.

Making the default web app talk to the correct datasource is again not very difficult. The first step in
doing this is simply locate the 'jboss-service.xml' file in the folder '${JBPM_SDK_HOME}/jbpm-server/
server/jbpm/deploy/jbpm.sar/META-INF'. Change the contents of this file with the contents of the listing
below. An attentive reader will notice that the only difference is an exchange of the token 'DefaultDS'
by 'JbpmDS'.

<?xml version="1.0" encoding="UTF-8"?>

<server>
 <mbean code="org.jbpm.db.jmx.JbpmService"
 name="jboss.jbpm:name=DefaultJbpm,service=JbpmService"
 description="Default jBPM Service">
 <attribute name="JndiName">java:/jbpm/JbpmConfiguration</attribute>
 <depends>jboss.jca:service=DataSourceBinding,name=JbpmDS</depends>
 </mbean>
</server>

The last thing we have to do to make everything run is a manipulation of the 'jbpm.sar.cfg.jar' file
in the '${JBPM_SDK_HOME}/jbpm-server/server/jbpm/deploy/jbpm.sar' folder. You have to extract
this file somewhere and open the file named 'hibernate.cfg.xml'. Then replace the section containing
the jdbc connection properties. This section should look like shown in the listing below. There are
two changes in this file : the hibernate.connection.datasource property should point to the JbpmDS
datasource we created as the first step in this section and the hibernate.dialect property should match
the PostgreSQL or MySQL dialect.

Chapter 7. The jBPM Database

76

Below is a sample of the 2 changes required, comment out the version of the dialect you don't need
depending on the database you are using. You can get a list of supported database Dialect types from
here http://www.hibernate.org/hib_docs/v3/reference/en/html/session-configuration.html#configuration-
optional-dialects

<?xml version='1.0' encoding='utf-8'?>

<!DOCTYPE hibernate-configuration PUBLIC
 "-//Hibernate/Hibernate Configuration DTD 3.0//EN"
 "http://hibernate.sourceforge.net/hibernate-
configuration-3.0.dtd">

<hibernate-configuration>
 <session-factory>

 <!-- jdbc connection properties -->
 <!-- comment out the dialect not needed! -->

 <property name="hibernate.dialect">org.hibernate.dialect.PostgreSQLDialect</
property>

 <property name="hibernate.dialect">org.hibernate.dialect.MySQLDialect</
property>
 <property name="hibernate.connection.datasource">java:/JbpmDS</
property>

 <!-- other hibernate properties
 <property name="hibernate.show_sql">true</property>
 <property name="hibernate.format_sql">true</property>
 -->

 <!-- ## -->
 <!-- # mapping files with external dependencies # -->
 <!-- ## -->

 ...

 </session-factory>
</hibernate-configuration>

Now we are ready to fire up the server, and look if the web app works. You will not be able to start
any processes yet, as there are no processes deployed yet. To do this we refer to the document on
process definition deployment.

7.2. Database upgrades
In the jbpm.db sub project, you can find:

• An SQL script to create the jBPM 3.0.2 schema (for Hypersonic)

• An SQL script to create the jBPM 3.1 schema (for Hypersonic)

Database upgrades

77

• An SQL script to upgrade from a jBPM 3.0.2 schema to a jBPM 3.1 schema (for Hypersonic)

• The ant scripts to create the schema update

The schema SQL scripts can be found in directory hsqldb/upgrade.scripts.

To run the schema update tool for your database, follow these guidelines:

• Prerequisite: Make sure you installed the jbpm.db project right besides the jbpm project. In the
starters-kit, this is automatically the case. If jbpm is installed in a different location, update the
jbpm.3.location dir in build.properties accordingly.

• Prerequisite: You should have the proper JDBC driver jar for your database.

• Update the properties in the build.properties in the root of the jbpm.db project:

• upgrade.hibernate.properties: a properties file that contains the connection properties to your
database in hibernate style.

• upgrade.libdir: the directory containing the jdbc driver jars for your database.

• upgrade.old.schema.script: the schema generation script to create the old database schema. (if
it already exists, you don't need this property.)

• For creating the old schema and then calculating the differences, run the ant script 'ant
upgrade.db.script'

• For only calculating the update script without first loading the old db schema, run the ant script 'ant
upgrade.hibernate.schema.update'

• After successful completion, you'll find the upgrade script in build/database.upgrade.sql

For upgrading from jBPM 3.0.2 to jBPM 3.1, the generated upgrade SQL script (for HSQLDB) is
illustrated in the listing below:

New JBPM_MESSAGE table
create table JBPM_MESSAGE (
 ID_ bigint generated by default as identity (start with 1),
 CLASS_ char(1) not null,
 DESTINATION_ varchar(255),
 EXCEPTION_ varchar(255),
 ISSUSPENDED_ bit,
 TOKEN_ bigint,
 TEXT_ varchar(255),
 ACTION_ bigint,
 NODE_ bigint,
 TRANSITIONNAME_ varchar(255),
 TASKINSTANCE_ bigint,
 primary key (ID_)
);

Added columns
alter table JBPM_ACTION add column ACTIONEXPRESSION_ varchar(255);
alter table JBPM_ACTION add column ISASYNC_ bit;

Chapter 7. The jBPM Database

78

alter table JBPM_COMMENT add column VERSION_ integer;
alter table JBPM_ID_GROUP add column PARENT_ bigint;
alter table JBPM_NODE add column ISASYNC_ bit;
alter table JBPM_NODE add column DECISIONEXPRESSION_ varchar(255);
alter table JBPM_NODE add column ENDTASKS_ bit;
alter table JBPM_PROCESSINSTANCE add column VERSION_ integer;
alter table JBPM_PROCESSINSTANCE add column ISSUSPENDED_ bit;
alter table JBPM_RUNTIMEACTION add column VERSION_ integer;
alter table JBPM_SWIMLANE add column ACTORIDEXPRESSION_ varchar(255);
alter table JBPM_SWIMLANE add column POOLEDACTORSEXPRESSION_
 varchar(255);
alter table JBPM_TASK add column ISSIGNALLING_ bit;
alter table JBPM_TASK add column ACTORIDEXPRESSION_ varchar(255);
alter table JBPM_TASK add column POOLEDACTORSEXPRESSION_ varchar(255);
alter table JBPM_TASKINSTANCE add column CLASS_ char(1);
alter table JBPM_TASKINSTANCE add column ISSUSPENDED_ bit;
alter table JBPM_TASKINSTANCE add column ISOPEN_ bit;
alter table JBPM_TIMER add column ISSUSPENDED_ bit;
alter table JBPM_TOKEN add column VERSION_ integer;
alter table JBPM_TOKEN add column ISSUSPENDED_ bit;
alter table JBPM_TOKEN add column SUBPROCESSINSTANCE_ bigint;
alter table JBPM_VARIABLEINSTANCE add column TASKINSTANCE_ bigint;

Added constraints
alter table JBPM_ID_GROUP add constraint FK_ID_GRP_PARENT foreign key
 (PARENT_) references JBPM_ID_GROUP;
alter table JBPM_MESSAGE add constraint FK_MSG_TOKEN foreign key (TOKEN_)
 references JBPM_TOKEN;
alter table JBPM_MESSAGE add constraint FK_CMD_NODE foreign key (NODE_)
 references JBPM_NODE;
alter table JBPM_MESSAGE add constraint FK_CMD_ACTION foreign key
 (ACTION_) references JBPM_ACTION;
alter table JBPM_MESSAGE add constraint FK_CMD_TASKINST foreign key
 (TASKINSTANCE_) references JBPM_TASKINSTANCE;
alter table JBPM_TOKEN add constraint FK_TOKEN_SUBPI foreign key
 (SUBPROCESSINSTANCE_) references JBPM_PROCESSINSTANCE;
alter table JBPM_VARIABLEINSTANCE add constraint FK_VAR_TSKINST foreign
 key (TASKINSTANCE_) references JBPM_TASKINSTANCE;

7.3. Starting hsqldb manager on JBoss
Not really crucial for jBPM, but in some situations during development, it can be convenient to
open the hypersonic database manager that gives you access to the data in the JBoss hypersonic
database.

Start by opening a browser and navigating to the jBPM server JMX console. The URL you should use
in your browser for doing this is : http://localhost:8080/jmx-console. Of course this will look slightly
different if you are running jBPM on another machine or on another port than the default one. A
screenshot of the resulting page is shown in the figure below.

Starting hsqldb manager on JBoss

79

Figure 7.10. The JBoss jBPM JMX Console

If you click on the link 'database=jbpmDB,service=Hypersonic' under the JBoss entries, you will see
the JMX MBean view of the HSQLDB database manager. Scrolling a bit down on this page, in the
operations section, you will see the 'startDatabaseManager()' operation. This is illustrated in the
screenshot below.

Chapter 7. The jBPM Database

80

Figure 7.11. The HSQLDB MBean

Clicking the invoke button will start the HSQLDB Database Manager application. This is a rather harsh
database client tool, but it works adequately for our purposes of executing this generated script. You
may have to ALT-TAB to get to view this application as it may be covered by another window. The
figure below shows this application with the above script loaded and ready to execute. Pushing the
'Execute SQL' button will execute the script and effectively update your database.

Starting hsqldb manager on JBoss

81

Figure 7.12. The HSQLDB Database Manager

82

Chapter 8.

83

Process Modeling

8.1. Overview
A process definition represents a formal specification of a business process and is based on a directed
graph. The graph is composed of nodes and transitions. Every node in the graph is of a specific type.
The type of the node defines the runtime behavior. A process definition has exactly one start state.

A token is one path of execution. A token is the runtime concept that maintains a pointer to a node in
the graph.

A process instance is one execution of a process definition. When a process instance is created,
a token is created for the main path of execution. This token is called the root token of the process
instance and it is positioned in the start state of the process definition.

A signal instructs a token to continue graph execution. When receiving an unnamed signal, the token
will leave its current node over the default leaving transition. When a transition-name is specified in the
signal, the token will leave its node over the specified transition. A signal given to the process instance
is delegated to the root token.

After the token has entered a node, the node is executed. Nodes themselves are responsible for the
continuation of the graph execution. Continuation of graph execution is done by making the token
leave the node. Each node type can implement a different behavior for the continuation of the graph
execution. A node that does not propagate execution will behave as a state.

Actions are pieces of java code that are executed upon events in the process execution. The graph
is an important instrument in the communication about software requirements. But the graph is just
one view (projection) of the software being produced. It hides many technical details. Actions are a
mechanism to add technical details outside of the graphical representation. Once the graph is put in
place, it can be decorated with actions. The main event types are entering a node, leaving a node and
taking a transition.

8.2. Process graph
The basis of a process definition is a graph that is made up of nodes and transitions. That information
is expressed in an xml file called processdefinition.xml. Each node has a type like e.g.
state, decision, fork, join,... Each node has a set of leaving transitions. A name can be given to the
transitions that leave a node in order to make them distinct. For example: The following diagram
shows a process graph of the jBAY auction process.

Chapter 8. Process Modeling

84

Figure 8.1. The auction process graph

Below is the process graph of the jBAY auction process represented as xml:

<process-definition>

 <start-state>
 <transition to="auction" />
 </start-state>

 <state name="auction">
 <transition name="auction ends" to="salefork" />
 <transition name="cancel" to="end" />
 </state>

 <fork name="salefork">
 <transition name="shipping" to="send item" />
 <transition name="billing" to="receive money" />
 </fork>

Nodes

85

 <state name="send item">
 <transition to="receive item" />
 </state>

 <state name="receive item">
 <transition to="salejoin" />
 </state>

 <state name="receive money">
 <transition to="send money" />
 </state>

 <state name="send money">
 <transition to="salejoin" />
 </state>

 <join name="salejoin">
 <transition to="end" />
 </join>

 <end-state name="end" />

</process-definition>

8.3. Nodes
A process graph is made up of nodes and transitions. For more information about the graph and its
execution model, refer to Chapter 3, Graph Oriented Programming.

Each node has a specific type. The node type determines what will happen when an execution arrives
in the node at runtime. jBPM has a set of node types that you can use. Alternatively, you can write
custom code for implementing your own specific node behavior.

8.3.1. Node responsibilities
Each node has 2 main responsibilities: First, it can execute plain java code. Typically the plain java
code relates to the function of the node. E.g. creating a few task instances, sending a notification,
updating a database,... Secondly, a node is responsible for propagating the process execution.
Basically, each node has the following options for propagating the process execution:

• 1. not propagate the execution. In that case the node behaves as a wait state.

• 2. propagate the execution over one of the leaving transitions of the node. This means that
the token that originally arrived in the node is passed over one of the leaving transitions with the API
call executionContext.leaveNode(String). The node will now act as an automatic node in the sense
it can execute some custom programming logic and then continue process execution automatically
without waiting.

• 3. create new paths of execution. A node can decide to create new tokens. Each new token
represents a new path of execution and each new token can be launched over the node's leaving
transitions. A good example of this kind of behavior is the fork node.

Chapter 8. Process Modeling

86

• 4. end paths of execution. A node can decide to end a path of execution. That means that the
token is ended and the path of execution is finished.

• 5. more general, a node can modify the whole runtime structure of the process instance. The
runtime structure is a process instance that contains a tree of tokens. Each token represents a path
of execution. A node can create and end tokens, put each token in a node of the graph and launch
tokens over transitions.

jBPM contains --as any workflow and BPM engine-- a set of pre-implemented node types that have
a specific documented configuration and behavior. But the unique thing about jBPM and the Graph
Oriented Programming foundation1 is that we open up the model for developers. Developers can write
their own node behavior very easy and use it in a process.

That is where traditional workflow and BPM systems are much more closed. They usually supply
a fixed set of node types (called the process language). Their process language is closed and the
execution model is hidden in the runtime environment. Research of workflow patterns2 has shown
that any process language is not powerful enough. We have decided for a simple model and allow
developers to write their own node types. That way the JPDL process language is open ended.

Next, we discuss the most important node types of JPDL.

8.3.2. Nodetype task-node
A task node represents one or more tasks that are to be performed by humans. So when execution
arrives in a task node, task instances will be created in the task lists of the workflow participants. After
that, the node will behave as a wait state. So when the users perform their task, the task completion
will trigger the resuming of the execution. In other words, that leads to a new signal being called on the
token.

8.3.3. Nodetype state
A state is a bare-bones wait state. The difference with a task node is that no task instances will be
created in any task list. This can be useful if the process should wait for an external system. E.g. upon
entry of the node (via an action on the node-enter event), a message could be sent to the external
system. After that, the process will go into a wait state. When the external system send a response
message, this can lead to a token.signal(), which triggers resuming of the process execution.

8.3.4. Nodetype decision
Actually there are 2 ways to model a decision. The distinction between the two is based on *who*
is making the decision. Should the decision made by the process (read: specified in the process
definition). Or should an external entity provide the result of the decision.

When the decision is to be taken by the process, a decision node should be used. There are basically
2 ways to specify the decision criteria. Simplest is by adding condition elements on the transitions.
Conditions are EL expressions or beanshell scripts that return a boolean.

At runtime the decision node will FIRST loop over its leaving transitions THAT HAVE a condition
specified. It will evaluate those transitions first in the order as specified in the xml. The first transition
for which the condition resolves to 'true' will be taken. If all transitions with a condition resolve to false,
the default transition (the first in the XML) is taken.

1 Chapter 3, Graph Oriented Programming.
2 http://www.workflowpatterns.com

http://www.workflowpatterns.com
http://www.workflowpatterns.com

Nodetype fork

87

Another approach is to use an expression that returns the name of the transition to take. With the
'expression' attribute, you can specify an expression on the decision that has to resolve to one of the
leaving transitions of the decision node.

Next approach is the 'handler' element on the decision, that element can be used to specify an
implementation of the DecisionHandler interface can be specified on the decision node. Then the
decision is calculated in a java class and the selected leaving transition is returned by the decide-
method of the DecisionHandler implementation.

When the decision is taken by an external party (meaning: not part of the process definition),
you should use multiple transitions leaving a state or wait state node. Then the leaving transition
can be provided in the external trigger that resumes execution after the wait state is finished.
E.g. Token.signal(String transitionName) and TaskInstance.end(String
transitionName).

8.3.5. Nodetype fork
A fork splits one path of execution into multiple concurrent paths of execution. The default fork
behavior is to create a child token for each transition that leaves the fork, creating a parent-child
relation between the token that arrives in the fork.

8.3.6. Nodetype join
The default join assumes that all tokens that arrive in the join are children of the same parent. This
situation is created when using the fork as mentioned above and when all tokens created by a fork
arrive in the same join. A join will end every token that enters the join. Then the join will examine the
parent-child relation of the token that enters the join. When all sibling tokens have arrived in the join,
the parent token will be propagated over the (unique!) leaving transition. When there are still sibling
tokens active, the join will behave as a wait state.

8.3.7. Nodetype node
The type node serves the situation where you want to write your own code in a node. The nodetype
node expects one sub-element action. The action is executed when the execution arrives in the
node. The code you write in the actionhandler can do anything you want but it is also responsible for
propagating the execution3.

This node can be used if you want to use a JavaAPI to implement some functional logic that is
important for the business analyst. By using a node, the node is visible in the graphical representation
of the process. For comparison, actions --covered next-- will allow you to add code that is invisible in
the graphical representation of the process, in case that logic is not important for the business analyst.

8.4. Transitions
Transitions have a source node and a destination node. The source node is represented with the
property from and the destination node is represented by the property to.

A transition can optionally have a name. Note that most of the jBPM features depend on the
uniqueness of the transition name. If more than one transition has the same name, the first
transition with the given name is taken. In case duplicate transition names occur in a node,

3 Section 8.3.1, “Node responsibilities”.

Chapter 8. Process Modeling

88

the method Map getLeavingTransitionsMap() will return less elements than List
getLeavingTransitions().

The default transition is the first transition in the list.

8.5. Actions
Actions are pieces of java code that are executed upon events in the process execution. The graph
is an important instrument in the communication about software requirements. But the graph is just
one view (projection) of the software being produced. It hides many technical details. Actions are a
mechanism to add technical details outside of the graphical representation. Once the graph is put in
place, it can be decorated with actions. This means that java code can be associated with the graph
without changing the structure of the graph. The main event types are entering a node, leaving a node
and taking a transition.

Note the difference between an action that is placed in an event versus an action that is placed in a
node. Actions that are put in an event are executed when the event fires. Actions on events have no
way to influence the flow of control of the process. It is similar to the observer pattern. On the other
hand, an action that is put on a node4 has the responsibility of propagating the execution5.

Let's look at an example of an action on an event. Suppose we want to do a database update on a
given transition. The database update is technically vital but it is not important to the business analyst.

Figure 8.2. A database update action

public class RemoveEmployeeUpdate implements ActionHandler {
 public void execute(ExecutionContext ctx) throws Exception {
 // get the fired employee from the process variables.
 String firedEmployee = (String)
 ctx.getContextInstance().getVariable("fired employee");

 // by taking the same database connection as used for the jbpm
 updates, we

4 Section 8.3.7, “Nodetype node”.
5 Section 8.3.1, “Node responsibilities”.

Action configuration

89

 // reuse the jbpm transaction for our database update.
 Connection connection =
 ctx.getProcessInstance().getJbpmSession().getSession().getConnection();
 Statement statement = connection.createStatement();
 statement.execute("DELETE FROM EMPLOYEE WHERE ...");
 statement.execute();
 statement.close();
 }
}

<process-definition name="yearly evaluation">
 <state name="fire employee">
 <transition to="collect badge">
 <action class="com.nomercy.hr.RemoveEmployeeUpdate" />
 </transition>
 </state>

 <state name="collect badge">

</process-definition>

8.5.1. Action configuration
For more information about adding configurations to your custom actions and how to specify the
configuration in the processdefinition.xml, see Section 17.2.3, “Configuration of delegations”

8.5.2. Action references
Actions can be given a name. Named actions can be referenced from other locations where actions
can be specified. Named actions can also be put as child elements in the process definition.

This feature is interesting if you want to limit duplication of action configurations (e.g. when the action
has complicated configurations). Another use case is execution or scheduling of runtime actions.

8.5.3. Events
Events specify moments in the execution of the process. The jBPM engine will fire events during graph
execution. This occurs when jbpm calculates the next state (read: processing a signal). An event is
always relative to an element in the process definition like e.g. the process definition, a node or a
transition. Most process elements can fire different types of events. A node for example can fire a
node-enter event and a node-leave event. Events are the hooks for actions. Each event has a list
of actions. When the jBPM engine fires an event, the list of actions is executed.

8.5.4. Event propagation
Superstates create a parent-child relation in the elements of a process definition. Nodes and
transitions contained in a superstate have that superstate as a parent. Top level elements have the
process definition as a parent. The process definition does not have a parent. When an event is fired,
the event will be propagated up the parent hierarchy. This allows e.g. to capture all transition events in
a process and associate actions with these events in a centralized location.

Chapter 8. Process Modeling

90

8.5.5. Script
A script is an action that executes a beanshell script. For more information about beanshell, see the
beanshell website6. By default, all process variables are available as script-variables and no script-
variables will be written to the process variables. Also the following script-variables will be available :

• executionContext

• token

• node

• task

• taskInstance

<process-definition>
 <event type="node-enter">
 <script>
 System.out.println("this script is entering node "+node);
 </script>
 </event>
 ...
</process-definition>

To customize the default behavior of loading and storing variables into the script, the variable
element can be used as a sub-element of script. In that case, the script expression also has to be put
in a sub-element of script: expression.

<process-definition>
 <event type="process-end">
 <script>
 <expression>
 a = b + c;
 </expression>
 <variable name='XXX' access='write' mapped-name='a' />
 <variable name='YYY' access='read' mapped-name='b' />
 <variable name='ZZZ' access='read' mapped-name='c' />
 </script>
 </event>
 ...
</process-definition>

Before the script starts, the process variables YYY and ZZZ will be made available to the script as
script-variables b and c respectively. After the script is finished, the value of script-variable a is stored
into the process variable XXX.

If the access attribute of variable contains 'read', the process variable will be loaded as a script-
variable before script evaluation. If the access attribute contains 'write', the script-variable will be
stored as a process variable after evaluation. The attribute mapped-name can make the process

6 http://www.beanshell.org/

http://www.beanshell.org/
http://www.beanshell.org/
http://www.beanshell.org/

Custom events

91

variable available under another name in the script. This can be handy when your process variable
names contain spaces or other invalid script-literal-characters.

8.5.6. Custom events
Note that it's possible to fire your own custom events at will during the execution of a process. Events
are uniquely defined by the combination of a graph element (nodes, transitions, process definitions
and superstates are graph elements) and an event-type (java.lang.String). jBPM defines a set of
events that are fired for nodes, transitions and other graph elements. But as a user, you are free to fire
your own events. In actions, in your own custom node implementations, or even outside the execution
of a process instance, you can call the GraphElement.fireEvent(String eventType,
ExecutionContext executionContext);. The names of the event types can be chosen freely.

8.6. Superstates
A Superstate is a group of nodes. Superstates can be nested recursively. Superstates can be used to
bring some hierarchy in the process definition. For example, one application could be to group all the
nodes of a process in phases. Actions can be associated with superstate events. A consequence is
that a token can be in multiple nested nodes at a given time. This can be convenient to check whether
a process execution is e.g. in the start-up phase. In the jBPM model, you are free to group any set of
nodes in a superstate.

8.6.1. Superstate transitions
All transitions leaving a superstate can be taken by tokens in nodes contained within the super state.
Transitions can also arrive in superstates. In that case, the token will be redirected to the first node
in the superstate. Nodes from outside the superstate can have transitions directly to nodes inside the
superstate. Also, the other way round, nodes within superstates can have transitions to nodes outside
the superstate or to the superstate itself. Superstates also can have self references.

8.6.2. Superstate events
There are 2 events unique to superstates: superstate-enter and superstate-leave. These
events will be fired no matter over which transitions the node is entered or left respectively. As long as
a token takes transitions within the superstate, these events are not fired.

Note that we have created separate event types for states and superstates. This is to make it easy to
distinct between superstate events and node events that are propagated from within the superstate.

8.6.3. Hierarchical names
Node names have to be unique in their scope. The scope of the node is its node-collection. Both the
process definition and the superstate are node collections. To refer to nodes in superstates, you have
to specify the relative, slash (/) separated name. The slash separates the node names. Use '..' to refer
to an upper level. The next example shows how to reference a node in a superstate:

<process-definition>
 <state name="preparation">
 <transition to="phase one/invite murphy"/>
 </state>
 <super-state name="phase one">

Chapter 8. Process Modeling

92

 <state name="invite murphy"/>
 </super-state>
</process-definition>

The next example will show how to go up the superstate hierarchy

<process-definition>
 <super-state name="phase one">
 <state name="preparation">
 <transition to="../phase two/invite murphy"/>
 </state>
 </super-state>
 <super-state name="phase two">
 <state name="invite murphy"/>
 </super-state>
</process-definition>

8.7. Exception handling
The exception handling mechanism of jBPM only applies to java exceptions. Graph execution on itself
cannot result in problems. It is only the execution of delegation classes that can lead to exceptions.

On process-definitions, nodes and transitions, a list of exception-handlers can be
specified. Each exception-handler has a list of actions. When an exception occurs in a delegation
class, the process element parent hierarchy is searched for an appropriate exception-handler.
When it is found, the actions of the exception-handler are executed.

Note that the exception handling mechanism of jBPM is not completely similar to the java exception
handling. In java, a caught exception can have an influence on the control flow. In the case of jBPM,
control flow cannot be changed by the jBPM exception handling mechanism. The exception is
either caught or uncaught. Uncaught exceptions are thrown to the client (e.g. the client that called
the token.signal()) or the exception is caught by a jBPM exception-handler. For caught
exceptions, the graph execution continues as if no exception has occurred.

Note that in an action that handles an exception, it is possible to put the token in an arbitrary node in
the graph with Token.setNode(Node node).

8.8. Process composition
Process composition is supported in jBPM by means of the process-state. The process state
is a state that is associated with another process definition. When graph execution arrives in the
process state, a new process instance of the sub-process is created and it is associated with the path
of execution that arrived in the process state. The path of execution of the super process will wait until
the sub process instance has ended. When the sub process instance ends, the path of execution of
the super process will leave the process state and continue graph execution in the super process.

<process-definition name="hire">
 <start-state>
 <transition to="initial interview" />
 </start-state>
 <process-state name="initial interview">

Custom node behavior

93

 <sub-process name="interview" />
 <variable name="a" access="read,write" mapped-name="aa" />
 <variable name="b" access="read" mapped-name="bb" />
 <transition to="..." />
 </process-state>
 ...
</process-definition>

This 'hire' process contains a process-state that spawns an 'interview' process. When execution
arrives in the 'first interview', a new execution (=process instance) of the 'interview' process is created.
If no explicit version is specified, the latest version of the sub process as known when deploying the
'hire' process is used. To make jBPM instantiate a specific version the optional version attribute can
be specified. To postpone binding the specified or latest version until actually creating the sub process,
the optional binding attribute should be set to late. Then variable 'a' from the hire process is copied
into variable 'aa' from the interview process. The same way, hire variable 'b' is copied into interview
variable 'bb'. When the interview process finishes, only variable 'aa' from the interview process is
copied back into the 'a' variable of the hire process.

In general, When a sub-process is started, all variables with read access are read from the super
process and fed into the newly created sub process before the signal is given to leave the start state.
When the sub process instances is finished, all the variables with write access will be copied from
the sub process to the super process. The mapped-name attribute of the variable element allows
you to specify the variable name that should be used in the sub process.

8.9. Custom node behavior
In jBPM, it's quite easy to write your own custom nodes. For creating custom nodes, an
implementation of the ActionHandler has to be written. The implementation can execute any business
logic, but also has the responsibility to propagate the graph execution. Let's look at an example
that will update an ERP-system. We'll read an amount from the ERP-system, add an amount that is
stored in the process variables and store the result back in the ERP-system. Based on the size of the
amount, we have to leave the node via the 'small amounts' or the 'large amounts' transition.

Figure 8.3. The update erp example process snippet

public class AmountUpdate implements ActionHandler {
 public void execute(ExecutionContext ctx) throws Exception {
 // business logic
 Float erpAmount = ...get amount from erp-system...;
 Float processAmount = (Float)
 ctx.getContextInstance().getVariable("amount");

Chapter 8. Process Modeling

94

 float result = erpAmount.floatValue() + processAmount.floatValue();
 ...update erp-system with the result...;

 // graph execution propagation
 if (result >
<xslthl:number>5000</xslthl:number>
) {
 ctx.leaveNode(ctx, "big amounts");
 } else {
 ctx.leaveNode(ctx, "small amounts");
 }
 }
}

It is also possible to create and join tokens in custom node implementations. For an example on how
to do this, check out the Fork and Join node implementation in the jbpm source code.

8.10. Graph execution
The graph execution model of jBPM is based on interpretation of the process definition and the chain
of command pattern.

Interpretation of the process definition means that the process definition data is stored in the
database. At runtime the process definition information is used during process execution. Note for
the concerned : we use Hibernate's second level cache to avoid loading of definition information at
runtime. Since the process definitions don't change (see process versioning) hibernate can cache the
process definitions in memory.

The chain of command pattern means that each node in the graph is responsible for propagating the
process execution. If a node does not propagate execution, it behaves as a wait state.

The idea is to start execution on process instances and that the execution continues till it enters a wait
state.

A token represents a path of execution. A token has a pointer to a node in the process graph. During
wait states, the tokens can be persisted in the database. Now we are going to look at the algorithm for
calculating the execution of a token. Execution starts when a signal is sent to a token. The execution is
then passed over the transitions and nodes via the chain of command pattern. These are the relevant
methods in a class diagram.

Figure 8.4. The graph execution related methods

When a token is in a node, signals can be sent to the token. Sending a signal is an instruction
to start execution. A signal must therefore specify a leaving transition of the token's current

Transaction demarcation

95

node. The first transition is the default. In a signal to a token, the token takes its current node
and calls the Node.leave(ExecutionContext,Transition) method. Think of the
ExecutionContext as a Token because the main object in an ExecutionContext is a Token. The
Node.leave(ExecutionContext,Transition) method will fire the node-leave event and call
the Transition.take(ExecutionContext). That method will fire the transition event and
call the Node.enter(ExecutionContext) on the destination node of the transition. That method
will fire the node-enter event and call the Node.execute(ExecutionContext). Each type of
node has its own behaviour that is implemented in the execute method. Each node is responsible
for propagating graph execution by calling the Node.leave(ExecutionContext,Transition)
again. In summary:

• Token.signal(Transition)

• --> Node.leave(ExecutionContext,Transition)

• --> Transition.take(ExecutionContext)

• --> Node.enter(ExecutionContext)

• --> Node.execute(ExecutionContext)

Note that the complete calculation of the next state, including the invocation of the actions is done
in the thread of the client. A common misconception is that all calculations *must* be done in the
thread of the client. As with any asynchronous invocation, you can use asynchronous messaging
(JMS) for that. When the message is sent in the same transaction as the process instance update,
all synchronization issues are taken care of. Some workflow systems use asynchronous messaging
between all nodes in the graph. But in high throughput environments, this algorithm gives much more
control and flexibility for tweaking performance of a business process.

8.11. Transaction demarcation
As explained in Section 8.10, “Graph execution” and Chapter 3, Graph Oriented Programming,
jBPM runs the process in the thread of the client and is by nature synchronous. Meaning that the
token.signal() or taskInstance.end() will only return when the process has entered a new
wait state.

The jPDL feature that we describe here from a modeling perspective is Section 3.3.4, “Asynchronous
continuations”.

In most situations this is the most straightforward approach because the process execution can easily
be bound to server side transactions: the process moves from one state to the next in one transaction.

In some scenarios where in-process calculations take a lot of time, this behavior might be undesirable.
To cope with this, jBPM includes an asynchronous messaging system that allows to continue a
process in an asynchronous manner. Of course, in a java enterprise environment, jBPM can be
configured to use a JMS message broker instead of the built in messaging system.

In any node, jPDL supports the attribute async="true". Asynchronous nodes will not be executed in
the thread of the client. Instead, a message is sent over the asynchronous messaging system and the
thread is returned to the client (meaning that the token.signal() or taskInstance.end() will
return).

Note that the jbpm client code can now commit the transaction. The sending of the message
should be done in the same transaction as the process updates. So the net result of the

Chapter 8. Process Modeling

96

transaction is that the token has moved to the next node (which has not yet been executed) and
a org.jbpm.command.ExecuteNodeCommand-message has been sent on the asynchronous
messaging system to the jBPM Command Executor.

The jBPM Command Executor reads commands from the queue and executes them. In the case of
the org.jbpm.command.ExecuteNodeCommand, the process will be continued with executing the
node. Each command is executed in a separate transaction.

So in order for asynchronous processes to continue, a jBPM Command Executor needs to be running.
The simplest way to do that is to configure the CommandExecutionServlet in your web application.
Alternatively, you should make sure that the CommandExecutor thread is up and running in any other
way.

As a process modeler, you should not really be concerned with all this asynchronous messaging. The
main point to remember is transaction demarcation: By default jBPM will operate in the transaction of
the client, doing the whole calculation until the process enters a wait state. Use async="true" to
demarcate a transaction in the process.

Let's look at an example:

<start-state>
 <transition to="one" />
</start-state>
<node async="true" name="one">
 <action class="com...MyAutomaticAction" />
 <transition to="two" />
</node>
<node async="true" name="two">
 <action class="com...MyAutomaticAction" />
 <transition to="three" />
</node>
<node async="true" name="three">
 <action class="com...MyAutomaticAction" />
 <transition to="end" />
</node>
<end-state name="end" />
...

Client code to interact with process executions (starting and resuming) is exactly the same as with
normal (synchronous) processes:

//start a transaction
JbpmContext jbpmContext = jbpmConfiguration.createContext();
try {
 ProcessInstance processInstance = jbpmContext.newProcessInstance("my
 async process");
 processInstance.signal();
 jbpmContext.save(processInstance);
} finally {
 jbpmContext.close();
}

Transaction demarcation

97

After this first transaction, the root token of the process instance will point to node one and a
ExecuteNodeCommandmessage will have been sent to the command executor.

In a subsequent transaction, the command executor will read the message from the queue and
execute node one. The action can decide to propagate the execution or enter a wait state. If the action
decides to propagate the execution, the transaction will be ended when the execution arrives at node
two. And so on, and so on...

98

Chapter 9.

99

Context
Context is about process variables. Process variables are key-value pairs that maintain information
related to the process instance. Since the context must be able to be stored in a database, some
minor limitations apply.

9.1. Accessing variables
org.jbpm.context.exe.ContextInstance serves as the central interface to work with process variables.
You can obtain the ContextInstance from a ProcessInstance like this :

ProcessInstance processInstance = ...;
ContextInstance contextInstance = (ContextInstance)
 processInstance.getInstance(ContextInstance.class);

The most basic operations are

void ContextInstance.setVariable(String variableName, Object value);
void ContextInstance.setVariable(String variableName, Object value, Token
 token);
Object ContextInstance.getVariable(String variableName);
Object ContextInstance.getVariable(String variableName, Token token);

The variable names are java.lang.String. By default, jBPM supports the following value types:

• java.lang.String

• java.lang.Boolean

• java.lang.Character

• java.lang.Float

• java.lang.Double

• java.lang.Long

• java.lang.Byte

• java.lang.Short

• java.lang.Integer

• java.util.Date

• byte[]

• java.io.Serializable

• classes that are able to be persisted with hibernate

Also an untyped null value can be stored persistently.

Chapter 9. Context

100

All other types can be stored in the process variables without any problem. But it will cause an
exception when you try to save the process instance.

To configure jBPM for storing hibernate persistent objects in the variables, see Storing hibernate
persistent objects.

9.2. Variable lifetime
Variables do not have to be declared in the process archive. At runtime, you can just put any java
object in the variables. If that variable was not present, it will be created. Just the same as with a plain
java.util.Map.

Variables can be deleted with

ContextInstance.deleteVariable(String variableName);
ContextInstance.deleteVariable(String variableName, Token token);

Automatic changing of types is now supported. This means that it is allowed to overwrite a variable
with a value of a different type. Of course, you should try to limit the number of type changes since this
creates a more db communication then a plain update of a column.

9.3. Variable persistence
The variables are a part of the process instance. Saving the process instance in the database, brings
the database in sync with the process instance. The variables are created, updated and deleted
from the database as a result of saving (=updating) the process instance in the database. For more
information, see Chapter 6, Persistence.

9.4. Variables scopes
Each path of execution (read: token) has its own set of process variables. Requesting a variable is
always done on a token. Process instances have a tree of tokens (see Chapter 3, Graph Oriented
Programming). When requesting a variable without specifying a token, the default token is the root
token.

The variable lookup is done recursively over the parents of the given token. The behavior is similar to
the scoping of variables in programming languages.

When a non-existing variable is set on a token, the variable is created on the root-token. This means
that each variable has by default process scope. To make a variable token-local, you have to create it
explicitly with:

ContextInstance.createVariable(String name, Object value, Token token);

9.4.1. Variables overloading
Variable overloading means that each path of execution can have its own copy of a variable with
the same name. They are treated as independent and hence can be of different types. Variable
overloading can be interesting if you launch multiple concurrent paths of execution over the same
transition. Then the only thing that distinguishes those paths of executions are their respective set of
variables.

Variables overriding

101

9.4.2. Variables overriding
Variable overriding means that variables of nested paths of execution override variables in more global
paths of execution. Generally, nested paths of execution relate to concurrency : the paths of execution
between a fork and a join are children (nested) of the path of execution that arrived in the fork. For
example, if you have a variable 'contact' in the process instance scope, you can override this variable
in the nested paths of execution 'shipping' and 'billing'.

9.4.3. Task instance variable scope
For more info on task instance variables, see Section 10.4, “Task instance variables”.

9.5. Transient variables
When a process instance is persisted in the database, normal variables are also persisted as part of
the process instance. In some situations you might want to use a variable in a delegation class, but
you don't want to store it in the database. An example could be a database connection that you want
to pass from outside of jBPM to a delegation class. This can be done with transient variables.

The lifetime of transient variables is the same as the ProcessInstance java object.

Because of their nature, transient variables are not related to a token. So there is only one map of
transient variables for a process instance object.

The transient variables are accessible with their own set of methods in the context instance, and don't
need to be declared in the processdefinition.xml

Object ContextInstance.getTransientVariable(String name);
void ContextInstance.setTransientVariable(String name, Object value);

9.6. Customizing variable persistence
Variables are stored in the database in a 2-step approach :

user-java-object <---> converter <---> variable instance

Variables are stored in VariableInstances. The members of VariableInstances are mapped to
fields in the database with hibernate. In the default configuration of jBPM, 6 types of VariableInstances
are used:

• DateInstance (with one java.lang.Date field that is mapped to a Types.TIMESTAMP in the
database)

• DoubleInstance (with one java.lang.Double field that is mapped to a Types.DOUBLE in the
database)

• StringInstance (with one java.lang.String field that is mapped to a Types.VARCHAR in the
database)

• LongInstance (with one java.lang.Long field that is mapped to a Types.BIGINT in the database)

• HibernateLongInstance (this is used for hibernatable types with a long id field. One
java.lang.Object field is mapped as a reference to a hibernate entity in the database)

Chapter 9. Context

102

• HibernateStringInstance (this is used for hibernatable types with a string id field. One
java.lang.Object field is mapped as a reference to a hibernate entity in the database)

Converters convert between java-user-objects and the java objects that can be
stored by the VariableInstances. So when a process variable is set with e.g.
ContextInstance.setVariable(String variableName, Object value), the value
will optionally be converted with a converter. Then the converted object will be stored in a
VariableInstance. Converters are implementations of the following interface:

public interface Converter extends Serializable {
 boolean supports(Object value);
 Object convert(Object o);
 Object revert(Object o);
}

Converters are optional. Converters must be available to the jBPM class loader. See Section 17.2.1,
“The jBPM class loader”

The way that user-java-objects are converted and stored in variable instances is configured in the
file org/jbpm/context/exe/jbpm.varmapping.properties. To customize this property file,
put a modified version in the root of the classpath, as explained in Section 5.3, “Other configuration
files” Each line of the properties file specifies 2 or 3 class-names separated by spaces : the class
name of the user-java-object, optionally the class name of the converter and the class name of the
variable instance. When you refer your custom converters, make sure they are in the jBPM class path
(see Section 17.2.1, “The jBPM class loader”). When you refer to your custom variable instances,
they also have to be in the the jBPM class path and the hibernate mapping file for org/jbpm/
context/exe/VariableInstance.hbm.xml has to be updated to include the custom subclass of
VariableInstance.

For example, take a look at the following xml snippet in the file org/jbpm/context/exe/
jbpm.varmapping.xml.

 <jbpm-type>
 <matcher>
 <bean class="org.jbpm.context.exe.matcher.ClassNameMatcher">
 <field name="className"><string value="java.lang.Boolean" /></
field>
 </bean>
 </matcher>

 <converter class="org.jbpm.context.exe.converter.BooleanToStringConverter"
 />
 <variable-
instance class="org.jbpm.context.exe.variableinstance.StringInstance" />
 </jbpm-type>

This snippet specifies that all objects of type java.lang.Boolean have to be converted with the
converter BooleanToStringConverter and that the resulting object (a String) will be stored in a
variable instance object of type StringInstance.

If no converter is specified as in

Customizing variable persistence

103

 <jbpm-type>
 <matcher>
 <bean class="org.jbpm.context.exe.matcher.ClassNameMatcher">
 <field name="className"><string value="java.lang.Long" /></
field>
 </bean>
 </matcher>
 <variable-
instance class="org.jbpm.context.exe.variableinstance.LongInstance" />
 </jbpm-type>

that means that the Long objects that are put in the variables are just stored in a variable instance of
type LongInstance without being converted.

104

Chapter 10.

105

Task management
The core business of jBPM is the ability to persist the execution of a process. A situation in which
this feature is extremely useful is the management of tasks and task-lists for people. jBPM allows to
specify a piece of software describing an overall process which can have wait states for human tasks.

10.1. Tasks
Tasks are part of the process definition and they define how task instances must be created and
assigned during process executions.

Tasks can be defined in task-nodes and in the process-definition. The most common way
is to define one or more tasks in a task-node. In that case the task-node represents a task to
be done by the user and the process execution should wait until the actor completes the task. When
the actor completes the task, process execution should continue. When more tasks are specified in a
task-node, the default behavior is to wait for all the tasks to complete.

Tasks can also be specified on the process-definition. Tasks specified on the process definition
can be looked up by name and referenced from within task-nodes or used from inside actions. In
fact, all tasks (also in task-nodes) that are given a name can be looked up by name in the process-
definition.

Task names must be unique in the whole process definition. Tasks can be given a priority.
This priority will be used as the initial priority for each task instance that is created for this task.
TaskInstances can change this initial priority afterward.

10.2. Task instances
A task instance can be assigned to an actorId (java.lang.String). All task instances are stored in one
table of the database (JBPM_TASKINSTANCE). By querying this table for all task instances for a
given actorId, you get the task list for that particular user.

The jBPM task list mechanism can combine jBPM tasks with other tasks, even when those tasks are
unrelated to a process execution. That way jBPM developers can easily combine jBPM-process-tasks
with tasks of other applications in one centralized task-list-repository.

10.2.1. Task instance life-cycle
The task instance life-cycle is straightforward: After creation, task instances can optionally be started.
Then, task instances can be ended, which means that the task instance is marked as completed.

Note that for flexibility, assignment is not part of the life cycle. So task instances can be assigned or
not assigned. Task instance assignment does not have an influence on the task instance life cycle.

Task instances are typically created by the process execution entering a task-
node (with the method TaskMgmtInstance.createTaskInstance(...)).
Then, a user interface component will query the database for the task lists using the
TaskMgmtSession.findTaskInstancesByActorId(...). Then, after collecting input from the
user, the UI component calls TaskInstance.assign(String), TaskInstance.start() or
TaskInstance.end(...).

A task instance maintains its state by means of date-properties : create, start and end. Those
properties can be accessed by their respective getters on the TaskInstance.

Chapter 10. Task management

106

Currently, completed task instances are marked with an end date so that they are not fetched with
subsequent queries for tasks lists. But they remain in the JBPM_TASKINSTANCE table.

10.2.2. Task instances and graph execution
Task instances are the items in an actor's task list. Task instances can be signalling. A signalling
task instance is a task instance that, when completed, can send a signal to its token to continue
the process execution. Task instances can be blocking, meaning that the related token (=path of
execution) is not allowed to leave the task-node before the task instance is completed. By default task
instances are signalling and non-blocking.

In case more than one task instance are associated with a task-node, the process developer can
specify how completion of the task instances affects continuation of the process. Following is the list of
values that can be given to the signal-property of a task-node.

• last: This is the default. Proceeds execution when the last task instance is completed. When no
tasks are created on entrance of this node, execution is continued.

• last-wait: Proceeds execution when the last task instance is completed. When no tasks are created
on entrance of this node, execution waits in the task node until tasks are created.

• first: Proceeds execution when the first task instance is completed. When no tasks are created on
entrance of this node, execution is continued.

• first-wait: Proceeds execution when the first task instance is completed. When no tasks are created
on entrance of this node, execution waits in the task node until tasks are created.

• unsynchronized: Execution always continues, regardless whether tasks are created or still
unfinished.

• never: Execution never continues, regardless whether tasks are created or still unfinished.

Task instance creation might be based upon a runtime calculation. In that case, add an
ActionHandler on the node-enter event of the task-node and set the attribute create-
tasks="false". Here is an example of such an action handler implementation:

public class CreateTasks implements ActionHandler {
 public void execute(ExecutionContext executionContext) throws Exception
 {
 Token token = executionContext.getToken();
 TaskMgmtInstance tmi = executionContext.getTaskMgmtInstance();

 TaskNode taskNode = (TaskNode) executionContext.getNode();
 Task changeNappy = taskNode.getTask("change nappy");

 // now, 2 task instances are created for the same task.
 tmi.createTaskInstance(changeNappy, token);
 tmi.createTaskInstance(changeNappy, token);
 }
}

Assignment

107

As shown in the example the tasks to be created can be specified in the task-node. They could
also be specified in the process-definition and fetched from the TaskMgmtDefinition.
TaskMgmtDefinition extends the ProcessDefinition with task management information.

The API method for marking task instances as completed is TaskInstance.end(). Optionally,
you can specify a transition in the end method. In case the completion of this task instance triggers
continuation of the execution, the task-node is left over the specified transition.

10.3. Assignment
A process definition contains task nodes. A task-node contains zero or more tasks. Tasks are
a static description as part of the process definition. At runtime, tasks result in the creation of task
instances. A task instance corresponds to one entry in a person's task list.

With jBPM, push (personal task list)1 and pull (group task list)2 model (see below) of task assignment
can be applied in combination. The process can calculate the responsible for a task and push it in
his/her task list. Or alternatively, a task can be assigned to a pool of actors, in which case each of the
actors in the pool can pull the task and put it in the actor's personal task list.

10.3.1. Assignment interfaces
Assigning task instances is done via the interface AssignmentHandler:

public interface AssignmentHandler extends Serializable {
 void assign(Assignable assignable, ExecutionContext
 executionContext);
}

An assignment handler implementation is called when a task instance is created. At that time, the
task instance can be assigned to one or more actors. The AssignmentHandler implementation
should call the Assignable methods (setActorId or setPooledActors) to assign a task. The
Assignable is either a TaskInstance or a SwimlaneInstance (=process role).

public interface Assignable {
 public void setActorId(String actorId);
 public void setPooledActors(String[] pooledActors);
}

Both TaskInstances and SwimlaneInstances can be assigned to a specific user or to a
pool of actors. To assign a TaskInstance to a user, call Assignable.setActorId(String
actorId). To assign a TaskInstance to a pool of candidate actors, call
Assignable.setPooledActors(String[] actorIds).

Each task in the process definition can be associated with an assignment handler implementation to
perform the assignment at runtime.

When more than one task in a process should be assigned to the same person or group of actors,
consider the usage of a swimlane3

1 Section 10.3.3, “The personal task list”.
2 Section 10.3.4, “The group task list”.
3 Section 10.6, “Swimlanes”.

Chapter 10. Task management

108

To allow for the creation of reusable AssignmentHandlers, each usage of an
AssignmentHandler can be configured in the processdefinition.xml. See Section 17.2,
“Delegation” for more information on how to add configuration to assignment handlers.

10.3.2. The assignment data model
The data model for managing assignments of task instances and swimlane instances to actors is the
following. Each TaskInstance has an actorId and a set of pooled actors.

Figure 10.1. The assignment model class diagram

The actorId is the responsible for the task, while the set of pooled actors represents a collection of
candidates that can become responsible if they would take the task. Both actorId and pooledActors
are optional and can also be combined.

10.3.3. The personal task list
The personal task list denotes all the task instances that are assigned to a specific individual. This is
indicated with the property actorId on a TaskInstance. So to put a TaskInstance in someone's
personal task list, you just use one of the following ways:

• Specify an expression in the attribute actor-id of the task element in the process

• Use TaskInstance.setActorId(String) from anywhere in your code

• Use assignable.setActorId(String) in an AssignmentHandler

To fetch the personal task list for a given user, use
TaskMgmtSession.findTaskInstances(String actorId).

10.3.4. The group task list
The pooled actors denote the candidates for the task instance. This means that the task is offered
to many users and one candidate has to step up and take the task. Users can not start working on

Task instance variables

109

tasks in their group task list immediately. That would result in a potential conflict that many people start
working on the same task. To prevent this, users can only take task instances of their group task list
and move them into their personal task list. Users are only allowed to start working on tasks that are in
their personal task list.

To put a taskInstance in someone's group task list, you must put the user's actorId or one of the user's
groupIds in the pooledActorIds. To specify the pooled actors, use one of the following:

• Specify an expression in the attribute pooled-actor-ids of the task element in the process

• Use TaskInstance.setPooledActorIds(String[]) from anywhere in your code

• Use assignable.setPooledActorIds(String[]) in an AssignmentHandler

To fetch the group task list for a given user, proceed as follows: Make a collection
that includes the user's actorId and all the ids of groups that the user belongs to.
With TaskMgmtSession.findPooledTaskInstances(String actorId) or
TaskMgmtSession.findPooledTaskInstances(List actorIds) you can search for task
instances that are not in a personal task list (actorId==null) and for which there is a match in the
pooled actorIds.

The motivation behind this is that we want to separate the identity component from jBPM task
assignment. jBPM only stores Strings as actorIds and doesn't know the relation between the users,
groups and other identity information.

The actorId will always override the pooled actors. So a taskInstance that has an actorId and a list of
pooledActorIds, will only show up in the actor's personal task list. Keeping the pooledActorIds around
allows a user to put a task instance back into the group by just erasing the actorId property of the
taskInstance.

10.4. Task instance variables
A task instance can have its own set of variables and a task instance can also 'see' the process
variables. Task instances are usually created in an execution path (=token). This creates a parent-
child relation between the token and the task instance similar to the parent-child relation between the
tokens themselves. The normal scoping rules apply between the variables of a task instance and the
process variables of the related token. More info about scoping can be found in Section 9.4, “Variables
scopes”.

This means that a task instance can 'see' its own variables plus all the variables of its related token.

The controller can be used to create, populate and submit variables between the task instance scope
and the process scoped variables.

10.5. Task controllers
At creation of a task instance, the task controllers can populate the task instance variables and when
the task instance is finished, the task controller can submit the data of the task instance into the
process variables.

Note that you are not forced to use task controllers. Task instances also are able to 'see' the process
variables related to its token. Use task controllers when you want to:

Chapter 10. Task management

110

• a) create copies of variables in the task instances so that intermediate updates to the task instance
variables don't affect the process variables until the process is finished and the copies are submitted
back into the process variables.

• b) the task instance variables do not relate one-on-one with the process variables. E.g. suppose the
process has variables 'sales in January' 'sales in February' and 'sales in march'. Then the form for
the task instance might need to show the average sales in the 3 months.

Tasks are intended to collect input from users. But there are many user interfaces which could be used
to present the tasks to the users. E.g. a web application, a swing application, an instant messenger,
an email form,... So the task controllers make the bridge between the process variables (=process
context) and the user interface application. The task controllers provide a view of process variables to
the user interface application.

The task controller makes the translation (if any) from the process variables to the task variables.
When a task instance is created, the task controller is responsible for extracting information from the
process variables and creating the task variables. The task variables serve as the input for the user
interface form. And the user input can be stored in the task variables. When the user ends the task,
the task controller is responsible for updating the process variables based on the task instance data.

Figure 10.2. The task controllers

In a simple scenario, there is a one-on-one mapping between process variables and the form
parameters. Task controllers are specified in a task element. In this case, the default jBPM task
controller can be used and it takes a list of variable elements inside. The variable elements express
how the process variables are copied in the task variables.

The next example shows how you can create separate task instance variable copies based on the
process variables:

<task name="clean ceiling">
 <controller>
 <variable name="a" access="read" mapped-name="x" />
 <variable name="b" access="read,write,required" mapped-name="y" />
 <variable name="c" access="read,write" />
 </controller>
</task>

The name attribute refers to the name of the process variable. The mapped-name is optional and
refers to the name of the task instance variable. If the mapped-name attribute is omitted, mapped-

Swimlanes

111

name defaults to the name. Note that the mapped-name also is used as the label for the fields in the
task instance form of the web application.

The access attribute specifies if the variable is copied at task instance creation, will be written back to
the process variables at task end and whether it is required. This information can be used by the user
interface to generate the proper form controls. The access attribute is optional and the default access
is 'read,write'.

A task-node can have many tasks and a start-state can have 1 task.

If the simple one-to-one mapping between process variables and form parameters is too limiting, you
can also write your own TaskControllerHandler implementation. Here's the TaskControllerHandler
interface:

public interface TaskControllerHandler extends Serializable {
 void initializeTaskVariables(TaskInstance taskInstance, ContextInstance
 contextInstance, Token token);
 void submitTaskVariables(TaskInstance taskInstance, ContextInstance
 contextInstance, Token token);
}

And here's how to configure your custom task controller implementation in a task:

<task name="clean ceiling">
 <controller class="com.yourcom.CleanCeilingTaskControllerHandler">
 -- here goes your task controller handler configuration --
 </controller>
</task>

10.6. Swimlanes
A swimlane is a process role. It is a mechanism to specify that multiple tasks in the process should
be done by the same actor. So after the first task instance is created for a given swimlane, the actor
should be remembered in the process for all subsequent tasks that are in the same swimlane. A
swimlane therefore has one assignment4 and all tasks that reference a swimlane should not specify
an assignment5.

When the first task in a given swimlane is created, the AssignmentHandler of the
swimlane is called. The Assignable that is passed to the AssignmentHandler will be the
SwimlaneInstance. Important to know is that all assignments that are done on the task instances
in a given swimlane will propagate to the swimlane instance. This behavior is implemented as the
default because the person that takes a task to fulfilling a certain process role will have the knowledge
of that particular process. So all subsequent assignments of task instances to that swimlane are done
automatically to that user.

Swimlane is a terminology borrowed from UML activity diagrams.

10.7. Swimlane in start task
A swimlane can be associated with the start task to capture the process initiator.

4 Section 10.3, “Assignment”.
5 Section 10.3, “Assignment”.

Chapter 10. Task management

112

A task can be specified in a start-state. That task be associated with a swimlane. When a new
task instance is created for such a task, the current authenticated actor will be captured with
Authentication.getAuthenticatedActorId()6 and that actor will be stored in the swimlane of the start
task.

For example:

<process-definition>
 <swimlane name='initiator' />
 <start-state>
 <task swimlane='initiator' />
 <transition to='...' />
 </start-state>
</process-definition>

Also variables can be added to the start task as with any other task to define the form associated with
the task. See Section 10.5, “Task controllers”

10.8. Task events
Tasks can have actions associated with them. There are 4 standard event types defined for tasks:
task-create, task-assign, task-start and task-end.

task-create is fired when a task instance is created.

task-assign is fired when a task instance is being assigned. Note that in
actions that are executed on this event, you can access the previous actor with
executionContext.getTaskInstance().getPreviousActorId();

task-start is fired when TaskInstance.start() is called. This can be used to indicate that the
user is actually starting to work on this task instance. Starting a task is optional.

task-end is fired when TaskInstance.end(...) is called. This marks the completion of the
task. If the task is related to a process execution, this call might trigger the resuming of the process
execution.

Since tasks can have events and actions associated with them, also exception handlers can be
specified on a task. For more information about exception handling, see Section 8.7, “Exception
handling”.

10.9. Task timers
As on nodes, timers can be specified on tasks. See Section 12.1, “Timers”.

The special thing about timers for tasks is that the cancel-event for task timers can be customized.
By default, a timer on a task will be canceled when the task is ended (=completed). But with the
cancel-event attribute on the timer, process developers can customize that to e.g. task-assign
or task-start. The cancel-event supports multiple events. The cancel-event types can be
combined by specifying them in a comma separated list in the attribute.

6 Section 18.2, “Authentication”.

Customizing task instances

113

10.10. Customizing task instances
Task instances can be customized. The easiest way to do this is to create a subclass of
TaskInstance. Then create a org.jbpm.taskmgmt.TaskInstanceFactory implementation
and configure it by setting the configuration property jbpm.task.instance.factory
to the fully qualified class name in the jbpm.cfg.xml. If you use a subclass of
TaskInstance, also create a hibernate mapping file for the subclass (using the hibernate
extends="org.jbpm.taskmgmt.exe.TaskInstance"). Then add that mapping file to the list of
mapping files in the hibernate.cfg.xml

10.11. The identity component
Management of users, groups and permissions is commonly known as identity management. jBPM
includes an optional identity component that can be easily replaced by a company's own identity data
store.

The jBPM identity management component includes knowledge of the organizational model.
Task assignment is typically done with organizational knowledge. So this implies knowledge of
an organizational model, describing the users, groups, systems and the relations between them.
Optionally, permissions and roles can be included too in an organizational model. Various academic
research attempts failed, proving that no generic organizational model can be created that fits every
organization.

The way jBPM handles this is by defining an actor as an actual participant in a process. An actor
is identified by its ID called an actorId. jBPM has only knowledge about actorIds and they are
represented as java.lang.Strings for maximum flexibility. So any knowledge about the
organizational model and the structure of that data is outside the scope of the jBPM core engine.

As an extension to jBPM we will provide (in the future) a component to manage that simple user-
roles model. This many to many relation between users and roles is the same model as is defined in
the J2EE and the servlet specs and it could serve as a starting point in new developments. People
interested in contributing should check the jboss jbpm jira issue tracker for more details.

Note that the user-roles model as it is used in the servlet, ejb and portlet specifications, is not
sufficiently powerful for handling task assignments. That model is a many-to-many relation between
users and roles. This doesn't include information about the teams and the organizational structure of
users involved in a process.

Chapter 10. Task management

114

10.11.1. The identity model

Figure 10.3. The identity model class diagram

The classes in yellow are the relevant classes for the expression assignment handler that is discussed
next.

A User represents a user or a service. A Group is any kind of group of users. Groups can be nested
to model the relation between a team, a business unit and the whole company. Groups have a type to
differentiate between the hierarchical groups and e.g. hair color groups. Memberships represent the
many-to-many relation between users and groups. A membership can be used to represent a position
in a company. The name of the membership can be used to indicate the role that the user fulfills in the
group.

10.11.2. Assignment expressions
The identity component comes with one implementation that evaluates an expression for the
calculation of actors during assignment of tasks. Here's an example of using the assignment
expression in a process definition:

<process-definition>
 <task-node name='a'>
 <task name='laundry'>
 <assignment expression='previous --> group(hierarchy) -->
 member(boss)' />
 </task>
 <transition to='b' />
 </task-node>

Syntax of the assignment expression is like this:

first-term --> next-term --> next-term --> ... --> next-term

Removing the identity component

115

where

first-term ::= previous |
 swimlane(swimlane-name) |
 variable(variable-name) |
 user(user-name) |
 group(group-name)

and

next-term ::= group(group-type) |
 member(role-name)

10.11.2.1. First terms
An expression is resolved from left to right. The first-term specifies a User or Group in the identity
model. Subsequent terms calculate the next term from the intermediate user or group.

previous means the task is assigned to the current authenticated actor. This means the actor that
performed the previous step in the process.

swimlane(swimlane-name) means the user or group is taken from the specified swimlane
instance.

variable(variable-name) means the user or group is taken from the specified variable instance.
The variable instance can contain a java.lang.String, in which case that user or group is fetched
from the identity component. Or the variable instance contains a User or Group object.

user(user-name) means the given user is taken from the identity component.

group(group-name) means the given group is taken from the identity component.

10.11.2.2. Next terms
group(group-type) gets the group for a user. Meaning that previous terms must have resulted in a
User. It searches for the the group with the given group-type in all the memberships for the user.

member(role-name) gets the user that performs a given role for a group. The previous terms must
have resulted in a Group. This term searches for the user with a membership to the group for which
the name of the membership matches the given role-name.

10.11.3. Removing the identity component
When you want to use your own datasource for organizational information such as your company's
user database or LDAP system, you can just rip out the jBPM identity component. The only thing you
need to do is make sure that you delete the line ...

<mapping resource="org/jbpm/identity/User.hbm.xml"/>
<mapping resource="org/jbpm/identity/Group.hbm.xml"/>
<mapping resource="org/jbpm/identity/Membership.hbm.xml"/>

from the hibernate.cfg.xml

Chapter 10. Task management

116

The ExpressionAssignmentHandler is dependent on the identity component so you will not be
able to use it as is. In case you want to reuse the ExpressionAssignmentHandler and bind it to
your user data store, you can extend from the ExpressionAssignmentHandler and override the
method getExpressionSession.

protected ExpressionSession getExpressionSession(AssignmentContext
 assignmentContext);

Chapter 11.

117

Document management
This is still an experimental feature.

To enable this feature, you need to un-comment the following line in the hibernate.cfg.xml:

<mapping resource="org/jbpm/context/exe/variableinstance/
JcrNodeInstance.hbm.xml"/>

The document management support of jBPM is based on Java Content Repository1. That is a
standard java specification for integrating document management systems into Java. The basic idea is
that jBPM supports storage of JCR nodes as process variables.

To store a node, the session, repository and path are extracted from the node like this:

Session session = node.getSession();
Repository repo = session.getRepository();
Workspace wspace = session.getWorkspace();

// THE NODE REPOSITORY AND WORKSPACE NAME GOT TO CORRESPOND WITH A JBPM
 SERVICE NAME
repository = repo.getDescriptor(Repository.REP_NAME_DESC);
workspace = wspace.getName();
path = node.getPath();

IMPORTANT NOTE: The name of the jbpm context service MUST correspond with the name of the
repository (repository.getDescriptor(Repository.REP_NAME_DESC)). This is to make the match
between the reference stored in the jbpm process variables and the repository when a node-variable is
being loaded from the jBPM DB. When the JCR node process variable is retrieved, each service name
in the jbpm context will be matched against the repository and workspace name stored. The matching
between jbpm context service and the JCR session/repository names will go like this:

• if there is a jbpm context service named 'jcr' (lower case) that one will be taken

• a service name that is equal to the repository name matches

• a service that starts with the repository name and ends with the workspace name matches and
takes preference over a service with the repository name

The typical use case for this feature is a document approval process. A document needs to be
approved and updated. That document (e.g. a word document), can be stored in a JCR-content-
repository-node. The node contains all the versions of the document. So that later in the process,
people still can consult the historical versions of the document.

This feature was only tested with Jackrabbit. Please refer to the JCR implementation documentation
for more information about library dependencies.

1 http://www.jcp.org/en/jsr/detail?id=170

http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=170

118

Chapter 12.

119

Scheduler
This chapter describes how to work with timers in jBPM.

Upon events in the process, timers can be created. When a timer expires, an action can be executed
or a transition can be taken.

12.1. Timers
The easiest way to specify a timer is by adding a timer element to the node.

<state name='catch crooks'>
 <timer name='reminder'
 duedate='3 business hours'
 repeat='10 business minutes'
 transition='time-out-transition' >
 <action class='the-remainder-action-class-name' />
 </timer>
</state>

A timer that is specified on a node, is not executed after the node is left. Both the transition and the
action are optional. When a timer is executed, the following events occur in sequence :

• an event is fired of type timer

• if an action is specified, the action is executed.

• if a transition is specified, a signal will be sent to resume execution over the given transition.

Every timer must have a unique name. If no name is specified in the timer element, the name of the
node is taken as the name of the timer.

The timer action can be any supported action element like e.g. action or script.

Timers are created and canceled by actions. The 2 action-elements are create-timer and
cancel-timer. Actually, the timer element shown above is just a short notation for a create-timer
action on node-enter and a cancel-timer action on node-leave.

12.2. Scheduler deployment
Process executions create and cancel timers. The timers are stored in a timer store. A separate timer
runner must check the timer store and execute the timers when they are due.

Chapter 12. Scheduler

120

Figure 12.1. Scheduler components overview

The following class diagram shows the classes that are involved in the scheduler deployment. The
interfaces SchedulerService and TimerExecutor are specified to make the timer execution
mechanism pluggable.

Figure 12.2. Scheduler classes overview

Chapter 13.

121

Asynchronous continuations

13.1. The concept
jBPM is based on Graph Oriented Programming (GOP). Basically, GOP specifies a simple state
machine that can handle concurrent paths of execution. But in the execution algorithm specified in
GOP, all state transitions are done in a single operation in the thread of the client. If you're not familiar
with the execution algorithm defined in Chapter 3, Graph Oriented Programming, please read that first.
By default, this performing state transitions in the thread of the client is a good approach cause it fits
naturally with server side transactions. The process execution moves from one wait state to another
wait state in one transaction.

But in some situations, a developer might want to fine-tune the transaction demarcation in the process
definition. In jPDL, it is possible to specify that the process execution should continue asynchronously
with the attribute async="true". async="true" can be specified on all node types and all action
types.

13.2. An example
Normally, a node is always executed after a token has entered the node. So the node is executed in
the thread of the client. We'll explore asynchronous continuations by looking two examples. The first
example is a part of a process with 3 nodes. Node 'a' is a wait state, node 'b' is an automated step
and node 'c' is again a wait state. This process does not contain any asynchronous behavior and it is
represented in the picture below.

The first frame, shows the starting situation. The token points to node 'a', meaning that the path of
execution is waiting for an external trigger. That trigger must be given by sending a signal to the token.
When the signal arrives, the token will be passed from node 'a' over the transition to node 'b'. After the
token arrived in node 'b', node 'b' is executed. Recall that node 'b' is an automated step that does not
behave as a wait state (e.g. sending an email). So the second frame is a snapshot taken when node
'b' is being executed. Since node 'b' is an automated step in the process, the execute of node 'b' will
include the propagation of the token over the transition to node 'c'. Node 'c' is a wait state so the third
frame shows the final situation after the signal method returns.

Chapter 13. Asynchronous continuations

122

Figure 13.1. Example 1: Process without asynchronous continuation

While persistence is not mandatory in jBPM, the most common scenario is that a signal is called
within a transaction. Let's have a look at the updates of that transaction. First of all, the token
is updated to point to node 'c'. These updates are generated by hibernate as a result of the
GraphSession.saveProcessInstance on a JDBC connection. Second, in case the automated
action would access and update some transactional resources, those transactional updates should be
combined or part of the same transaction.

Now, we are going to look at the second example, the second example is a variant of the first example
and introduces an asynchronous continuation in node 'b'. Nodes 'a' and 'c' behave the same as in
the first example, namely they behave as wait states. In jPDL, a node is marked as asynchronous by
setting the attribute async="true".

An example

123

The result of adding async="true" to node 'b' is that the process execution will be split up into 2
parts. The first part will execute the process up to the point where node 'b' is to be executed. The
second part will execute node 'b' and that execution will stop in wait state 'c'.

The transaction will hence be split up into 2 separate transactions. One transaction for each part.
While it requires an external trigger (the invocation of the Token.signal method) to leave node 'a' in
the first transaction, jBPM will automatically trigger and perform the second transaction.

Figure 13.2. Example 2: A process with asynchronous continuations

For actions, the principle is similar. Actions that are marked with the attribute async="true" are
executed outside of the thread that executes the process. If persistence is configured (it is by default),
the actions will be executed in a separate transaction.

In jBPM, asynchronous continuations are realized by using an asynchronous messaging system.
When the process execution arrives at a point that should be executed asynchronously, jBPM will

Chapter 13. Asynchronous continuations

124

suspend the execution, produces a command message and send it to the command executor.
The command executor is a separate component that, upon receipt of a message, will resume the
execution of the process where it got suspended.

jBPM can be configured to use a JMS provider or its built-in asynchronous messaging system. The
built-in messaging system is quite limited in functionality, but allows this feature to be supported on
environments where JMS is unavailable.

13.3. The command executor
The command executor is the component that resumes process executions asynchronously. It
waits for command messages to arrive over an asynchronous messaging system and executes
them. The two commands used for asynchronous continuations are ExecuteNodeCommand and
ExecuteActionCommand.

These commands are produced by the process execution. During process execution, for each node
that has to be executed asynchronously, an ExecuteNodeCommand (POJO) will be created in the
MessageInstance. The message instance is a non-persistent extension of the ProcessInstance and
it just collects all the messages that have to be sent.

The messages will be sent as part of the GraphSession.saveProcessInstance. The
implementation of that method includes a context builder that acts as an aspect on the
saveProcessInstance method. The actual interceptors can be configured in the jbpm.cfg.xml.
One of the interceptors, SendMessagesInterceptor, is configured by default and will read
the messages from the MessageInstance and send them over the configurable asynchronous
messaging system.

The SendMessagesInterceptor uses the interfaces MessageServiceFactory and
MessageService to send messages. This is to make the asynchronous messaging implementation
configurable (also in jbpm.cfg.xml).

Here's how the job executor works in a nutshell:

Jobs are records in the database. Jobs are commands and can be executed. Both timers and
asynchronous messages are jobs. For asynchronous messages, the dueDate is simply set to now
when they are inserted. The job executor must execute the jobs. This is done in 2 phases: 1) a job
executor thread must acquire a job and 2) the thread that acquired the job must execute it.

Acquiring a job and executing the job are done in 2 separate transactions. A thread acquires a job by
putting its name into the owner field of the job. Each thread has a unique name based on ip-address
and sequence number. Hibernate's optimistic locking is enabled on Job-objects. So if 2 threads try
to acquire a job concurrently, one of them will get a StaleObjectException and rollback. Only the first
one will succeed. The thread that succeeds in acquiring a job is now responsible for executing it in a
separate transaction.

A thread could die between acquisition and execution of a job. For clean-up of those situations, there
is 1 lock-monitor thread per job executor that checks the lock times. By default, jobs that are locked for
more then 30 minutes will be unlocked so that they can be executed by another job.

The required isolation level should be set to REPEATABLE_READ for Hibernate's optimistic locking to
work correctly. That isolation level will guarantee that

update JBPM_JOB job
set job.version = 2

jBPM's built-in asynchronous messaging

125

 job.lockOwner = '192.168.1.3:2'
where
 job.version = 1

will only return result 1 row updated in exactly 1 of the competing transactions.

Non-Repeatable Reads means that the following anomaly can happen: A transaction re-reads data it
has previously read and finds that data has been modified by another transaction, one that has been
committed since the transaction's previous read.

Non-Repeatable reads are a problem for optimistic locking and therefore, isolation level
READ_COMMITTED is not enough as it allows for Non-Repeatable reads to occur. So
REPEATABLE_READ is required if you configure more then 1 job executor thread.

13.4. jBPM's built-in asynchronous messaging
When using jBPM's built-in asynchronous messaging, messages will be sent by persisting them to the
database. This message persisting can be done in the same transaction/jdbc connection as the jBPM
process updates.

The command messages will be stored in the JBPM_MESSAGE table.

The POJO command executor (org.jbpm.msg.command.CommandExecutor) will read the
messages from the database table and execute them. So the typical transaction of the POJO
command executor looks like this: 1) read next command message 2) execute command message 3)
delete command message.

If execution of a command message fails, the transaction will be rolled back. After that, a new
transaction will be started that adds the error message to the message in the database. The command
executor filters out all messages that contain an exception.

Figure 13.3. POJO command executor transactions

Chapter 13. Asynchronous continuations

126

If for some reason or another, the transaction that adds the exception to the command message would
fail, it is rolled back as well. In that case, the message remains in the queue without an exception so it
will be retried later.

Limitation: beware that jBPM's built-in asynchronous messaging system does not support multi-
node locking. So you cannot just deploy the POJO command executor multiple times and have them
configured to use the same database.

13.5. JMS for asynchronous architectures
The asynchronous continuations feature opens up a new world of jBPM usage scenarios. Where
typically, jBPM is used for modelling business processes, it can now be used from a more technical
perspective.

Imagine that you have an application with quite some asynchronous processing. That typically
requires quite a bit of difficult setup to bind all the message producing and message consuming
pieces of software together. With jBPM it now becomes possible to create a picture of the overall
asynchronous architecture, have all your code in POJO's and add transaction demarcation in the
overall process file. jBPM will now take care of binding the senders to the receivers without the need
for writing all the JMS or MDB code yourself.

13.6. Future directions
Future versions will add support for multiple queues. So that it becomes possible to specify a queue
for each node or action that is marked as asynchronous. Also it would be great to produce message
for a set of queues in a round-robin. Since all of this should be configurable for both the JMS and the
built-in messaging systems, this will require some thought on how to do all this configurations. The
process definitions should not have to depend on any of the 2 possible implementations.

Chapter 14.

127

Business calendar
This chapter describes the business calendar of jBPM. The business calendar knows about business
hours and is used in calculation of due dates for tasks and timers.

The business calendar is able to calculate a due date by adding a duration to or subtracting it from a
base date. If the base date is omitted, the 'current' date is used.

14.1. Duedate
As mentioned the due date is composed of a duration and a base date. If this base date is omitted, the
duration is relative to the date (and time) at the moment of calculating the duedate. The format is:

duedate ::= [<basedate> +/-] <duration>

14.1.1. Duration
A duration is specified in absolute or in business hours. Let's look at the syntax:

duration ::= <quantity> [business] <unit>

Where <quantity> is a piece of text that is parsable with Double.parseDouble(quantity). <unit> is
one of {second, seconds, minute, minutes, hour, hours, day, days, week, weeks, month, months, year,
years}. And adding the optional indication business means that only business hours should be taken
into account for this duration. Without the indication business, the duration will be interpreted as an
absolute time period.

14.1.2. Base date
A duration is specified in absolute or in business hours. Let's look at the syntax:

basedate ::= <EL> +/-

Where <EL> is any JAVA Expression Language expression that resolves to a JAVA Date or Calendar
object. Referencing variable of other object types, even a String in a date format like '2036-02-12', will
throw a JbpmException

NOTE: This basedate is supported on the duedate attributes of a plain timer, on the reminder of a task
and the timer within a task. It is not supported on the repeat attributes of these elements.

14.1.3. Examples
The following examples of the usage are all possible

<timer name="daysBeforeHoliday" duedate="5 business days">...</timer>

<timer name="pensionDate" duedate="#{dateOfBirth} + 65 years" >...</
timer>

<timer name="pensionReminder" duedate="#{dateOfPension} - 1 year" >...</
timer>

Chapter 14. Business calendar

128

<timer name="fireWorks" duedate="#{chineseNewYear} repeat="1 year" >...</
timer>

<reminder name="hitBoss" duedate="#{payRaiseDay} + 3 days" repeat="1
 week" />

14.2. Calendar configuration
The file org/jbpm/calendar/jbpm.business.calendar.properties specifies what business
hours are. The configuration file can be customized and a modified copy can be placed in the root of
the classpath.

This is the example business hour specification that is shipped by default in
jbpm.business.calendar.properties:

hour.format=HH:mm
#weekday ::= [<daypart> [& <daypart>]*]
#daypart ::= <start-hour>-<to-hour>
#start-hour and to-hour must be in the hour.format
#dayparts have to be ordered
weekday.monday= 9:00-12:00 & 12:30-17:00
weekday.tuesday= 9:00-12:00 & 12:30-17:00
weekday.wednesday= 9:00-12:00 & 12:30-17:00
weekday.thursday= 9:00-12:00 & 12:30-17:00
weekday.friday= 9:00-12:00 & 12:30-17:00
weekday.saturday=
weekday.sunday=

day.format=dd/MM/yyyy
holiday syntax: <holiday>
holiday period syntax: <start-day>-<end-day>
below are the belgian official holidays
holiday.1= 01/01/2005 # nieuwjaar
holiday.2= 27/3/2005 # pasen
holiday.3= 28/3/2005 # paasmaandag
holiday.4= 1/5/2005 # feest van de arbeid
holiday.5= 5/5/2005 # hemelvaart
holiday.6= 15/5/2005 # pinksteren
holiday.7= 16/5/2005 # pinkstermaandag
holiday.8= 21/7/2005 # my birthday
holiday.9= 15/8/2005 # moederkesdag
holiday.10= 1/11/2005 # allerheiligen
holiday.11= 11/11/2005 # wapenstilstand
holiday.12= 25/12/2005 # kerstmis

business.day.expressed.in.hours= 8
business.week.expressed.in.hours= 40
business.month.expressed.in.business.days= 21
business.year.expressed.in.business.days= 220

Chapter 15.

129

Email support
This chapter describes the out-of-the-box email support in jBPM jPDL.

15.1. Mail in jPDL
There are four ways of specifying when emails should be sent from a process.

15.1.1. Mail action
A mail action can be used when the sending of this email should not be shown as a node in the
process graph.

Anywhere you are allowed to specify actions in the process, you can specify a mail action like this:

<mail actors="#{president}" subject="readmylips" text="nomoretaxes" />

The subject and text attributes can also be specified as an element like this:

<mail actors="#{president}" >
 <subject>readmylips</subject>
 <text>nomoretaxes</text>
</mail>

Each of the fields can contain JSF like expressions. For example:

<mail to='#{initiator}' subject='websale' text='your websale of
 #{quantity} #{item} was approved' />

For more information about expressions, see Section 17.3, “Expressions”.

There are two attribute to specify recipients: actors and to. The to attribute should resolve to a
semicolon separated list of email addresses. The actors attribute should resolve to a semicolon
separated list of actorIds. Those actorIds will be resolved to email addresses with by means of
address resolving1.

<mail to='admin@mycompany.com' subject='urgent' text='the mailserver is
 down :-)' />

For more about how to specify recipients, see Section 15.3, “Specifying mail recipients”

Mails can be defined in templates and in the process you can overwrite properties of the templates like
this:

<mail template='sillystatement' actors="#{president}" />

More about templates can be found in Section 15.4, “Mail templates”

1 Section 15.3.2, “Address resolving”.

Chapter 15. Email support

130

15.1.2. Mail node
Just the same as with mail actions, sending of an email can also be modeled as a node. In that case,
the runtime behavior is just the same, but the email will show up as a node in the process graph.

The attributes and elements supported by mail nodes are exactly the same as with the mail actions2.

<mail-node name="send
 email" to="#{president}" subject="readmylips" text="nomoretaxes">
 <transition to="the next node" />
</mail-node>

Mail nodes should have exactly one leaving transition.

15.1.3. Task assign mails
A notification email can be send when a task gets assigned to an actor. Just use the notify="yes"
attribute on a task like this:

<task-node name='a'>
 <task name='laundry' swimlane="grandma" notify='yes' />
 <transition to='b' />
</task-node>

Setting notify to yes, true or on will cause jBPM to send an email to the actor that will be assigned to
this task. The email is based on a template (see Section 15.4, “Mail templates”) and contains a link to
the task page of the web application.

15.1.4. Task reminder mails
Similarly as with assignments, emails can be sent as a task reminder. The reminder element in jPDL
is based upon the timer. The most common attributes will be the duedate and the repeat. The only
difference is that no action has to be specified.

<task-node name='a'>
 <task name='laundry' swimlane="grandma" notify='yes'>
 <reminder duedate="2 business days" repeat="2 business hours"/>
 </task>
 <transition to='b' />
</task-node>

15.2. Expressions in mails
The fields to, recipients, subject and text can contain JSF-like expressions. For more
information about expressions, see Section 17.3, “Expressions”

The variables in the expressions can be : swimlanes, process variables, transient variables beans
configured in the jbpm.cfg.xml, ...

2 Section 15.1.1, “Mail action”.

Specifying mail recipients

131

These expressions can be combined with the address resolving3 that is explained later in this chapter.
For example, suppose that you have a swimlane called president in your process, then look at the
following mail specification:

<mail actors="#{president}" subject="readmylips" text="nomoretaxes" />

That will send an email to to the person that acts as the president for that particular process execution.

15.3. Specifying mail recipients

15.3.1. Multiple recipients
In the actors and to fields, multiple recipients can be separated with a semi colon (;) or a colon (:).

15.3.2. Address resolving
In all of jBPM, actors are referenced by actorId's. This is a string that serves as the identifier of the
process participant. An address resolver translates actorId's into email addresses.

Use the attribute actors in case you want to apply address resolving and use the attribute to in case
you are specifying email addresses directly and don't want to apply address resolving.

An address resolver should implement the following interface:

public interface AddressResolver extends Serializable {
 Object resolveAddress(String actorId);
}

An address resolver should return 1 of 3 types: a String, a Collection of Strings or an array of Strings.
All strings should represent email addresses for the given actorId.

The address resolver implementation should be a bean configured in the jbpm.cfg.xml with name
jbpm.mail.address.resolver like this:

<jbpm-configuration>
 <bean name='jbpm.mail.address.resolver' class='org.jbpm.identity.mail.IdentityAddressResolver' singleton='true'
 />
</jbpm-configuration>

The identity component of jBPM includes an address resolver. That address resolver will look for the
User of the given actorId. If the user exists, the user's email is returned, otherwise null. More on the
identity component can be found in Section 10.11, “The identity component”.

15.4. Mail templates
Instead of specifying mails in the processdefinition.xml, mails can be specified in a template file. When
a template is used, each of the fields can still be overwritten in the processdefinition.xml. The mail
templates should be specified in an XML file like this:

3 Section 15.3.2, “Address resolving”.

Chapter 15. Email support

132

<mail-templates>

 <variable name="BaseTaskListURL" value="http://localhost:8080/jbpm/
task?id=" />

 <mail-template name='task-assign'>
 <actors>#{taskInstance.actorId}</actors>
 <subject>Task '#{taskInstance.name}'</subject>
 <text><![CDATA[Hi,
Task '#{taskInstance.name}' has been assigned to you.
Go for it: #{BaseTaskListURL}#{taskInstance.id}
Thanks.
---powered by JBoss jBPM---]]></text>
 </mail-template>

 <mail-template name='task-reminder'>
 <actors>#{taskInstance.actorId}</actors>
 <subject>Task '#{taskInstance.name}' !</subject>
 <text><![CDATA[Hey,
Don't forget about #{BaseTaskListURL}#{taskInstance.id}
Get going !
---powered by JBoss jBPM---]]></text>
 </mail-template>

</mail-templates>

As you can see in this example (BaseTaskListURL), extra variables can be defined in the mail
templates that will be available in the expressions.

The resource that contains the templates should be configured in the jbpm.cfg.xml like this:

<jbpm-configuration>
 <string name="resource.mail.templates" value="jbpm.mail.templates.xml"
 />
</jbpm-configuration>

15.5. Mail server configuration
The simplest way to configure the mail server is with the configuration property
jbpm.mail.smtp.host in the jbpm.cfg.xml like this:

<jbpm-configuration>
 <string name="jbpm.mail.smtp.host" value="localhost" />
</jbpm-configuration>

Alternatively, when more properties need to be specified, a resource reference to a properties file can
be given with the key '' like this:

<jbpm-configuration>

From address configuration

133

 <string name='resource.mail.properties' value='jbpm.mail.properties' />
</jbpm-configuration>

15.6. From address configuration
The default value for the From address used in jPDL mails is jbpm@noreply. The from address of
mails can be configured in the jBPM configuration file jbpm.xfg.xml with key 'jbpm.mail.from.address'
like this:

<jbpm-configuration>
 <string name='jbpm.mail.from.address' value='jbpm@yourcompany.com' />
</jbpm-configuration>

15.7. Customizing mail support
All the mail support in jBPM is centralized in one class: org.jbpm.mail.Mail This is an
ActionHandler implementation. Whenever an mail is specified in the process xml, this will result
in a delegation to the mail class. It is possible to inherit from the Mail class and customize certain
behavior for your particular needs. To configure your class to be used for mail delegations, specify a
'jbpm.mail.class.name' configuration string in the jbpm.cfg.xml like this:

<jbpm-configuration>
 <string name='jbpm.mail.class.name' value='com.your.specific.CustomMail'
 />
</jbpm-configuration>

The customized mail class will be read during parsing and actions will be configured in the process
that reference the configured (or the default) mail classname. So if you change the property, all the
processes that were already deployed will still refer to the old mail class name. But they can be easily
updated with one simple update statement to the jbpm database.

15.8. Mail server
If you need a mail server that is easy to install, checkout JBossMail Server4 or Apache James5

4 http://www.jboss.org/products/mailservices
5 http://james.apache.org/

http://www.jboss.org/products/mailservices
http://james.apache.org/
http://www.jboss.org/products/mailservices
http://james.apache.org/

134

Chapter 16.

135

Logging
The purpose of logging is to keep track of the history of a process execution. As the runtime data of a
process execution changes, all the deltas are stored in the logs.

Process logging, which is covered in this chapter, is not to be confused with software logging.
Software logging traces the execution of a software program (usually for debugging purposes).
Process logging traces the execution of process instances.

There are various use cases for process logging information. Most obvious is the consulting of the
process history by participants of a process execution.

Another use case is Business Activity Monitoring (BAM). BAM will query or analyze the logs of
process executions to find useful statistical information about the business process. E.g. how much
time is spent on average in each step of the process, where the bottlenecks in the process are etc.
This information is key to implement real business process management in an organization. Real
business process management is about how an organization manages their processes, how these are
supported by information technology *and* how these two improve the other in an iterative process.

Next use case is the undo functionality. Process logs can be used to implement the undo. Since the
logs contain the deltas of the runtime information, the logs can be played in reverse order to bring the
process back into a previous state.

16.1. Creation of logs
Logs are produced by jBPM modules while they are running process executions.
But also users can insert process logs. A log entry is a java object that inherits from
org.jbpm.logging.log.ProcessLog. Process log entries are added to the LoggingInstance.
The LoggingInstance is an optional extension of the ProcessInstance.

Various kinds of logs are generated by jBPM : graph execution logs, context logs and task
management logs. For more information about the specific data contained in those logs, we refer to
the javadocs. A good starting point is the class org.jbpm.logging.log.ProcessLog since from
that class you can navigate down the inheritance tree.

The LoggingInstance will collect all the log entries. When the ProcessInstance is saved,
all the logs in the LoggingInstance will be flushed to the database. The logs-field of a
ProcessInstance is not mapped with hibernate to avoid that logs are retrieved from the database
in each transactions. Each ProcessLog is made in the context of a path of execution (Token) and
hence, the ProcessLog refers to that token. The Token also serves as an index-sequence generator
for the index of the ProcessLog in the Token. This will be important for log retrieval. That way, logs
that are produced in subsequent transactions will have sequential sequence numbers. (wow, that a lot
of seq's in there :-s).

The API method for adding process logs is the following.

public class LoggingInstance extends ModuleInstance {
 ...
 public void addLog(ProcessLog processLog) {...}
 ...
}

The UML diagram for logging information looks like this:

Chapter 16. Logging

136

Figure 16.1. The jBPM logging information class diagram

A CompositeLog is a special kind of log entry. It serves as a parent log for a number of child logs,
thereby creating the means for a hierarchical structure in the logs. The API for inserting a log is the
following.

public class LoggingInstance extends ModuleInstance {
 ...
 public void startCompositeLog(CompositeLog compositeLog) {...}
 public void endCompositeLog() {...}
 ...
}

The CompositeLogs should always be called in a try-finally-block to make sure that the
hierarchical structure of logs is consistent. For example:

startCompositeLog(new MyCompositeLog());
try {
 ...
} finally {
 endCompositeLog();
}

16.2. Log configurations
For deployments where logs are not important, it suffices to remove the logging line in the jbpm-
context section of the jbpm.cfg.xml configuration file:

<service name='logging' factory='org.jbpm.logging.db.DbLoggingServiceFactory'
 />

In case you want to filter the logs, you need to write a custom implementation of the LoggingService
that is a subclass of DbLoggingService. Also you need to create a custom logging ServiceFactory and
specify that one in the factory attribute.

Log retrieval

137

16.3. Log retrieval
As said before, logs cannot be retrieved from the database by navigating the LoggingInstance
to its logs. Instead, logs of a process instance should always be queried from the database. The
LoggingSession has 2 methods that serve this purpose.

The first method retrieves all the logs for a process instance. These logs will be grouped by token in a
Map. The map will associate a List of ProcessLogs with every Token in the process instance. The list
will contain the ProcessLogs in the same ordered as they were created.

public class LoggingSession {
 ...
 public Map findLogsByProcessInstance(long processInstanceId) {...}
 ...
}

The second method retrieves the logs for a specific Token. The returned list will contain the
ProcessLogs in the same ordered as they were created.

public class LoggingSession {
 public List findLogsByToken(long tokenId) {...}
 ...
}

16.4. Database warehousing
Sometimes you may want to apply data warehousing techniques to the jbpm process logs. Data
warehousing means that you create a separate database containing the process logs to be used for
various purposes.

There may be many reasons why you want to create a data warehouse with the process log
information. Sometimes it might be to offload heavy queries from the 'live' production database. In
other situations it might be to do some extensive analysis. Data warehousing even might be done on a
modified database schema which is optimized for its purpose.

In this section, we only want to propose the technique of warehousing in the context of jBPM. The
purposes are too diverse, preventing a generic solution to be included in jBPM that could cover all
those requirements.

138

Chapter 17.

139

jBPM Process Definition Language
(JPDL)
JPDL specifies an xml schema and the mechanism to package all the process definition related files
into a process archive.

17.1. The process archive
A process archive is a zip file. The central file in the process archive is processdefinition.xml.
The main information in that file is the process graph. The processdefinition.xml also contains
information about actions and tasks. A process archive can also contain other process related files
such as classes, ui-forms for tasks, ...

17.1.1. Deploying a process archive
Deploying process archives can be done in 3 ways: with the process designer tool, with an ant task or
programatically.

Deploying a process archive with the designer tool is supported in the starters-kit. Right click on the
process archive folder to find the "Deploy process archive" option. The starters-kit server contains the
jBPM web application, which has a servlet to upload process archives called ProcessUploadServlet.
This servlet is capable of uploading process archives and deploying them to the default jBPM instance
configured.

Deploying a process archive with an ant task can be done as follows:

<target name="deploy.par">
 <taskdef name="deploypar" classname="org.jbpm.ant.DeployProcessTask">
 <classpath --make sure the jbpm-[version].jar is in this classpath--/
>
 </taskdef>
 <deploypar par="build/myprocess.par" />
</target>

To deploy more process archives at once, use the nested fileset elements. The file attribute itself is
optional. Other attributes of the ant task are:

• cfg: cfg is optional, the default value is 'hibernate.cfg.xml'. The hibernate configuration file that
contains the jdbc connection properties to the database and the mapping files.

• properties: properties is optional and overwrites *all* hibernate properties as found in the
hibernate.cfg.xml

• createschema: if set to true, the jbpm database schema is created before the processes get
deployed.

Process archives can also be deployed programmatically with the class
org.jbpm.jpdl.par.ProcessArchiveDeployer

Chapter 17. jBPM Process Definition Language (JPDL)

140

17.1.2. Process versioning
What happens when we have a process definition deployed, many executions are not yet finished and
we have a new version of the process definition that we want to deploy ?

Process instances always execute to the process definition that they are started in. But jBPM allows
for multiple process definitions of the same name to coexist in the database. So typically, a process
instance is started in the latest version available at that time and it will keep on executing in that same
process definition for its complete lifetime. When a newer version is deployed, newly created instances
will be started in the newest version, while older process instances keep on executing in the older
process definitions.

If the process includes references to Java classes, the java classes can be made available to
the jBPM runtime environment in 2 ways : by making sure these classes are visible to the jBPM
classloader. This usually means that you can put your delegation classes in a .jar file next to the
jbpm-[version].jar. In that case, all the process definitions will see that same class file. The
java classes can also be included in the process archive. When you include your delegation classes
in the process archive (and they are not visible to the jbpm classloader), jBPM will also version these
classes inside the process definition. More information about process classloading can be found in
Section 17.2, “Delegation”

When a process archive gets deployed, it creates a process definition in the jBPM database. Process
definitions can be versioned on the basis of the process definition name. When a named process
archive gets deployed, the deployer will assign a version number. To assign this number, the deployer
will look up the highest version number for process definitions with the same name and adds 1.
Unnamed process definitions will always have version number -1.

17.1.3. Changing deployed process definitions
Changing process definitions after they are deployed into the jBPM database has many potential
pitfalls. Therefor, this is highly discouraged.

Actually, there is a whole variety of possible changes that can be made to a process definition. Some
of those process definitions are harmless, but some other changes have implications far beyond the
expected and desirable.

So please consider migrating process instances to a new definition (see Section 17.1.4, “Migrating
process instances”)over this approach.

In case you would consider it, these are the points to take into consideration:

Use Hibernate's update: You can just load a process definition, change it and save it
with the hibernate session. The hibernate session can be accessed with the method
JbpmContext.getSession().

The second level cache: A process definition would need to be removed from the second level cache
after you've updated an existing process definition. See also Section 6.9, “Second level cache”

17.1.4. Migrating process instances
An alternative approach to changing process definitions might be to convert the executions to a
new process definition. Please take into account that this is not trivial due to the long-lived nature of
business processes. Currently, this is an experimental area so for which there are not yet much out-of-
the-box support.

Process conversion

141

As you know there is a clear distinction between process definition data, process instance data (the
runtime data) and the logging data. With this approach, you create a separate new process definition
in the jBPM database (by e.g. deploying a new version of the same process). Then the runtime
information is converted to the new process definition. This might involve a translation cause tokens in
the old process might be pointing to nodes that have been removed in the new version. So only new
data is created in the database. But one execution of a process is spread over two process instance
objects. This might become a bit tricky for the tools and statistics calculations. When resources permit
us, we are going to add support for this in the future. E.g. a pointer could be added from one process
instance to it's predecessor.

17.1.5. Process conversion
A conversion class has been made available to assist you with converting your jBPM 2.0 process
archives into jBPM 3.0 compatible process archives. Create an output directory to hold the converted
process archives. Enter the following command line from the build directory of the jBPM 3.0
distribution:

java -jar converter.jar indirectory outdirectory

Substitute the input directory where your jBPM 2.0 process archives reside for "indirectory". Substitute
the output directory for the one you created to hold the newly converted process archives for
"outdirectory".

17.2. Delegation
Delegation is the mechanism used to include the users' custom code in the execution of processes.

17.2.1. The jBPM class loader
The jBPM class loader is the class loader that loads the jBPM classes. Meaning, the classloader that
has the library jbpm-3.x.jar in its classpath. To make classes visible to the jBPM classloader, put
them in a jar file and put the jar file besides the jbpm-3.x.jar. E.g. in the WEB-INF/lib folder in the
case of web applications.

17.2.2. The process class loader
Delegation classes are loaded with the process class loader of their respective process definition.
The process class loader is a class loader that has the jBPM classloader as a parent. The process
class loader adds all the classes of one particular process definition. You can add classes to a process
definition by putting them in the /classes folder in the process archive. Note that this is only useful
when you want to version the classes that you add to the process definition. If versioning is not
necessary, it is much more efficient to make the classes available to the jBPM class loader.

If the resource name doesn't start with a slash, resources are also loaded from the /classes
directory in the process archive. If you want to load resources outside of the classes directory, start
with a double slash (//). For example to load resource data.xml which is located next to the
processdefinition.xml on the root of the process archive file, you can do class.getResource("//
data.xml") or classLoader.getResourceAsStream("//data.xml") or any of those
variants.

Chapter 17. jBPM Process Definition Language (JPDL)

142

17.2.3. Configuration of delegations
Delegation classes contain user code that is called from within the execution of a process. The
most common example is an action. In the case of action, an implementation of the interface
ActionHandler can be called on an event in the process. Delegations are specified in the
processdefinition.xml. 3 pieces of data can be supplied when specifying a delegation :

1. the class name (required) : the fully qualified class name of the delegation class.

2. configuration type (optional) : specifies the way to instantiate and configure the delegation object.
By default the default constructor is used and the configuration information is ignored.

3. configuration (optional) : the configuration of the delegation object in the format as required by the
configuration type.

Next is a description of all the configuration types:

17.2.3.1. config-type field
This is the default configuration type. The config-type field will first instantiate an object of the
delegation class and then set values in the fields of the object as specified in the configuration. The
configuration is xml, where the element names have to correspond with the field names of the class.
The content text of the element is put in the corresponding field. If necessary and possible, the content
text of the element is converted to the field type.

Supported type conversions:

• String doesn't need converting, of course. But it is trimmed.

• primitive types such as int, long, float, double, ...

• and the basic wrapper classes for the primitive types.

• lists, sets and collections. In that case each element of the xml-content is considered as an element
of the collection and is parsed, recursively applying the conversions. If the type of the elements
is different from java.lang.String this can be indicated by specifying a type attribute with the
fully qualified type name. For example, following snippet will inject an ArrayList of Strings into field
'numbers':

<numbers>
 <element>one</element>
 <element>two</element>
 <element>three</element>
</numbers>

The text in the elements can be converted to any object that has a String constructor. To use
another type then String, specify the element-type in the field element ('numbers' in this case).

Here's another example of a map:

<numbers>
 <entry><key>one</key><value>1</value></entry>
 <entry><key>two</key><value>2</value></entry>
 <entry><key>three</key><value>3</value></entry>

Expressions

143

</numbers>

• maps. In this case, each element of the field-element is expected to have one sub-element key and
one element value. The key and element are both parsed using the conversion rules recursively.
Just the same as with collections, a conversion to java.lang.String is assumed if no type
attribute is specified.

• org.dom4j.Element

• for any other type, the string constructor is used.

For example in the following class...

public class MyAction implements ActionHandler {
 // access specifiers can be private, default, protected or public
 private String city;
 Integer rounds;
 ...
}

...this is a valid configuration:

...
<action class="org.test.MyAction">
 <city>Atlanta</city>
 <rounds>5</rounds>
</action>
...

17.2.3.2. config-type bean
Same as config-type field but then the properties are set via setter methods, rather then directly
on the fields. The same conversions are applied.

17.2.3.3. config-type constructor
This instantiator will take the complete contents of the delegation xml element and passes this as text
in the delegation class constructor.

17.2.3.4. config-type configuration-property
First, the default constructor is used, then this instantiator will take the complete contents of the
delegation xml element, and pass it as text in method void configure(String);. (as in jBPM 2)

17.3. Expressions
For some of the delegations, there is support for a JSP/JSF EL like expression language.
In actions, assignments and decision conditions, you can write an expression like e.g.
expression="#{myVar.handler[assignments].assign}"

Chapter 17. jBPM Process Definition Language (JPDL)

144

The basics of this expression language can be found in the J2EE tutorial1.

The jPDL expression language is similar to the JSF expression language. Meaning that jPDL EL is
based on JSP EL, but it uses #{...} notation and that it includes support for method binding.

Depending on the context, the process variables or task instance variables can be used as starting
variables along with the following implicit objects:

• taskInstance (org.jbpm.taskmgmt.exe.TaskInstance)

• processInstance (org.jbpm.graph.exe.ProcessInstance)

• processDefinition (org.jbpm.graph.def.ProcessDefinition)

• token (org.jbpm.graph.exe.Token)

• taskMgmtInstance (org.jbpm.taskmgmt.exe.TaskMgmtInstance)

• contextInstance (org.jbpm.context.exe.ContextInstance)

This feature becomes really powerful in a JBoss SEAM environment. Because of the integration
between jBPM and JBoss SEAM2, all of your backed beans, EJB's and other one-kind-of-stuff
becomes available right inside of your process definition. Thanks Gavin ! Absolutely awesome ! :-)

17.4. jPDL xml schema
The jPDL schema is the schema used in the file processdefinition.xml in the process archive.

17.4.1. Validation
When parsing a jPDL XML document, jBPM will validate your document against the jPDL schema
when two conditions are met: first, the schema has to be referenced in the XML document like this

<process-definition xmlns="urn:jbpm.org:jpdl-3.2">
 ...
</process-definition>

And second, the Xerxes parser has to be on the classpath.

The jPDL schema can be found in ${jbpm.home}/src/java.jbpm/org/jbpm/jpdl/xml/
jpdl-3.2.xsd or at http://jbpm.org/jpdl-3.2.xsd.

17.4.2. process-definition

Name Type Multiplicity Description

name attribute optional the name of the process

swimlane1 element [0..*] the swimlanes used in this process. The
swimlanes represent process roles and they are
used for task assignments.

1 http://java.sun.com/j2ee/1.4/docs/tutorial/doc/JSPIntro7.html
2 http://www.jboss.com/products/seam

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/JSPIntro7.html
http://www.jboss.com/products/seam
http://jbpm.org/jpdl-3.2.xsd
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/JSPIntro7.html
http://www.jboss.com/products/seam

node

145

Name Type Multiplicity Description

start-state2 element [0..1] the start state of the process. Note that a process
without a start-state is valid, but cannot be
executed.

task3 element [0..*] global defined tasks that can be used in e.g.
actions.

exception-handler4 element [0..*] a list of exception handlers that applies to all
exceptions thrown by delegation classes thrown in
this process definition.

{end-state 5|state6|
node7|task-node8|
process-state9|super-
state10|fork11|join12|
decision13}

element [0..*] the nodes of the process definition. Note that a
process without nodes is valid, but cannot be
executed.

event14 element [0..*] the process events that serve as a container for
actions

{action15|script16|
create-timer17|cancel-
timer18}

element [0..*] global defined actions that can be referenced from
events and transitions. Note that these actions
must specify a name in order to be referenced.

1 Section 17.4.25, “swimlane”.
2 Section 17.4.5, “start-state”.
3 Section 17.4.24, “task”.
4 Section 17.4.30, “exception-handler”.
5 Section 17.4.6, “end-state”.
6 Section 17.4.7, “state”.
7 Section 17.4.3, “node”.
8 Section 17.4.8, “task-node”.
9 Section 17.4.9, “process-state”.
10 Section 17.4.10, “super-state”.
11 Section 17.4.11, “fork”.
12 Section 17.4.12, “join”.
13 Section 17.4.13, “decision”.
14 Section 17.4.14, “event”.
15 Section 17.4.16, “action”.
16 Section 17.4.17, “script”.
17 Section 17.4.22, “create-timer”.
18 Section 17.4.23, “cancel-timer”.
Table 17.1. Process Definition Schema

17.4.3. node

Name Type Multiplicity Description

{action1|script2|create-
timer3|cancel-timer4}

element 1 a custom action that represents the behavior for
this node

common node
elements5

See Section 17.4.4, “common node elements”

1 Section 17.4.16, “action”.
2 Section 17.4.17, “script”.
3 Section 17.4.22, “create-timer”.

Chapter 17. jBPM Process Definition Language (JPDL)

146

4 Section 17.4.23, “cancel-timer”.
5 Section 17.4.4, “common node elements”.
Table 17.2. Node Schema

17.4.4. common node elements

Name Type Multiplicity Description

name attribute required the name of the node

async attribute { true |
false },
false
is the
default

If set to true, this node will be executed
asynchronously. See also Section 3.3.4,
“Asynchronous continuations”

transition1 element [0..*] the leaving transitions. Each transition leaving a
node *must* have a distinct name. A maximum of
one of the leaving transitions is allowed to have
no name. The first transition that is specified is
called the default transition. The default transition
is taken when the node is left without specifying a
transition.

event2 element [0..*] supported event types: {node-enter|node-leave}

exception-handler3 element [0..*] a list of exception handlers that applies to all
exceptions thrown by delegation classes thrown in
this process node.

timer4 element [0..*] specifies a timer that monitors the duration of an
execution in this node.

1 Section 17.4.15, “transition”.
2 Section 17.4.14, “event”.
3 Section 17.4.30, “exception-handler”.
4 Section 17.4.21, “timer”.
Table 17.3. Common Node Schema

17.4.5. start-state

Name Type Multiplicity Description

name attribute optional the name of the node

task1 element [0..1] the task to start a new instance for this process or
to capture the process initiator. See Section 10.7,
“Swimlane in start task”

event2 element [0..*] supported event types: {node-leave}

transition3 element [0..*] the leaving transitions. Each transition leaving a
node *must* have a distinct name.

exception-handler4 element [0..*] a list of exception handlers that applies to all
exceptions thrown by delegation classes thrown in
this process node.

1 Section 17.4.24, “task”.
2 Section 17.4.14, “event”.

end-state

147

3 Section 17.4.15, “transition”.
4 Section 17.4.30, “exception-handler”.
Table 17.4. Start State Schema

17.4.6. end-state

Name Type Multiplicity Description

name attribute required the name of the end-state

event1 element [0..*] supported event types: {node-enter}

exception-handler2 element [0..*] a list of exception handlers that applies to all
exceptions thrown by delegation classes thrown in
this process node.

1 Section 17.4.14, “event”.
2 Section 17.4.30, “exception-handler”.
Table 17.5. End State Schema

17.4.7. state

Name Type Multiplicity Description

common node
elements1

See Section 17.4.4, “common node elements”

1 Section 17.4.4, “common node elements”.
Table 17.6. State Schema

17.4.8. task-node

Name Type Multiplicity Description

signal attribute optional {unsynchronized|never|first|first-wait|last|last-wait},
default is last. signal specifies the effect of task
completion on the process execution continuation.

create-tasks attribute optional {yes|no|true|false}, default is true. can be set to
false when a runtime calculation has to determine
which of the tasks have to be created. in that
case, add an action on node-enter, create the
tasks in the action and set create-tasks to
false.

end-tasks attribute optional {yes|no|true|false}, default is false. In case
remove-tasks is set to true, on node-leave, all
the tasks that are still open are ended.

task1 element [0..*] the tasks that should be created when execution
arrives in this task node.

common node
elements2

See Section 17.4.4, “common node elements”

1 Section 17.4.24, “task”.
2 Section 17.4.4, “common node elements”.
Table 17.7. Task Node Schema

Chapter 17. jBPM Process Definition Language (JPDL)

148

17.4.9. process-state

Name Type Multiplicity Description

binding attribute optional Defines the moment a sub-process is resolved.
{late|*} defaults to resolving deploy time

sub-process1 element 1 the sub process that is associated with this node

variable2 element [0..*] specifies how data should be copied from the
super process to the sub process at the start and
from the sub process to the super process upon
completion of the sub process.

common node
elements3

See Section 17.4.4, “common node elements”

1 Section 17.4.28, “sub-process”.
2 Section 17.4.19, “variable”.
3 Section 17.4.4, “common node elements”.
Table 17.8. Process State Schema

17.4.10. super-state

Name Type Multiplicity Description

{end-state1|state2|
node3|task-node4|
process-state5|super-
state6|fork7|join8|
decision9}

element [0..*] the nodes of the superstate. superstates can be
nested.

common node
elements10

See Section 17.4.4, “common node elements”

1 Section 17.4.6, “end-state”.
2 Section 17.4.7, “state”.
3 Section 17.4.3, “node”.
4 Section 17.4.8, “task-node”.
5 Section 17.4.9, “process-state”.
6 Section 17.4.10, “super-state”.
7 Section 17.4.11, “fork”.
8 Section 17.4.12, “join”.
9 Section 17.4.13, “decision”.
10 Section 17.4.4, “common node elements”.
Table 17.9. Super State Schema

17.4.11. fork

Name Type Multiplicity Description

common node
elements1

See Section 17.4.4, “common node elements”

1 Section 17.4.4, “common node elements”.
Table 17.10. Fork Schema

join

149

17.4.12. join

Name Type Multiplicity Description

common node
elements1

See Section 17.4.4, “common node elements”

1 Section 17.4.4, “common node elements”.
Table 17.11. Join Schema

17.4.13. decision

Name Type Multiplicity Description

handler1 element either a
'handler'
element
or
conditions
on the
transitions
should be
specified

the name of a
org.jbpm.jpdl.Def.DecisionHandler
implementation

transition conditions attribute
or
element
text
on the
transitions
leaving a
decision

the leaving transitions. Each leaving transitions
of a node can have a condition. The decision will
use these conditions to look for the first transition
for which the condition evaluates to true. The first
transition represents the otherwise branch. So
first, all transitions with a condition are evaluated.
If one of those evaluate to true, that transition is
taken. If no transition with a condition resolves to
true, the default transition (=the first one) is taken.
See Section 17.4.29, “condition”

common node
elements2

See Section 17.4.4, “common node elements”

1 Section 17.4.20, “handler”.
2 Section 17.4.4, “common node elements”.
Table 17.12. Decision Schema

17.4.14. event

Name Type Multiplicity Description

type attribute required the event type that is expressed relative to the
element on which the event is placed

{action1|script2|create-
timer3|cancel-timer4}

element [0..*] the list of actions that should be executed on this
event

1 Section 17.4.16, “action”.
2 Section 17.4.17, “script”.
3 Section 17.4.22, “create-timer”.
4 Section 17.4.23, “cancel-timer”.
Table 17.13. Event Schema

Chapter 17. jBPM Process Definition Language (JPDL)

150

17.4.15. transition
Name Type Multiplicity Description

name attribute optional the name of the transition. Note that each
transition leaving a node *must* have a distinct
name.

to attribute required the hierarchical name of the destination node. For
more information about hierarchical names, see
Section 8.6.3, “Hierarchical names”

condition attribute
or
element
text

optional a guard condition expression1. These condition
attributes (or child elements) can be used in
decision nodes, or to calculate the available
transitions on a token at runtime.

{action2|script3|create-
timer4|cancel-timer5}

element [0..*] the actions to be executed upon taking this
transition. Note that the actions of a transition do
not need to be put in an event (because there is
only one)

exception-handler6 element [0..*] a list of exception handlers that applies to all
exceptions thrown by delegation classes thrown in
this process node.

1 Section 17.3, “Expressions”.
2 Section 17.4.16, “action”.
3 Section 17.4.17, “script”.
4 Section 17.4.22, “create-timer”.
5 Section 17.4.23, “cancel-timer”.
6 Section 17.4.30, “exception-handler”.
Table 17.14. Transition Schema

17.4.16. action
Name Type Multiplicity Description

name attribute optional the name of the action. When actions are given
names, they can be looked up from the process
definition. This can be useful for runtime actions
and declaring actions only once.

class attribute either, a
ref-name
or an
expression

the fully qualified class name of
the class that implements the
org.jbpm.graph.def.ActionHandler
interface.

ref-name attribute either this
or class

the name of the referenced action. The content of
this action is not processed further if a referenced
action is specified.

expression attribute either this,
a class
or a ref-
name

A jPDL expression that resolves to a method. See
also Section 17.3, “Expressions”

accept-propagated-
events

attribute optional {yes|no|true|false}. Default is yes|true. If set
to false, the action will only be executed on

script

151

Name Type Multiplicity Description
events that were fired on this action's element.
for more information, see Section 8.5.4, “Event
propagation”

config-type attribute optional {field1|bean2|constructor3|configuration-property4}.
Specifies how the action-object should be
constructed and how the content of this element
should be used as configuration information for
that action-object.

async attribute {true|
false}

Default is false, which means that the action is
executed in the thread of the execution. If set
to true, a message will be sent to the command
executor and that component will execute the
action asynchronously in a separate transaction.

{content} optional the content of the action can be used as
configuration information for your custom action
implementations. This allows the creation of
reusable delegation classes. For more about
delegation configuration, see Section 17.2.3,
“Configuration of delegations”.

1 Section 17.2.3.1, “config-type field”.
2 Section 17.2.3.2, “config-type bean”.
3 Section 17.2.3.3, “config-type constructor”.
4 Section 17.2.3.4, “config-type configuration-property”.
Table 17.15. Action Schema

17.4.17. script

Name Type Multiplicity Description

name attribute optional the name of the script-action. When actions are
given names, they can be looked up from the
process definition. This can be useful for runtime
actions and declaring actions only once.

accept-propagated-
events

attribute optional
[0..*]

{yes|no|true|false}. Default is yes|true. If set
to false, the action will only be executed on
events that were fired on this action's element.
for more information, see Section 8.5.4, “Event
propagation”

expression1 element [0..1] the beanshell script. If you don't specify variable2

elements, you can write the expression as
the content of the script element (omitting the
expression element tag).

variable3 element [0..*] in variable for the script. If no in variables are
specified, all the variables of the current token
will be loaded into the script evaluation. Use the
in variables if you want to limit the number of
variables loaded into the script evaluation.

1 Section 17.4.18, “expression”.

Chapter 17. jBPM Process Definition Language (JPDL)

152

2 Section 17.4.19, “variable”.
3 Section 17.4.19, “variable”.
Table 17.16. Script Schema

17.4.18. expression

Name Type Multiplicity Description

{content} a bean shell script.

Table 17.17. Expression Schema

17.4.19. variable

Name Type Multiplicity Description

name attribute required the process variable name

access attribute optional default is read,write. It is a comma separated
list of access specifiers. The only access
specifiers used so far are read, write and
required.

mapped-name attribute optional this defaults to the variable name. it specifies a
name to which the variable name is mapped. the
meaning of the mapped-name is dependent on
the context in which this element is used. for a
script, this will be the script-variable-name. for
a task controller, this will be the label of the task
form parameter and for a process-state, this will
be the variable name used in the sub-process.

Table 17.18. Variable Schema

17.4.20. handler

Name Type Multiplicity Description

expression attribute either this
or a class

A jPDL expression. The returned result is
transformed to a string with the toString() method.
The resulting string should match one of the
leaving transitions. See also Section 17.3,
“Expressions”.

class attribute either this
or ref-
name

the fully qualified class name of
the class that implements the
org.jbpm.graph.node.DecisionHandler
interface.

config-type attribute optional {field1|bean2|constructor3|configuration-property4}.
Specifies how the action-object should be
constructed and how the content of this element
should be used as configuration information for
that action-object.

timer

153

Name Type Multiplicity Description

{content} optional the content of the handler can be used as
configuration information for your custom handler
implementations. This allows the creation of
reusable delegation classes. For more about
delegation configuration, see Section 17.2.3,
“Configuration of delegations”.

1 Section 17.2.3.1, “config-type field”.
2 Section 17.2.3.2, “config-type bean”.
3 Section 17.2.3.3, “config-type constructor”.
4 Section 17.2.3.4, “config-type configuration-property”.
Table 17.19. Handler Schema

17.4.21. timer

Name Type Multiplicity Description

name attribute optional the name of the timer. If no name is specified, the
name of the enclosing node is taken. Note that
every timer should have a unique name.

duedate attribute required the duration (optionally expressed in business
hours) that specifies the time period between
the creation of the timer and the execution of
the timer. See Section 14.1.1, “Duration” for the
syntax.

repeat attribute optional {duration | 'yes' | 'true'}after a timer has been
executed on the duedate, 'repeat' optionally
specifies duration between repeating timer
executions until the node is left. If yes or true
is specified, the same duration as for the due
date is taken for the repeat. See Section 14.1.1,
“Duration” for the syntax.

transition attribute optional a transition-name to be taken when the timer
executes, after firing the timer event and
executing the action (if any).

cancel-event attribute optional this attribute is only to be used in timers of tasks.
it specifies the event on which the timer should
be canceled. by default, this is the task-end
event, but it can be set to e.g. task-assign or
task-start. The cancel-event types can
be combined by specifying them in a comma
separated list in the attribute.

{action1|script2|create-
timer3|cancel-timer4}

element [0..1] an action that should be executed when this timer
fires

1 Section 17.4.16, “action”.
2 Section 17.4.17, “script”.
3 Section 17.4.22, “create-timer”.
4 Section 17.4.23, “cancel-timer”.
Table 17.20. Timer Schema

Chapter 17. jBPM Process Definition Language (JPDL)

154

17.4.22. create-timer

Name Type Multiplicity Description

name attribute optional the name of the timer. The name can be used for
canceling the timer with a cancel-timer action.

duedate attribute required the duration (optionally expressed in business
hours) that specifies the the time period between
the creation of the timer and the execution of
the timer. See Section 14.1.1, “Duration” for the
syntax.

repeat attribute optional {duration | 'yes' | 'true'}after a timer has been
executed on the duedate, 'repeat' optionally
specifies duration between repeating timer
executions until the node is left. If yes of true
is specified, the same duration as for the due
date is taken for the repeat. See Section 14.1.1,
“Duration” for the syntax.

transition attribute optional a transition-name to be taken when the timer
executes, after firing the the timer event and
executing the action (if any).

Table 17.21. Create Timer Schema

17.4.23. cancel-timer

Name Type Multiplicity Description

name attribute optional the name of the timer to be canceled.

Table 17.22. Cancel Timer Schema

17.4.24. task

Name Type Multiplicity Description

name attribute optional the name of the task. Named tasks can
be referenced and looked up via the
TaskMgmtDefinition

blocking attribute optional {yes|no|true|false}, default is false. If blocking is
set to true, the node cannot be left when the task
is not finished. If set to false (default) a signal
on the token is allowed to continue execution
and leave the node. The default is set to false,
because blocking is normally forced by the user
interface.

signalling attribute optional {yes|no|true|false}, default is true. If signalling is
set to false, this task will never have the capability
of triggering the continuation of the token.

swimlane

155

Name Type Multiplicity Description

duedate attribute optional is a duration expressed in absolute or business
hours as explained in Chapter 14, Business
calendar

swimlane attribute optional reference to a swimlane1. If a swimlane is
specified on a task, the assignment is ignored.

priority attribute optional one of {highest, high, normal, low, lowest}.
alternatively, any integer number can be specified
for the priority. FYI: (highest=1, lowest=5)

assignment2 element optional describes a delegation3 that will assign the task to
an actor when the task is created.

event4 element [0..*] supported event types: {task-create|task-start|
task-assign|task-end}. Especially for the task-
assign we have added a non-persisted property
previousActorId to the TaskInstance

exception-handler5 element [0..*] a list of exception handlers that applies to all
exceptions thrown by delegation classes thrown in
this process node.

timer6 element [0..*] specifies a timer that monitors the duration of
an execution in this task. special for task timers,
the cancel-event can be specified. by default
the cancel-event is task-end, but it can
be customized to e.g. task-assign or task-
start.

controller7 element [0..1] specifies how the process variables are
transformed into task form parameters. the task
form parameters are used by the user interface to
render a task form to the user.

1 Section 17.4.25, “swimlane”.
2 Section 17.4.26, “assignment”.
3 Section 17.2, “Delegation”.
4 Section 17.4.14, “event”.
5 Section 17.4.30, “exception-handler”.
6 Section 17.4.21, “timer”.
7 Section 17.4.27, “controller”.
Table 17.23. Task Schema

17.4.25. swimlane
Name Type Multiplicity Description

name attribute required the name of the swimlane. Swimlanes
can be referenced and looked up via the
TaskMgmtDefinition

assignment1 element [1..1] specifies a the assignment of this swimlane. the
assignment will be performed when the first task
instance is created in this swimlane.

1 Section 17.4.26, “assignment”.
Table 17.24. Swimlane Schema

Chapter 17. jBPM Process Definition Language (JPDL)

156

17.4.26. assignment

Name Type Multiplicity Description

expression attribute optional For historical reasons, this attribute expression
does not refer to the jPDL expression1, but
instead, it is an assignment expression for the
jBPM identity component. For more information
on how to write jBPM identity component
expressions, see Section 10.11.2, “Assignment
expressions”. Note that this implementation has a
dependency on the jbpm identity component.

actor-id attribute optional An actorId. Can be used in conjunction with
pooled-actors. The actor-id is resolved as an
expression2. So you can refer to a fixed actorId
like this actor-id="bobthebuilder". Or you
can refer to a property or method that returns a
String like this: actor-id="myVar.actorId",
which will invoke the getActorId method on the
task instance variable "myVar".

pooled-actors attribute optional A comma separated list of actorIds. Can be
used in conjunction with actor-id. A fixed
set of pooled actors can be specified like
this: pooled-actors="chicagobulls,
pointersisters". The pooled-actors will be
resolved as an expression3. So you can also
refer to a property or method that has to return, a
String[], a Collection or a comma separated list of
pooled actors.

class attribute optional the fully qualified classname
of an implementation of
org.jbpm.taskmgmt.def.AssignmentHandler

config-type attribute optional {field4|bean5|constructor6|configuration-property7}.
Specifies how the assignment-handler-object
should be constructed and how the content of
this element should be used as configuration
information for that assignment-handler-object.

{content} optional the content of the assignment-element can
be used as configuration information for your
AssignmentHandler implementations. This allows
the creation of reusable delegation classes.
for more about delegation configuration, see
Section 17.2.3, “Configuration of delegations”.

1 Section 17.3, “Expressions”.
2 Section 17.3, “Expressions”.
3 Section 17.3, “Expressions”.
4 Section 17.2.3.1, “config-type field”.
5 Section 17.2.3.2, “config-type bean”.
6 Section 17.2.3.3, “config-type constructor”.

controller

157

7 Section 17.2.3.4, “config-type configuration-property”.
Table 17.25. Assignment Schema

17.4.27. controller

Name Type Multiplicity Description

class attribute optional the fully qualified classname
of an implementation of
org.jbpm.taskmgmt.def.TaskControllerHandler

config-type attribute optional {field1|bean2|constructor3|configuration-property4}.
Specifies how the assignment-handler-object
should be constructed and how the content of
this element should be used as configuration
information for that assignment-handler-object.

{content} either the content of the controller is the
configuration of the specified task controller
handler (if the class attribute is specified. if no
task controller handler is specified, the content
must be a list of variable elements.

variable5 element [0..*] in case no task controller handler is specified by
the class attribute, the content of the controller
element must be a list of variables.

1 Section 17.2.3.1, “config-type field”.
2 Section 17.2.3.2, “config-type bean”.
3 Section 17.2.3.3, “config-type constructor”.
4 Section 17.2.3.4, “config-type configuration-property”.
5 Section 17.4.19, “variable”.
Table 17.26. Controller Schema

17.4.28. sub-process

Name Type Multiplicity Description

name attribute required the name of the sub process. Can be an EL
expression, as long as it resolves to a String.
Powerful especially with late binding in the
process-state. To know how you can test sub-
processes, see Section 19.3, “Testing sub
processes”

version attribute optional the version of the sub process. If no version is
specified, the latest version of the given process
as known while deploying the parent process-
state1 will be taken.

binding attribute optional indicates if the version of the sub process should
be determined when deploying the parent
process-state2 (default behavior), or when actually
invoking the sub process (binding="late").
When both version and binding="late"
are given then jBPM will use the version as

Chapter 17. jBPM Process Definition Language (JPDL)

158

Name Type Multiplicity Description
requested, but will not yet try to find the sub
process when the parent process-state is
deployed.

1 Section 17.4.9, “process-state”.
2 Section 17.4.9, “process-state”.
Table 17.27. Sub Process Schema

17.4.29. condition

Name Type Multiplicity Description

{content}
For
backwards
compatibility,
the
condition
can
also be
entered
with the
'expression'
attribute,
but that
attribute is
deprecated
since 3.2

required The contents of the condition element is a
jPDL expression1 that should evaluate to a
boolean. A decision takes the first transition (as
ordered in the processdefinition.xml) for which
the expression resolves to true. If none of the
conditions resolve to true, the default leaving
transition (== the first one) will be taken.

1 Section 17.3, “Expressions”.
Table 17.28. Condition Schema

17.4.30. exception-handler

Name Type Multiplicity Description

exception-class attribute optional specifies the fully qualified name of the java
throwable class that should match this exception
handler. If this attribute is not specified, it matches
all exceptions (java.lang.Throwable).

action1 element [1..*] a list of actions to be executed when an exception
is being handled by this exception handler.

1 Section 17.4.16, “action”.
Table 17.29. Exception Handler Schema

Chapter 18.

159

Security
Security features of jBPM are still in alpha stage. This chapter documents the pluggable authentication
and authorization. And what parts of the framework are finished and what parts not yet.

18.1. TODOS
On the framework part, we still need to define a set of permissions that are verified by the jbpm engine
while a process is being executed. Currently you can check your own permissions, but there is not yet
a jbpm default set of permissions.

Only one default authentication implementation is finished. Other authentication implementations
are envisioned, but not yet implemented. Authorization is optional, and there is no authorization
implementation yet. Also for authorization, there are a number of authorization implementations
envisioned, but they are not yet worked out.

But for both authentication and authorization, the framework is there to plug in your own authentication
and authorization mechanism.

18.2. Authentication
Authentication is the process of knowing on who's behalf the code is running. In case of jBPM
this information should be made available from the environment to jBPM. Cause jBPM is always
executed in a specific environment like a web application, an EJB, a swing application or some other
environment, it is always the surrounding environment that should perform authentication.

In a few situations, jBPM needs to know who is running the code. E.g. to add authentication
information in the process logs to know who did what and when. Another example is calculation of an
actor based on the current authenticated actor.

In each situation where jBPM needs to know who is running the code, the central method
org.jbpm.security.Authentication.getAuthenticatedActorId() is called. That method
will delegate to an implementation of org.jbpm.security.authenticator.Authenticator. By
specifying an implementation of the authenticator, you can configure how jBPM retrieves the currently
authenticated actor from the environment.

The default authenticator is
org.jbpm.security.authenticator.JbpmDefaultAuthenticator. That implementation
will maintain a ThreadLocal stack of authenticated actorId's. Authenticated blocks can be marked
with the methods JbpmDefaultAuthenticator.pushAuthenticatedActorId(String) and
JbpmDefaultAuthenticator.popAuthenticatedActorId(). Be sure to always put these
demarcations in a try-finally block. For the push and pop methods of this authenticator implementation,
there are convenience methods supplied on the base Authentication class. The reason that the
JbpmDefaultAuthenticator maintains a stack of actorIds instead of just one actorId is simple: it allows
the jBPM code to distinct between code that is executed on behalf of the user and code that is
executed on behalf of the jbpm engine.

See the javadocs for more information.

18.3. Authorization
Authorization is validating if an authenticated user is allowed to perform a secured operation.

Chapter 18. Security

160

The jBPM engine and user code can verify if a user is allowed to perform a given operation with the
API method org.jbpm.security.Authorization.checkPermission(Permission).

The Authorization class will also delegate that call to a configurable implementation. The interface for
plugging in different authorization strategies is org.jbpm.security.authorizer.Authorizer.

In the package org.jbpm.security.authorizer there are some examples that show intentions of
authorized implementations. Most are not fully implemented and none of them are tested.

Also still to do is the definition of a set of jBPM permissions and the verification of those permissions
by the jBPM engine. An example could be verifying that the current authenticated user has
sufficient privileges to end a task by calling Authorization.checkPermission(new
TaskPermission("end", Long.toString(id))) in the TaskInstance.end() method.

Chapter 19.

161

Test Driven Development for Workflow

19.1. Introducing TDD for workflow
Since developing process oriented software is no different from developing any other software, we
believe that process definitions should be easily testable. This chapter shows how you can use plain
JUnit without any extensions to unit test the process definitions that you author.

The development cycle should be kept as short as possible. Changes made to the sources of software
should be immediately verifiable. Preferably, without any intermediate build steps. The examples given
below will show you how to develop and test jBPM processes without intermediate steps.

Mostly the unit tests of process definitions are execution scenarios. Each scenario is executed in one
JUnit test method and will feed in the external triggers (read: signals) into a process execution and
verifies after each signal if the process is in the expected state.

Let's look at an example of such a test. We take a simplified version of the auction process with the
following graphical representation:

Figure 19.1. The auction test process

Now, let's write a test that executes the main scenario:

public class AuctionTest extends TestCase {

 // parse the process definition
 static ProcessDefinition auctionProcess =
 ProcessDefinition.parseParResource("org/jbpm/tdd/auction.par");

 // get the nodes for easy asserting
 static StartState start = auctionProcess.getStartState();
 static State auction = (State) auctionProcess.getNode("auction");
 static EndState end = (EndState) auctionProcess.getNode("end");

 // the process instance
 ProcessInstance processInstance;

Chapter 19. Test Driven Development for Workflow

162

 // the main path of execution
 Token token;

 public void setUp() {
 // create a new process instance for the given process definition
 processInstance = new ProcessInstance(auctionProcess);

 // the main path of execution is the root token
 token = processInstance.getRootToken();
 }

 public void testMainScenario() {
 // after process instance creation, the main path of
 // execution is positioned in the start state.
 assertSame(start, token.getNode());

 token.signal();

 // after the signal, the main path of execution has
 // moved to the auction state
 assertSame(auction, token.getNode());

 token.signal();

 // after the signal, the main path of execution has
 // moved to the end state and the process has ended
 assertSame(end, token.getNode());
 assertTrue(processInstance.hasEnded());
 }
}

19.2. XML sources
Before you can start writing execution scenario's, you need a ProcessDefinition. The easiest
way to get a ProcessDefinition object is by parsing xml. If you have code completion, type
ProcessDefinition.parse and activate code completion. Then you get the various parsing
methods. There are basically 3 ways to write xml that can be parsed to a ProcessDefinition
object:

19.2.1. Parsing a process archive
A process archive is a zip file that contains the process xml in a file called
processdefinition.xml. The jBPM process designer reads and writes process archives. For
example:

static ProcessDefinition auctionProcess =
 ProcessDefinition.parseParResource("org/jbpm/tdd/auction.par");

Parsing an xml file

163

19.2.2. Parsing an xml file
In other situations, you might want to write the processdefinition.xml file by hand and later package the
zip file with e.g. an ant script. In that case, you can use the JpdlXmlReader

static ProcessDefinition auctionProcess =
 ProcessDefinition.parseXmlResource("org/jbpm/tdd/auction.xml");

19.2.3. Parsing an xml String
The simplest option is to parse the xml in the unit test inline from a plain String.

static ProcessDefinition auctionProcess =
 ProcessDefinition.parseXmlString(
 "<process-definition>" +
 " <start-state name='start'>" +
 " <transition to='auction'/>" +
 " </start-state>" +
 " <state name='auction'>" +
 " <transition to='end'/>" +
 " </state>" +
 " <end-state name='end'/>" +
 "</process-definition>");
...

19.3. Testing sub processes
TODO (see test/java/org/jbpm/graph/exe/ProcessStateTest.java)

164

Chapter 20.

165

Pluggable architecture
The functionality of jBPM is split into modules. Each module has a definition and an execution (or
runtime) part. The central module is the graph module, made up of the ProcessDefinition and
the ProcessInstance. The process definition contains a graph and the process instance represents
one execution of the graph. All other functions of jBPM are grouped into optional modules. Optional
modules can extend the graph module with extra features like context (process variables), task
management, timers, ...

Figure 20.1. The pluggable architecture

The pluggable architecture in jBPM is also a unique mechanism to add custom capabilities to the
jBPM engine. Custom process definition information can be added by adding a ModuleDefinition
implementation to the process definition. When the ProcessInstance is created, it will create an
instance for every ModuleDefinition in the ProcessDefinition. The ModuleDefinition is
used as a factory for ModuleInstances.

The most integrated way to extend the process definition information is by adding the information to
the process archive and implementing a ProcessArchiveParser. The ProcessArchiveParser
can parse the information added to the process archive, create your custom ModuleDefinition and
add it to the ProcessDefinition.

public interface ProcessArchiveParser {

 void writeToArchive(ProcessDefinition processDefinition, ProcessArchive
 archive);

Chapter 20. Pluggable architecture

166

 ProcessDefinition readFromArchive(ProcessArchive archive,
 ProcessDefinition processDefinition);

}

To do its work, the custom ModuleInstance must be notified of relevant events during process
execution. The custom ModuleDefinition might add ActionHandler implementations upon
events in the process that serve as callback handlers for these process events.

Alternatively, a custom module might use AOP to bind the custom instance into the process execution.
JBoss AOP is very well suited for this job since it is mature, easy to learn and also part of the JBoss
stack.

167

Appendix A. Revision History
Revision History
Revision 1.0 Thu Sep 04 2008 JoshuaWulfjwulf@redhat.com
Converted to publican format

mailto:jwulf@redhat.com

168

169

Index
F
feedback

contact information for this manual, xii

170

	JBPM Reference Guide
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. We Need Feedback!

	Chapter 1. Introduction
	1.1. Overview
	1.2. The jPDL suite
	1.3. The jPDL graphical process designer
	1.4. The jBPM console web application
	1.5. The jBPM core library
	1.6. The JBoss jBPM identity component
	1.7. The JBoss jBPM Job Executor

	Chapter 2. Tutorial
	2.1. Hello World example
	2.2. Database example
	2.3. Context example: process variables
	2.4. Task assignment example
	2.5. Custom action example

	Chapter 3. Graph Oriented Programming
	3.1. Introduction
	3.1.1. Domain specific languages
	3.1.2. Features of graph based languages
	3.1.2.1. Support for wait states
	3.1.2.2. Graphical representation

	3.2. Graph Oriented Programming
	3.2.1. The graph structure
	3.2.2. An execution
	3.2.3. A process language
	3.2.4. Actions
	3.2.5. Synchronous execution
	3.2.6. Code example

	3.3. Extending Graph Oriented Programming
	3.3.1. Process variables
	3.3.2. Concurrent executions
	3.3.3. Process composition
	3.3.4. Asynchronous continuations
	3.3.5. Persistence and Transactions
	3.3.6. Services and environment

	3.4. Considerations
	3.4.1. Runtime data isolation
	3.4.2. GOP compared to other techniques
	3.4.3. GOP compared to petri nets

	3.5. Application domains
	3.5.1. Business Process Management (BPM)
	3.5.1.1. Different aspects of BPM
	3.5.1.2. Goals of BPM systems

	3.5.2. Service orchestration

	3.6. Embedding graph based languages
	3.7. Market
	3.7.1. The ultimate process language
	3.7.2. Fragmentation

	Chapter 4. Deployment
	4.1. jBPM libraries
	4.2. Java runtime environment
	4.3. Third party libraries
	4.4. Web application
	4.5. Enterprise archive
	4.6. The jPDL Runtime and Suite
	4.6.1. The runtime
	4.6.2. The suite
	4.6.3. Configuring the logs in the suite server
	4.6.4. Debugging a process in the suite

	Chapter 5. Configuration
	5.1. Customizing factories
	5.2. Configuration properties
	5.3. Other configuration files
	5.3.1. Hibernate Configuration xml file
	5.3.2. Hibernate queries configuration file
	5.3.3. Node types configuration file
	5.3.4. Action types configuration file
	5.3.5. Business calendar configuration file
	5.3.6. Variable mapping configuration file
	5.3.7. Converter configuration file
	5.3.8. Default modules configuration file
	5.3.9. Process archive parsers configuration file

	5.4. jBPM debug logs in JBoss
	5.5. Logging of optimistic concurrency exceptions
	5.6. Object factory

	Chapter 6. Persistence
	6.1. The persistence API
	6.1.1. Relation to the configuration framework
	6.1.2. Convenience methods on JbpmContext
	6.1.3. Managed transactions
	6.1.4. Injecting the hibernate session
	6.1.5. Injecting resources programmatically
	6.1.6. Advanced API usage

	6.2. Configuring the persistence service
	6.2.1. The DbPersistenceServiceFactory
	6.2.2. The hibernate session factory
	6.2.3. Configuring a c3po connection pool
	6.2.4. Configuring a ehcache cache provider

	6.3. Hibernate transactions
	6.4. JTA transactions
	6.5. Customizing queries
	6.6. Database compatibility
	6.6.1. Isolation level of the JDBC connection
	6.6.2. Changing the jBPM DB
	6.6.3. The jBPM DB schema
	6.6.4. Known Issues
	6.6.4.1. Sybase Issues

	6.7. Combining your hibernate classes
	6.8. Customizing the jBPM hibernate mapping files
	6.9. Second level cache

	Chapter 7. The jBPM Database
	7.1. Switching the Database Backend
	7.1.1. Isolation level
	7.1.2. Installing the PostgreSQL Database Manager
	7.1.3. Installing the MySQL Database Manager
	7.1.4. Creating the JBoss jBPM Database with your new PostGreSQL or MySQL
	7.1.4.1. Creating the JBoss jBPM Database with PostGreSQL
	7.1.4.2. Creating the JBoss jBPM Database with your new MySQL

	7.1.5. Last Steps
	7.1.6. Update the JBoss jBPM Server Configuration

	7.2. Database upgrades
	7.3. Starting hsqldb manager on JBoss

	Chapter 8. Process Modeling
	8.1. Overview
	8.2. Process graph
	8.3. Nodes
	8.3.1. Node responsibilities
	8.3.2. Nodetype task-node
	8.3.3. Nodetype state
	8.3.4. Nodetype decision
	8.3.5. Nodetype fork
	8.3.6. Nodetype join
	8.3.7. Nodetype node

	8.4. Transitions
	8.5. Actions
	8.5.1. Action configuration
	8.5.2. Action references
	8.5.3. Events
	8.5.4. Event propagation
	8.5.5. Script
	8.5.6. Custom events

	8.6. Superstates
	8.6.1. Superstate transitions
	8.6.2. Superstate events
	8.6.3. Hierarchical names

	8.7. Exception handling
	8.8. Process composition
	8.9. Custom node behavior
	8.10. Graph execution
	8.11. Transaction demarcation

	Chapter 9. Context
	9.1. Accessing variables
	9.2. Variable lifetime
	9.3. Variable persistence
	9.4. Variables scopes
	9.4.1. Variables overloading
	9.4.2. Variables overriding
	9.4.3. Task instance variable scope

	9.5. Transient variables
	9.6. Customizing variable persistence

	Chapter 10. Task management
	10.1. Tasks
	10.2. Task instances
	10.2.1. Task instance life-cycle
	10.2.2. Task instances and graph execution

	10.3. Assignment
	10.3.1. Assignment interfaces
	10.3.2. The assignment data model
	10.3.3. The personal task list
	10.3.4. The group task list

	10.4. Task instance variables
	10.5. Task controllers
	10.6. Swimlanes
	10.7. Swimlane in start task
	10.8. Task events
	10.9. Task timers
	10.10. Customizing task instances
	10.11. The identity component
	10.11.1. The identity model
	10.11.2. Assignment expressions
	10.11.2.1. First terms
	10.11.2.2. Next terms

	10.11.3. Removing the identity component

	Chapter 11. Document management
	Chapter 12. Scheduler
	12.1. Timers
	12.2. Scheduler deployment

	Chapter 13. Asynchronous continuations
	13.1. The concept
	13.2. An example
	13.3. The command executor
	13.4. jBPM's built-in asynchronous messaging
	13.5. JMS for asynchronous architectures
	13.6. Future directions

	Chapter 14. Business calendar
	14.1. Duedate
	14.1.1. Duration
	14.1.2. Base date
	14.1.3. Examples

	14.2. Calendar configuration

	Chapter 15. Email support
	15.1. Mail in jPDL
	15.1.1. Mail action
	15.1.2. Mail node
	15.1.3. Task assign mails
	15.1.4. Task reminder mails

	15.2. Expressions in mails
	15.3. Specifying mail recipients
	15.3.1. Multiple recipients
	15.3.2. Address resolving

	15.4. Mail templates
	15.5. Mail server configuration
	15.6. From address configuration
	15.7. Customizing mail support
	15.8. Mail server

	Chapter 16. Logging
	16.1. Creation of logs
	16.2. Log configurations
	16.3. Log retrieval
	16.4. Database warehousing

	Chapter 17. jBPM Process Definition Language (JPDL)
	17.1. The process archive
	17.1.1. Deploying a process archive
	17.1.2. Process versioning
	17.1.3. Changing deployed process definitions
	17.1.4. Migrating process instances
	17.1.5. Process conversion

	17.2. Delegation
	17.2.1. The jBPM class loader
	17.2.2. The process class loader
	17.2.3. Configuration of delegations
	17.2.3.1. config-type field
	17.2.3.2. config-type bean
	17.2.3.3. config-type constructor
	17.2.3.4. config-type configuration-property

	17.3. Expressions
	17.4. jPDL xml schema
	17.4.1. Validation
	17.4.2. process-definition
	17.4.3. node
	17.4.4. common node elements
	17.4.5. start-state
	17.4.6. end-state
	17.4.7. state
	17.4.8. task-node
	17.4.9. process-state
	17.4.10. super-state
	17.4.11. fork
	17.4.12. join
	17.4.13. decision
	17.4.14. event
	17.4.15. transition
	17.4.16. action
	17.4.17. script
	17.4.18. expression
	17.4.19. variable
	17.4.20. handler
	17.4.21. timer
	17.4.22. create-timer
	17.4.23. cancel-timer
	17.4.24. task
	17.4.25. swimlane
	17.4.26. assignment
	17.4.27. controller
	17.4.28. sub-process
	17.4.29. condition
	17.4.30. exception-handler

	Chapter 18. Security
	18.1. TODOS
	18.2. Authentication
	18.3. Authorization

	Chapter 19. Test Driven Development for Workflow
	19.1. Introducing TDD for workflow
	19.2. XML sources
	19.2.1. Parsing a process archive
	19.2.2. Parsing an xml file
	19.2.3. Parsing an xml String

	19.3. Testing sub processes

	Chapter 20. Pluggable architecture
	Appendix A. Revision History
	Index

