Seam Reference Guide

JBoss Enterprise
Application Platform

4.3

‘ ‘ Red Hat

Written By: Gavin King, Christian Bauer, Norman Richards,
Shane Bryzak, Pete Muir, Emmanuel Bernard, Max Andersen,

Michael Youngstrom, Thomas Heute, Michael Yuan
ISBN: N/A
Publication date: Sep, 2007

Seam Reference Guide

This book is a Reference Guide to Seam 1.2 for JBoss Enterprise Application Platform 4.3.

Seam Reference Guide: JBoss Enterprise Application

Platform

Author Written By: Gavin King,
Christian Bauer, Norman
Richards, Shane Bryzak, Pete
Muir, Emmanuel Bernard, Max
Andersen, Michael
Youngstrom, Thomas Heute,
Michael Yuan

Translator Japanese Translation: Fusayuki
Minamoto, Takayoshi Kimura,
Takayoshi Osawa, Reiko
Ohtsuka, Syunpei Shiraishi,
Toshiya Kobayashi, Shigeaki
Wakizaka, Ken Yamada, Noriko
Mizumoto

Copyright © 2008 Red Hat, Inc

Copyright © 2008 Red Hat, Inc. This material may only be distributed subject to the terms and conditions set forth in the
Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License (which is presently available at
http://creativecommons.org/licenses/by-nc-sa/3.0/).

Red Hat and the Red Hat "Shadow Man" logo are registered trademarks of Red Hat, Inc. in the United States and other
countries.

All other trademarks referenced herein are the property of their respective owners.
The GPG fingerprint of the security@redhat.com key is:

CA 20 86 86 2B D6 9D FC 65 F6 EC C4 21 91 80 CD DB 42 A6 OE

1801 Varsity Drive

Raleigh, NC 27606-2072

USA

Phone: +1 919 754 3700

Phone: 888 733 4281

Fax: +1 919 754 3701

PO Box 13588

Research Triangle Park, NC 27709
USA

http://creativecommons.org/licenses/by-nc-sa/3.0/

Seam Reference Guide

L FEEADACK ..o e 1

INtrodUCtioN t0 JBOSS SEAMN ...cuuiiit it e e e e et e e e e e eanaas iii
ST 1o o V) (o] - | USSP 7
1. Try the @XamPIeS ... e 7
1.1. Running the examples 0N JBOSS ASoiiiiiiiiiieii e 7

1.2. Running the examples on TOMCatcocovviiiiieiiiiiei e 7

1.3. Running the example teStSooieuiiiiiii e 8

2. Your first Seam application: the registration exampleccooiiiiiiiiiinieecnnnnn. 8
2.1. Understanding the COAeccouiiiiiiiiii e 9

2.2, HOW IEWOTKS et e e e e e e es 19

3. Clickable lists in Seam: the messages examplecccooeviieiiiiieiiieiiiiieceeeeenn, 20
3.1. Understanding the COdecooiiiiiiiiiiii e 20

3.2 HOW IEWOTKS oot e e e e e e e e ees 25

4. Seam and jBPM: the todo list exampleccccoiiiiiiiiiii e, 25
4.1. Understanding the COUEcoeuiiiiiii e 26

4.2, HOW IEWOTKS ..o e e e e e e eens 32

5. Seam pageflow: the numberguess exampleccoooiiiiiiiiin i 33
5.1. Understanding the COEeoiiiiiiiiiiiiii e 33

5.2 HOW IEWOTKS ..ot e 38

6. A complete Seam application: the Hotel Booking examplecccooeevneeennnn. 38
{200 [o o (3 T3 1 o 38

6.2. Overview of the booking examplecccooeiiiiiiiiiii e 41

6.3. Understanding Seam CONVErsationSoccooveeiiiiiiiiiiiiieeiiiaeieeeenes 41

6.4. The Seam Ul control IBrarycooviiiiiiiii e 49

6.5. The Seam Debug Pagecoooiiiiiii e 49

7. A complete application featuring Seam and jBPM: the DVD Store example 50
8. A complete application featuring Seam workspace management: the Issue Tracker
(2= 10] o] [T PP 52
9. An example of Seam with Hibernate: the Hibernate Booking example 53
10. A RESTful Seam application: the Blog exampleccoovviiiiiiiiiiineiineenn, 53
10.1. Using "pull=style MVC ... 54
10.2. Bookmarkable search results pageocoeiiiiiiiinieiiiinc e, 56
10.3. Using "push”-style MVC in a RESTful applicationcc.ccoeeennnen. 59

3. The contextual component MOEluiiiiiiiiiiii e 63
1. SEAM CONEXES ..euiiiiieiit ettt ettt e e e e e e eaas 63
1.1, StateleSS CONEXE ...uietiiii et 63

O YT o o0 (=) 64

1.3, Page CONEXE vttt 64

1.4. CONVErsation CONEEXEieun it eean e 64

1.5, SESSION CONTEXE ..evvniiiiieiie ettt e e e e e e e a et e e e ean s 65

1.6. BUSINESS PrOCESS CONIEXE ..vuvviiiiiiiiiii i i e e e e e e e eaans 65

1.7. ApPlICAtiON CONIEXTiiiiii it 65

1.8. ConteXt VariableScooouiiiiiiii e 65

1.9. Context SEArch Priorityc..oeieuiiiiii e 66
1.10. ConcurrenCy MOTEIcouuiiiiii e 66

2. SCAM COMPONENTS uuitiitit ittt et e e e e e e e e et e e eens 67

Seam Reference Guide

2.1. Stateless SeSSION DEANSviiuiiiiii i 67

2.2. Stateful SESSION DEANScoivviiii 67

2.3 ENLItY DRANS ..ot 68

2.4, JAVABEANS ...ceiiii e 68

2.5. Message-drivEN DEANScoiiviiiiii e 68

2.6. INTEICEPLION ..eeiiit et e e e e e 69

2.7. COMPONENT NAMES ...eniieiiieeie ettt et e e e e e eeneees 69

2.8. Defining the compoNeNnt SCOPEuuiviiiiiiiiiiiiiec e 70

2.9. Components with multiple rolesccooviiiiiiiii e 71
2.10. BUIlt-in COMPONENES ...ieiiiiiieeii e e e e e eanaeees 71

L BIBCLION ot 72
4. LifecyCle MethOUScoouiiiiii e 75
5. Conditional INStallationuiiiiiiiiii e 75
(ST oo [|1 o TP 77
7. The Mut abl e interface and @REAAON] Y ...cvuiivniiiiiiiie e 78
8. Factory and manager COMPONENESccuuiiiiiiiiieeiie e ee e e e e e e 79
4. Configuring Seam COMPONEINESco.uuiiiiitiieeieii ettt e e e et e e e e e e 83
1. Configuring components via property Settingscoovvevriiiiiieiineiiiere e, 83
2. Configuring components via components.Xmlccooviiiiiiiiiiiiinieeieeeennen 83
3. Fine-grained configuration filesS ... 86
4. Configurable Property tYPEScieui e 87
5. USING XML NAMESPACES ...ueeeniieiniieiieei ettt e ettt e e e e e e et e e e ean s 88
5. Events, interceptors and exception handlingcoovviiiiiiiiii 93
L. SEAIM BVENES .ot 93
1.1 PAQE BCHONS ...uuieiiiiii ettt ettt ettt ettt e e et e 93

1.2. Component-driveN EVENLScceuiiiiiieiii e e e e e e e e ean s 99

1.3. Contextual BVENESiiiii e 101

2. SEAM INTEICEPIOIS .ovti ittt ettt ettt e e e e e e e enaans 102
3. Managing EXCEPLIONSciuu it eiii et e e e e e e e e e e e e e e 104
3.1. Exceptions and tranSactionScoeuuiiiiiiiiiieiiieii e 104

3.2. Enabling Seam exception handlingcccoooiviiiiiiiiiiiiin e, 104

3.3. Using annotations for exception handlingccccccooveiiiiiiiiiinennnnn. 105

3.4. Using XML for exception handlingcoooveeiiiiiiiiiniiiiiiee e, 105

6. Conversations and workspace managementc..cvevuiieiieieeeinieeiir e e 107
1. Seam's conversation MOdelccoiiiiiiiiiiii 107
2. NeSted CONVEISALIONSciuuniiiii et e e e e e e e eaeeeens 109
3. Starting conversations with GET requestsccoevuiiiiiiiiiiiieiii e, 110
4.Using <s:1ink>and <s: butt ON> ..ot 111
5. SUCCESS MESSAGES ..evuieiiieeeieiet ettt et e e et e e et e e e e e e et e e eenas 113
6. Using an "explicit" conversation idcccoeeiii i, 114
7. WOrksSpace mManagemMeNTieiiuuiieiiiii ettt eeeans 114
7.1. Workspace management and JSF navigationccccceevvvniiiinnennnnn. 115

7.2. Workspace management and jPDL pageflowccooccoiiiiiiiiiinninnnn. 115

7.3. The conversation SWItCherco.oviiiiiiiiiiii e 116

7.4. The conversation liStooeuuiiiiiiiii e 116

7.5. BreadCrumbs ... 117

8. Conversational components and JSF component bindingsccccooeeeeeeen. 117

vi

7. Pageflows and bUSINESS PrOCESSEScccoiiiiiiiiiiiiiiiiiiiiii e 119

1. Pageflow iN SEAM ..o 119

1.1. The two navigation MOdelSccoeuiiiiiiiiii e 119

1.2. Seam and the back buttoncoooiiiiiiii 122

2. UsIiNg JPDL pageflows ...coouniiiicii e 124

2.1. Installing pageflows ... 124

2.2. Starting pageflowsoouiiiiii 124

2.3. Page nodes and tranSitionNscc.oveviieiiiiieiiiee e 125

2.4, Controlling the fIOWooiiii e 126

2.5. ENding the floOWcovniii 126

3. Business process management in SEamc..oviuuiviiiiiiiiiieiiee e 127

4. Using jPDL business process definitionsccoviiiiiiiiiiiiiiii i, 128

4.1. Installing process definitionNsccoceeiiiiiiiiii e 128

4.2, Initializing @CtOr IASccuuiiiii e 128

4.3. Initiating & DUSINESS PrOCESSccevviniiiiiiiieieii e 129

4.4, Task aSSIgNMENTiiiiiiii e e e e e e e e e 129

A5, TASK lISES e 129

4.6. Performing @ taskccocvuiiiiiiiii e 130

8. Seam and Object/Relational Mappingcceuuiieuiiiiiaie e 133
I 11 o T T 1o o P TRPTN 133

2. Seam managed tranSACONScccveuiiiiieiie e e e e 134

2.1. Enabling Seam-managed transactionsccccoeviiiiiiiniiiiiieeieeeannn, 135

3. Seam-managed persiStence CONEXLScc.uveveieriiiieii e e e e eeens 135

3.1. Using a Seam-managed persistence context with JPA 135

3.2. Using a Seam-managed Hibernate sessioncccooeveiiiiiiiiiiineennnn. 136

3.3. Seam-managed persistence contexts and atomic conversations 137

4. Using the JPA "delegate” ... 138

5. UsiNG EL iN EIB-QLIHQL ...ooviiiiieeeee e 138

6. Using Hibernate filterscc.oiiiiiiiiii e 139

9. JSF form validation in SEAMiiiiiiii e 141
10. The Seam Application Frameworkoiiiiiiiiiiiiiii e 147
I [o To (1T o o H PR 147

2. HOME ODJECES ..ottt e 148

3. QUETY ODJECES ovniiiiiicii e 152

Z{ el gl 1 o] [=] gle] o] [=Tox £ TSP PP 154

11. Seam and JBOSS RUIESoieiiiiiiiii et e e e eens 157
1. INStAlliNG TUIES . .eeeeee e e e e e e 157

2. Using rules from a Seam COMPONENTcouuiiiiiiiiiiiiiieee e 157

3. Using rules from a jBPM process definitioncccooiviiiiiiiiiiiiniineceeenn, 158

S Y=ot U 1P 161
I @Y= V1 P PTPTPIN 161

1.1. Which mode is right for my application?cccoccoiviiiiiiiiiiiiieee e, 161

2. REQUITEIMENTS ..ottt ettt e e e et e e e e e et e e eaeaeens 161

3. AULNENTICALION .eiiiiic e 162

G 700 @) 70 [0 | - i o] o 162

3.2. Writing an authentication method ..o 163

3.3, Writing @ 10gin fOrM ...ooouuii e 163

Vii

Seam Reference Guide

3.4. Simplified Configuration - SUMMArYccooiiiiiiiiiniei e, 164

3.5. Handling Security EXCEPLIONScc.uviviiiiiiiieiii e e e e 164

3.6. LOGiN REAIFECHON ...c.uuiiiiiiiiee e 165

3.7. Advanced Authentication FEatUrescooiiiiiiiiinieiiiiinneccii e, 166

O e o YT TS Vo [166
5. AULNOFIZATION .oee e 167
5.1, COrE CONCEPLS ..erneieieiet ettt et ettt e e eaa s 167

5.2. SECUriNg COMPONENLSuuiiiiiieiiieeiieei e e e e e e e e e e e e e et e e eeanaes 167

5.3. Security in the user interface ..., 169

ST T ol BT [o - T [170

5.5. Securing ENItIESoiuuiiiiii e 171

6. Writing Security RUIESoiiiiiie e 173
6.1. PErMISSIONS OVEIVIEWiieeiiiiiiiiiiisieeeeeeeeet e e e e e e e eeennnes 173

6.2. Configuring @ rules file ..o 173

6.3. Creating a security rules filecoooeiiiiiiiin e, 173

7. SSL U SECUILY ettt e et r e e et e e e r e e e e 176
8. Implementing a CaptCha TESTccouuuiiiiiii e 176
8.1. Configuring the Captcha Servietccoooiiiiiiiii e, 177

8.2. Adding a CaptCha to @ PAJEc.uiieurieieiii e 177

13. Internationalization and themMEeSccoiuiiiiiiiii e 179
O I Tox- 1= PSRRI 179
2. LADEIS e e 180
2.1. Defining 1abelsiiiii 180

2.2. Displaying [abelscoouiiiiiiii 181

2.3. FACES MESSAUES ...ivuiiiiiiiiiiiieii ettt e et e e 181

3. THMEZONES ..ottt 182
N I 1= 0T PSPPI 182
5. Persisting locale and theme preferences via COOKIeSccoevuiiiiiiiinnerennnn, 183
T4, SEAM TEXE ..iieit ittt e e et et eee 185
1. BaSIC FOMALHING ...neeeiiiie e e e e e e e 185
2. Entering code and text with special charactersocccooiiiiiiiiiiineenenn, 187
B LIS e 187
4. ENEEriNg HTIML ot 188
15. iTeXt PDF gENEIALIONiiii e e e et e e e e e e e e e e e et e e et s e e aa e e e e eeens 189
1. USING PDF SUPPOIT ..ottt et e e e e 189
2. Creating @ dOCUMENTcouuiiiiiii et e e eneans 189
00 o o [0 Yor U 33T o | 189

3. BasiC TeXt EIEMENTS ... 190
3.1, PIparagraph ... 191

B2 Pl XE it 191

LB PITONE e 191

B PINEWPAGE ..ot 192

35 PUMAGE et 192

3.6, PIANCROT L. 193

4. Headers and FOOLEISccoiiiiiiiiiiis ettt e e e e ennnes 193
4.1. p:header and P:fOOtErc.u i 193

4.2, PiPAGENUMDET .oeiii e 194

viii

5. Chapters and SECHONSiiiiiiiieiiii et 194

5.1. p:chapter and P:SECLIONuviiiiiii e 194

D Pl e e 195

L I £ PP 195
B. L. Pl oot 195

6.2, PIISHIEM e 196

00 1= 1] P 196
T.0. PAADIE e 196

T2, PICEIL e 197

8. DOCUMENT CONSLANTSceeviiieieiiiieeeei e e 199
8.1. COlOr VAIUES ... 199

8.2. AlIGNMENE VAIUESciiiiiiiiiii e 199

9. CoNfIQUIING ITEXE .evneei e e e e e e e e e e e eens 199
F0. ITEXE HNKS et e e et e e e et e e e e e aes 200
TR 1 0= 201
1. Creating @ MESSATE . .c.uuieirnieiiieei e et etat e et e e st e et eeat e eataeesta e st aeeanaeranaees 201
1.1, AHACHMENTS .o 202

1.2. HTML/Text alternative partcooceveeviiiiiin e e e e 203

1.3. MUItiple reCIPIENES ...t 203

1.4, MUIIPIE MESSAGES ...neiieiiii ettt et eees 203

1.5, TeMPIALING ©.oevee e 204

1.6. INternationaliSationcouiiieiiii e 204

1.7. Other HEAEIS ...ccvniiiiiei e e e eens 204

2. RECEIVING BMAIISiiiiiii e 205
3. CONFIQUIATION ...nieiti ettt neans 206
3L MBI T SESSI ON e 206

S = To L PP PTTPTPPT 207
17. AsynchroniCity and MESSAGING ... cceeuuuiiiiii ettt e e et e e et e e e e eeeni e eens 211
Y Tod o o 1o Y/ 211
1.1. Asynchronous Methodsocoeuiiiiiiiiiiii e 211

1.2. ASYNCRIONOUS BVENES ...iivviiiiiiiii ettt et eai e eees 214

2. MESSAGING IN SEAM ...evuiiiii i e e e e e e e et e e aa e eens 214
2.1, CONFIQUIALION ...iiiii et 214

2.2, SeNAING MESSAYES ..vuuevvrnieeeieeeiieei e et et e e et e e et e e e r et e e eeanes 215

2.3. Receiving messages using a message-driven bean 216

2.4. Receiving messages inthe clientccooooiiiiiin e, 216

S TR - Tod 1T [P 217
1. Using JBOSSCAChe iN SEaMoiuiiiiii e 218
2. Page fragment CaChiNgcoouuuiiiiiiiiie et 219
S R =2 o) 1] o P 221
1. CONFIQUIALION «.eeuti ettt ettt e e e e b e e e e eeens 221
2. The "Seam™ ODJECT ...civiiii e 222
2.1. A Hello World example ..o 222

2.2, SaM.COMPONENT ..oeuiiiii ittt 224

2.3. SEAM.REMOLING ..uuiiiiieiii e e 226

3. ClENt INtEITACES .. ceeiii e e 226
B I TSI o] (=« P 227

Seam Reference Guide

4.1. Setting and reading the Conversation IDcccovviiiiiineiiiiiineecie, 227

5. BAtCh REQUESES ...iviiiiiiciis e e e e e e e e e e et e e e e eans 228
6. Working With Data tyYPESeeuniiiiiiei e 228
6.1. Primitives / BaSIC TYPESciiiiiieiiiiie ettt e 228

6.2. JAVABEANSiiiiiii i 228

6.3. DAteS @Nd TIMESiiiiiiii et 229

L =t 11 0 229

B.5. COlECHIONS ...uiiiieeii e 230

7. DEIUGGING ..t 230
8. The Loading MESSAQE .. cvvuuiieii i e e e e e e e e e eans 231
8.1. Changing the MEeSSAQEccuuiiiiiiiiiiieei e 231

8.2. Hiding the 10ading MESSAQEcccuvuiiiiiiiieiee e 231

8.3. A Custom Loading INdiCatorcocvuiiiiiiiiii e 231

9. Controlling what data iS returNedcooiuiiiiiiii e 232
9.1. Constraining normal fieldsooiiiiii 232

9.2. Constraining Maps and ColleCtionscccoocvieiiiiiiiii e, 233

9.3. Constraining objects of a SPecific typeccoovviiiiiiiieiiiie e, 233

9.4, Combining CONSIIAINTSccvuiiiiiiie e e e 234

10. IMS MESSAGING . eeuueiitnieet ettt e et et et et e e e e et e e et e e et e e aneeanaaes 234
10.1. CONFIGUIALION ...ieiiiieieiii e e e e e eeae e eees 234
10.2. Subscribing to @ JIMS TOPIC ...cvvvniieiiecii e 234

10.3. Unsubscribing from a TOPICc...viiuiiiiiiiii e, 235
10.4. Tuning the PolliNg PrOCESSoiiiiiiiiiiiiii e 235

20. Spring Framework integrationcccc.uieiiiiiiiiie e e 237
1. Injecting Seam components into Spring beansccccoooveiiiiiiiiiiiieeiiineeeen, 237
2. Injecting Spring beans into Seam COMPONENtScccvvveiiieiiiieeiii e eeeeenn, 238
3. Making a Spring bean into a Seam componentcccoiiiiiiiiininen 239
4. Seam-scoped SPriNg DEANSociiiuiiiiii e 239
5. Spring Application Context as a Seam Componentccceevvvevvieeiineeennnnnnn 240
21. Configuring Seam and packaging Seam applicationscccocccoveeiiiiiiiiiiiiinaennnn. 243
1. Basic Seam CONfiQUIratioNoveiiiuiioiiiiiie et eees 243
1.1. Integrating Seam with JSF and your servlet container 243

1.2. Seam ReS0UICe ServIetcoooeuiiiiiiiii e 244

1.3. Seam ServIet filtersouuiiiiee i 244

1.4. Integrating Seam with your EJB containerc.c.oceeveeviiiiinnieenneennn. 247

1.5. USING fACEIELS ... 247

1.6, DON'tfOrget! oo 248

2. Configuring Seam in JAVA EE 5 ... 248
2.0 PACKAGING «eevtneteiii ettt 249

3. Configuring Seam in Java SE, with the JBoss Embeddable EJB3 container250
3.1. Installing the Embeddable EJB3 containercccoovevevviieiiiinnnenennnn. 251

3.2. Configuring a datasource with the Embeddable EJB3 container 251

3.3 PACKAGING ..t 252

4. Configuring Seam iN J2EEocooiiiiiii e 253
4.1. Boostrapping Hibernate in Seamccooooviiiiiii i 254

4.2. Boostrapping JPA IN SEAM ...c...iiiiiiiii e 254

4.3, PACKAGING .ttt 254

5. Configuring Seam in Java SE, with the JBoss Microcontainer 255

5.1. Using Hibernate and the JBoss Microcontainercccocccevvevvnnennnnn. 256

5.2, PACKAGING .. eetiiiiiie et 257

6. Configuring [BPM iN SEAIMiiiiiiii e 258

0 = T = To 1o 259

7. Configuring Seam in @ Portaloooiiiiiiii 260

8. Configuring SFSB and Session Timeouts in JBOSS AScocoeveviiveviineeeineeenn, 260
ST La = L o] = LT] o 1S PP 263
1. Annotations for component definitionoocoiiiiiiii e 263

2. Annotations for bIJECHIONociiiiii e 266

3. Annotations for component lifecycle methods ..o, 269

4. Annotations for context demarcationcccoeviiiiiiiiiniiii 270

5. Annotations for transaction demarcationc.ooveuuiiieiiiiinieiiiiin e 274

6. ANNOtatioNs fOr EXCEPLIONSu it 275

7. Annotations for validationcccceiiiiiiiiii 275

8. Annotations for Seam ReMOLINGoovviiiiiiieiii e 276

9. Annotations for SEam INErCEPLOIScovuuuiiiiiiii it 276

10. Annotations for asynNChroniCityccoovuuiiiiiiiiiii e 277

11. Annotations for use with JSF dat aTabl €cc.oviiiiiiiiiiii e 278

12. Meta-annotations for databindingccccoooeiiiiiii 279

13. Annotations for PACKaQiNgcc.uveiiieiiiiie e e e 279

23. BUIlt-In SEAM COMPONENESuiiiiiiiii et e e e e e e e eaa s 281
1. Context iNJeCtion COMPONENTSuiiiiiii ittt eens 281

b 1113V oo g] o] g T=T o1 £ P 281

3. Components for internationalization and themescccccooeiiiiiiiiinneiennnn, 283

4. Components for controlling CoNVErsationsccoveveiieiiiieeiieeii e eeeeeeen 285

5. IBPM-related COMPONENTS ... c.uuiiiiiiii e 286

6. Security-related COMPONENTSciiiuiiiiiii et 288

7. IMS-related COMPONENESiueiiiiiiiei e e e e e e e e eens 288

8. Mail-related COMPONENTScouniiiiiiii e 288

9. Infrastructural COMPONENTSuiiiiiiii e 289

10. Special COMPONENTSuiiiiiiiiiiicii e e e e e e e e e eaaaees 291

24, S€aM JSF CONTIOIS ...euiiiiie et e e e e e 293
25. Expression language enhanCemeNtSovvvuviiiioiiiiieei e e 309
I Odo] 41110 U] =1 o] I PP PT PP PPN 309

2. USA0E it 309

T I 4011 7= LT o LS PR 310

3.1. Incompatibility With ISP 2.1 ... 310

3.2. Calling a Met hodExpr essi on from Java codecccoceeveviiiiiinnennnnn. 310

26. Testing Seam appliCatiONSiiiiiiiiiiiiii e 311
1. Unit testing Seam COMPONENTScooeuuuieiiiii ettt e et e et eeeri e eeni e eeens 311

2. Integration testing Seam applicationscccccoviiiiiiiiii i 313

2.1. Using mocks in integration eSScc.uviiiiiiiiiiieiiiec e 317

A7 S 1=V o T (T | 319
1. [BPM deSigner and VIEWETccuuieiuuieiiiiieiiieeeiieeise e e et e eeaeeetneeeanneeaneens 319

1.1. BUSINESS ProCeSS AESIGNEIuiitiiiiii it 319

1.2. Pageflow VIEBWETuiiiiiiii e 319

Xi

Seam Reference Guide

2. CRUD-application geNEIatorc.uuiiiieiiieiiiiie ettt e e e e 320

2.1. Creating a Hibernate configuration filecc.ccooviiiiiiin i, 320

2.2. Creating a Hibernate Console configurationc.c.cccoviiiiiiiiiineennnn. 321

2.3. Reverse engineering and code generationcccoveveniiiiniiiineennnn. 324

a0 = PP 329

Xii

Chapter 1.

Feedback

If you spot a typo in this guide, or if you have thought of a way to make this manual better, we
would love to hear from you! Submit a report in JIRA? against the Product: JBoss Enterprise
Application Platform, Version: <ver si on>, Component: Doc. If you have a suggestion for
improving the documentation, try to be as specific as possible. If you have found an error,
include the section number and some of the surrounding text so we can find it easily.

1 http://jira.jposs.com/jira/browse/JBPAPP

http://jira.jboss.com/jira/browse/JBPAPP
http://jira.jboss.com/jira/browse/JBPAPP

Introduction to JBoss Seam

Seam is an application framework for Java EE 5. It is inspired by the following principles:

Integrate JSF with EJB 3.0
JSF and EJB 3.0 are two of the best new features of Java EE 5. EJB3 is a brand new
component model for server side business and persistence logic. Meanwhile, JSF is a great
component model for the presentation tier. Unfortunately, neither component model is able
to solve all problems in computing by itself. Indeed, JSF and EJB3 work best used together.
But the Java EE 5 specification provides no standard way to integrate the two component
models. Fortunately, the creators of both models foresaw this situation and provided
standard extension points to allow extension and integration of other solutions.

Seam unifies the component models of JSF and EJB3, eliminating glue code, and letting
the developer think about the business problem.

Integrated AJAX
Seam supports two open source JSF-based AJAX solutions: ICEfaces and Ajax4JSF.
These solutions let you add AJAX capability to your user interface without the need to write
any JavaScript code.

Seam also provides a built-in JavaScript remoting layer for EJB3 components. AJAX clients
can easily call server-side components and subscribe to JMS topics, without the need for an
intermediate action layer.

Neither of these approaches would work well, were it not for Seam's built-in concurrency
and state management, which ensures that many concurrent fine-grained, asynchronous
AJAX requests are handled safely and efficiently on the server side.

Integrate Business Process as a First Class Construct
Optionally, Seam integrates transparent business process management via jBPM. You
won't believe how easy it is to implement complex workflows using jBPM and Seam.

Seam even allows definition of presentation tier conversation flow by the same means.

JSF provides an incredibly rich event model for the presentation tier. Seam enhances this
model by exposing jBPM's business process related events via exactly the same event
handling mechanism, providing a uniform event model for Seam's uniform component
model.

One Kind of "Stuff"
Seam provides a uniform component model. A Seam component may be stateful, with the
state associated to any one of a number of contexts, ranging from the long-running
business process to a single web request.

There is no distinction between presentation tier components and business logic
components in Seam. It is possible to write Seam applications where "everything" is an
EJB. This may come as a surprise if you are used to thinking of EJBs as coarse-grained,
heavyweight objects that are a pain in the backside to create! However, EJB 3.0 completely

Introduction to JBoss Seam

changes the nature of EJB from the point of view of the developer. An EJB is a fine-grained
object - nothing more complex than an annotated JavaBean. Seam even encourages you to
use session beans as JSF action listeners!

Unlike plain Java EE or J2EE components, Seam components may simultaneously access
state associated with the web request and state held in transactional resources (without the
need to propagate web request state manually via method parameters). You might object
that the application layering imposed upon you by the old J2EE platform was a Good Thing.
Well, nothing stops you creating an equivalent layered architecture using Seam - the
difference is that you get to architect your own application and decide what the layers are
and how they work together.

Declarative State Management
We are all used to the concept of declarative transaction management and J2EE
declarative security from EJB 2.x. EJB 3.0 even introduces declarative persistence context
management. These are three examples of a broader problem of managing state that is
associated with a particular context, while ensuring that all needed cleanup occurs when the
context ends. Seam takes the concept of declarative state management much further and
applies it to application state. Traditionally, J2EE applications almost always implement
state management manually, by getting and setting servlet session and request attributes.
This approach to state management is the source of many bugs and memory leaks when
applications fail to clean up session attributes, or when session data associated with
different workflows collides in a multi-window application. Seam has the potential to almost
entirely eliminate this class of bugs.

Declarative application state management is made possible by the richness of the context
model defined by Seam. Seam extends the context model defined by the servlet
spec—request, session, application—with two new contexts—conversation and business
process—that are more meaningful from the point of view of the business logic.

Bijection
The notion of Inversion of Control or dependency injection exists in both JSF and EJB3, as
well as in numerous so-called "lighweight containers". Most of these containers emphasize
injection of components that implement stateless services. Even when injection of stateful
components is supported (such as in JSF), it is virtually useless for handling application
state because the scope of the stateful component cannot be defined with sufficient
flexibility.

Bijection differs from 1oC in that it is dynamic, contextual, and bidirectional. You can think of
it as a mechanism for aliasing contextual variables (names in the various contexts bound to
the current thread) to attributes of the component. Bijection allows auto-assembly of stateful
components by the container. It even allows a component to safely and easily manipulate
the value of a context variable, just by assigning to an attribute of the component.

Workspace Management
Optionally, Seam applications may take advantage of workspace management, allowing
users to freely switch between different conversations (workspaces) in a single browser
window. Seam provides not only correct multi-window operation, but also multi-window-like

operation in a single window!

Annotated POJOs Everywhere
EJB 3.0 embraces annotations and "configuration by exception" as the easiest way to
provide information to the container in a declarative form. Unfortunately, JSF is still heavily
dependent on verbose XML configuration files. Seam extends the annotations provided by
EJB 3.0 with a set of annotations for declarative state management and declarative context
demarcation. This lets you eliminate the noisy JSF managed bean declarations and reduce
the required XML to just that information which truly belongs in XML (the JSF navigation
rules).

Testability as a Core Feature
Seam components, being POJOs, are by nature unit testable. But for complex applications,
unit testing alone is insufficient. Integration testing has traditionally been a messy and
difficult task for Java web applications. Therefore, Seam provides for testability of Seam
applications as a core feature of the framework. You can easily write JUnit or TestNG tests
that reproduce a whole interaction with a user, exercising all components of the system
apart from the view (the JSP or Facelets page). You can run these tests directly inside your
IDE, where Seam will automatically deploy EJB components into the JBoss Embeddable
EJB3 container.

Get started now!
Seam works in any application server that supports EJB 3.0. You can even use Seam in a
servlet container like Tomcat, or in any J2EE application server, by leveraging the new
JBoss Embeddable EJB3 container.

However, we realize that not everyone is ready to make the switch to EJB 3.0. So, in the
interim, you can use Seam as a framework for applications that use JSF for presentation,
Hibernate (or plain JDBC) for persistence and JavaBeans for application logic. Then, when
you're ready to make the switch to EJB 3.0, migration will be straightforward.

JSP Facelets | | Portal Presentation Tier
JSF Regquest Cantraller
Seam Context Management
EJE 3 JBoss jEPM || Hibernate State Management
P EE 5

It turns out that the combination of Seam, JSF and EJB3 is the simplest way to write a complex
web application in Java. You won't believe how little code is required!

vi

Chapter 2.

Seam Tutorial

1. Try the examples

In this tutorial, we'll assume that you are using JBoss AS 4.2 with Seam, as in the case of JBoss
Enterprise Application Platform.

The directory structure of each example in Seam follows this pattern:

* Web pages, images and stylesheets may be found in exanpl es/regi strati on/ vi ew

* Resources such as deployment descriptors and data import scripts may be found in
exanpl es/regi stration/ resources

« Java source code may be found in exanpl es/ regi stration/src

e The Ant build script is exanpl es/ regi strati on/ bui | d. xn

1.1. Running the examples on JBoss AS

First, make sure you have Ant correctly installed, with $ANT_HOME and $JAVA_HOME set correctly.
Next, make sure you set the location of your JBoss AS installation in the bui | d. properti es file
in the root folder of your Seam installation. If you haven't already done so, start JBoss AS now
by typing bi n/ run. sh or bi n/ run. bat in the root directory of your JBoss installation.

By default the examples will deploy to the default configuration of the server. These examples
should be deployed to the production configuration if they are to be used with JBoss Enterprise
Application Platform 4.2, and the example bui | d. xn file should be modified to reflect this
before building and deploying. Two lines should be changed in this file:

<property name="depl oy. dir"

val ue="${j boss. hone}/ server/ producti on/ depl oy"/ >

<property name="webroot.dir"
val ue="${depl oy. dir}/j boss-web. depl oyer/ ROOT. war "/ >

Now, build and deploy the example by typing ant depl oy in the exanpl es/ regi stration
directory.

Try it out by accessing ht t p: // | ocal host : 8080/ seam r egi st rati on/ with your web browser.
1.2. Running the examples on Tomcat

First, make sure you have Ant correctly installed, with $SANT_HOME and $JAVA_HOME set correctly.
Next, make sure you set the location of your Tomcat installation in the bui I d. properti es file in

http://localhost:8080/seam-registration/

Chapter 2. Seam Tutorial

the root folder of your Seam installation.

Now, build and deploy the example by typing ant depl oy. t ontat in the
exanpl es/ regi strati on directory.

Finally, start Tomcat.

Try it out by accessing ht t p: // | ocal host : 8080/ j boss-seam regi stration/ with your web
browser.

When you deploy the example to Tomcat, any EJB3 components will run inside the JBoss
Embeddable EJB3 container, a complete standalone EJB3 container environment.

1.3. Running the example tests

Most of the examples come with a suite of TestNG integration tests. The easiest way to run the
tests is to run ant t est exanpl e inside the exanpl es/ regi st rati on directory. It is also
possible to run the tests inside your IDE using the TestNG plugin.

2. Your first Seam application: the registration example

The registration example is a fairly trivial application that lets a new user store his username,
real name and password in the database. The example isn't intended to show off all of the cool
functionality of Seam. However, it demonstrates the use of an EJB3 session bean as a JSF
action listener, and basic configuration of Seam.

We'll go slowly, since we realize you might not yet be familiar with EJB 3.0.

The start page displays a very basic form with three input fields. Try filling them in and then
submitting the form. This will save a user object in the database.

©) Register New User - Mozilla Firefox
Fle Edt View Go Bookmarks Tools Help

(:il - E> - @ @ |@ http://localhost:8080/seam-registration/register.seam V‘ @ Go |@

| [} Chapter 1. Seam Tutorial |] Register New User |[#3Boss DVD Store

Usenane
Reat Name Gk |
Passwrd

http://localhost:8080/jboss-seam-registration/

Understanding the code

2.1. Understanding the code

The example is implemented with two JSP pages, one entity bean and one stateless session
bean.

Let's take a look at the code, starting from the "bottom".

2.1.1. The entity bean: user.java

We need an EJB entity bean for user data. This class defines persistence and validation
declaratively, via annotations. It also needs some extra annotations that define the class as a
Seam component.

@ntity

@Nane("user")

@scope(SESSI ON)

@rabl e(name="users")

public class User inplenments Serializable

{
private static final |ong serialVersionU D = 1881413500711441951L;

private String usernane;
private String password;

Chapter 2. Seam Tutorial

1.

2.

private String nane;

public User(String name, String password, String usernane)

{

thi s. nane = nane;
thi s. password = passwor d;
thi s. usernane = user nane;

}

public User() {}

@Not Nul I @engt h(m n=5, nmax=15)
public String getPassword()

{
return password;
}
public void setPassword(String password)
{
thi s. password = password;
}
@Not Nul |
public String get Name()
{
return nane;
}
public void setNane(String nane)
{
t hi s. nane = nane;
}

@d @\ot Nul I @engt h(m n=5, nmax=15)
public String getUsernane()

{
return usernane;
}
public void setUsernane(String usernane)
{
t hi s. usernane = usernane;
}

The EJB3 standard @nt i t y annotation indicates that the User class is an entity bean.

A Seam component needs a component name specified by the @ame annotation. This name
must be unique within the Seam application. When JSF asks Seam to resolve a context

variable with a name that is the same as a Seam component name, and the context variable
is currently undefined (null), Seam will instantiate that component, and bind the new instance

10

Understanding the code

to the context variable. In this case, Seam will instantiate a User the first time JSF
encounters a variable named user.

3. Whenever Seam instantiates a component, it binds the new instance to a context variable in
the component's default context. The default context is specified using the @cope
annotation. The User bean is a session scoped component.

4. The EJB standard @rabl e annotation indicates that the User class is mapped to the users
table.

5. name, passwor d and user name are the persistent attributes of the entity bean. All of our
persistent attributes define accessor methods. These are needed when this component is
used by JSF in the render response and update model values phases.

6. An empty constructor is both required by both the EJB specification and by Seam.

7. The @t Nul | and @engt h annotations are part of the Hibernate Validator framework. Seam
integrates Hibernate Validator and lets you use it for data validation (even if you are not using
Hibernate for persistence).

8. The EJB standard @ d annotation indicates the primary key attribute of the entity bean.
The most important things to notice in this example are the @anme and @cope annotations.
These annotations establish that this class is a Seam component.

We'll see below that the properties of our User class are bound to directly to JSF components
and are populated by JSF during the update model values phase. We don't need any tedious
glue code to copy data back and forth between the JSP pages and the entity bean domain
model.

However, entity beans shouldn't do transaction management or database access. So we can't
use this component as a JSF action listener. For that we need a session bean.

Example 2.1.

2.1.2. The stateless session bean class: Regi sterAction.java

Most Seam application use session beans as JSF action listeners (you can use JavaBeans
instead if you like).

We have exactly one JSF action in our application, and one session bean method attached to it.
In this case, we'll use a stateless session bean, since all the state associated with our action is
held by the User bean.

This is the only really interesting code in the example!

@t at el ess
@\ane("register")

11

Chapter 2. Seam Tutorial

public class RegisterAction inplenments Register
{

@n

private User user;

@Per si st enceCont ext
private EntityManager em

@ogger
private Log | og;

public String register()
{
Li st existing = em createQuery(
"sel ect usernanme from User where usernanme=#{user. usernane}")
.getResul tList();

i f (existing.size()==0)

{
em per si st (user);
| og. i nfo("Regi stered new user #{user.usernane}");
return "/registered.jsp";

}

el se
{
FacesMessages. i nstance(). add(" User #{user.usernane} already
exists");
return null;

}

. The EJB standard @t at el ess annotation marks this class as stateless session bean.

. The @ n annotation marks an attribute of the bean as injected by Seam. In this case, the

attribute is injected from a context variable named user (the instance variable name).

. The EJB standard @er si st enceCont ext annotation is used to inject the EJB3 entity

manager.

. The Seam @ogger annotation is used to inject the component's Log instance.

. The action listener method uses the standard EJB3 Ent i t yManager API to interact with the

database, and returns the JSF outcome. Note that, since this is a sesson bean, a transaction
is automatically begun when the r egi st er () method is called, and committed when it
completes.

. Notice that Seam lets you use a JSF EL expression inside EJB-QL. Under the covers, this

results in an ordinary JPA set Par anet er () call on the standard JPA Query object. Nice,

12

Understanding the code

huh?
7. The Log API lets us easily display templated log messages.

8. JSF action listener methods return a string-valued outcome that determines what page will be
displayed next. A null outcome (or a void action listener method) redisplays the previous
page. In plain JSF, it is normal to always use a JSF navigation rule to determine the JSF view
id from the outcome. For complex application this indirection is useful and a good practice.
However, for very simple examples like this one, Seam lets you use the JSF view id as the
outcome, eliminating the requirement for a navigation rule. Note that when you use a view id
as an outcome, Seam always performs a browser redirect.

9. Seam provides a number of built-in components to help solve common problems. The
FacesMessages component makes it easy to display templated error or success messages.
Built-in Seam components may be obtained by injection, or by calling an i nst ance()
method.

Note that we did not explicitly specify a @cope this time. Each Seam component type has a
default scope if not explicitly specified. For stateless session beans, the default scope is the
stateless context. Actually, all stateless session beans belong in the stateless context.

Our session bean action listener performs the business and persistence logic for our
mini-application. In more complex applications, we might need to layer the code and refactor
persistence logic into a dedicated data access component. That's perfectly trivial to do. But
notice that Seam does not force you into any particular strategy for application layering.

Furthermore, notice that our session bean has simultaneous access to context associated with
the web request (the form values in the User object, for example), and state held in
transactional resources (the Ent i t yManager object). This is a break from traditional J2EE
architectures. Again, if you are more comfortable with the traditional J2EE layering, you can
certainly implement that in a Seam application. But for many applications, it's simply not very
useful.

Example 2.2.

2.1.3. The session bean local interface: Register.java
Naturally, our session bean needs a local interface.

@.ocal
public interface Register

{
}

public String register();

13

Chapter 2. Seam Tutorial

Example 2.3.

That's the end of the Java code. Now onto the deployment descriptors.

2.1.4. The Seam component deployment descriptor: conponents. xn

If you've used many Java frameworks before, you'll be used to having to declare all your
component classes in some kind of XML file that gradually grows more and more
unmanageable as your project matures. You'll be relieved to know that Seam does not require
that application components be accompanied by XML. Most Seam applications require a very
small amount of XML that does not grow very much as the project gets bigger.

Nevertheless, it is often useful to be able to provide for some external configuration of some
components (particularly the components built in to Seam). You have a couple of options here,
but the most flexible option is to provide this configuration in a file called conponent s. xm ,
located in the VEB- | NF directory. We'll use the conponent s. xnl file to tell Seam how to find our
EJB components in JNDI:

<conmponents xm ns="http://jboss. com product s/ sean’ conponent s"
xm ns: core="http://jboss. conl product s/ seani core" >
<core:init jndi-pattern="@ndi Pattern@/ >
</ conponent s>

Example 2.4.

This code configures a property named j ndi Pat t er n of a built-in Seam component named
org.j boss.seamcore.init.

2.1.5. The web deployment description: web. xni

The presentation layer for our mini-application will be deployed in a WAR. So we'll need a web
deployment descriptor.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<web- app version="2.5"
xm ns="http://java. sun. com xm / ns/j avaee"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
Xsi : schemalLocati on="http://java. sun. com xnm / ns/ j avaee
http://java. sun. conl xm / ns/ j avaee/ web- app_2_5. xsd" >

<l- - Seam- ->
<l i stener>

<listener-class>org.jboss. seam servl et. Seanli st ener</1i stener-cl ass>
</listener>

14

Understanding the code

<l i st ener>
<l i st ener-cl ass>com sun. f aces. confi g. Confi gurelLi stener</Ii stener-cl ass>
</listener>

<cont ext - par an>
<par am name>j avax. f aces. STATE_SAVI NG_METHOD</ par am nane>
<par am val ue>cl i ent </ par am val ue>

</ cont ext - par an®>

<cont ext - par an>
<par am name>j avax. f aces. DEFAULT_SUFFI X</ par am nane>
<par am val ue>. j spx</ par am val ue>

</ cont ext - par an>

<servl et >
<servl et - name>Faces Servl et </ servl et - nanme>
<servl et - cl ass>j avax. f aces. webapp. FacesSer vl et </ servl et - cl ass>
<l oad- on- st art up>1</| oad- on- st art up>
</servl et>

<ser vl et - mappi ng>
<servl et - name>Faces Servl et </servl et - name>
<url - pattern>*.seanx/url -pattern>

</ servl et - mappi ng>

</ web- app>

Example 2.5.

2.1.6. The JSF configration: faces-config. xn

All Seam applications use JSF views as the presentation layer. So we'll need
faces-config. xm .

<?xm version="1.0" encodi ng="UTF- 8" ?>

<! DOCTYPE f aces-confi g

PUBLIC "-//Sun M crosystens, Inc.//DTD JavaServer Faces Config 1.0//EN'
"http://java. sun. com dt d/ web-facesconfig 1 0.dtd">

<f aces-confi g>

<I- - A phase listener is needed by all Seam applications - ->
<lifecycl e>

<phase-|i st ener>org. j boss. seam j sf. SeanPhaselLi st ener </ phase- | i st ener >
</lifecycl e>

This web. xnl file configures Seam and Glassfish. The configuration you see here is pretty much
identical in all Seam applications.

15

Chapter 2. Seam Tutorial

</ faces-config>

Example 2.6.

The f aces- confi g. xnl file integrates Seam into JSF. Note that we don't need any JSF
managed bean declarations! The managed beans are the Seam components. In Seam
applications, the f aces- confi g. xm is used much less often than in plain JSF.

In fact, once you have all the basic descriptors set up, the only XML you need to write as you
add new functionality to a Seam application is the navigation rules, and possibly jBPM process
definitions. Seam takes the view that process flow and configuration data are the only things
that truly belong in XML.

In this simple example, we don't even need a navigation rule, since we decided to embed the
view id in our action code.

2.1.7. The EJB deployment descriptor: ejb-jar. xn

The ej b-j ar. xn file integrates Seam with EJB3, by attaching the Seam nt er cept or to all
session beans in the archive.

<ejb-jar xm ns="http://java.sun.coni xm /ns/javaee"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://java. sun. com xm / ns/ j avaee
http://java. sun. coml xm / ns/j avaee/ ej b-j ar _3_0. xsd"
versi on="3. 0" >

<i nt er cept or s>
<i nt er cept or >
<i nterceptor-class>org.jboss. seam ej b. Seam nt er cept or </ i nt er cept or - cl ass>
</interceptor>
</interceptors>

<assenbl y- descri pt or >
<i nt er cept or - bi ndi ng>
<ej b- name>*</ ej b- nanme>
<i nt erceptor-cl ass>org. j boss. seam ej b. Seanl nt er cept or </ i nt er cept or - cl ass>
</i nt er cept or - bi ndi ng>
</ assenbl y- descri pt or>

</ejb-jar>

2.1.8. The EJB persistence deployment descriptor: persi st ence. xn

The persi stence. xn file tells the EJB persistence provider where to find the datasource, and
contains some vendor-specific settings. In this case, enables automatic schema export at
startup time.

16

Understanding the code

<?xm version="1.0" encodi ng="UTF- 8" ?>
<persi stence xm ns="http://java. sun. coni xm / ns/ per si st ence"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://java. sun. com xm / ns/ per si st ence
http://java. sun. coml xm / ns/ per si st ence/ persi stence_1_0. xsd"
version="1.0">
<per si st ence-uni t nane="user Dat abase" >
<provi der >or g. hi ber nat e. ej b. Hi ber nat ePer si st ence</ provi der >
<j t a- dat a- sour ce>j ava: / Def aul t DS</ j t a- dat a- sour ce>
<properties>
<property nanme="hi bernate. hbn2ddl . aut 0" val ue="creat e-drop"/>
</ properties>
</ persi st ence-unit >
</ per si st ence>

2.1.9. The view: register.jsp and registered.jsp

The view pages for a Seam application could be implemented using any technology that
supports JSF. In this example we use JSP, since it is familiar to most developers and since we
have minimal requirements here anyway. (But if you take our advice, you'll use Facelets for your
own applications.)

<%@taglib uri="http://java.sun.comjsf/htm" prefix="h" %
<v@taglib uri="http://java.sun.com jsf/core" prefix="f" %
<v@taglib uri="http://jboss. conl products/seam taglib" prefix="s" %
<ht m >
<head>
<title>Regi ster New User</title>
</ head>
<body>
<f:view>
<h: f or n»
<tabl e border="0">
<s:val idateAl >
<tr>
<t d>User nane</t d>
<t d><h:i nput Text val ue="#{user.usernane}"/></td>
</tr>
<tr>
<t d>Real Nane</td>
<t d><h:i nput Text val ue="#{user.nanme}"/></td>
</tr>
<tr>
<t d>Passwor d</t d>
<t d><h:i nput Secret val ue="#{user. password}"/></td>
</tr>
</s:validateAll>
</t abl e>
<h: messages/ >
<h: commandBut t on type="submit" val ue="Regi ster"
acti on="#{register.register}"/>
</ h: for m>
</f:view

17

Chapter 2. Seam Tutorial

</ body>
</htm >

Example 2.7.

The only thing here that is specific to Seam is the <s: val i dat eAl | > tag. This JSF component
tells JSF to validate all the contained input fields against the Hibernate Validator annotations
specified on the entity bean.

<%@taglib uri
<v@taglib uri
<ht ml >
<head>
<title>Successfully Registered New User</title>
</ head>
<body>
<f:view>
Wl conme, <h:out put Text val ue="#{user.nane}"/>,
you are successfully registered as <h:out put Text
val ue="#{user. usernane}"/ >
</[f:view
</ body>
</htm >

"http://java.sun.com jsf/htm" prefix="h" %
"http://java.sun.com jsf/core" prefix="f" %

Example 2.8.

This is a boring old JSP pages using standard JSF components. There is nothing specific to
Seam here.

2.1.10. The EAR deployment descriptor: application. xn

Finally, since our application is deployed as an EAR, we need a deployment descriptor there,
too.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<application xm ns="http://java. sun.com xm / ns/j avaee"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="http://java. sun. conl xm / ns/j avaee
http://java. sun. coni xm / ns/j avaee/ appl i cati on_5. xsd"
versi on="5">

<di spl ay- name>Seam Regi st r at i on</ di spl ay- name>

<nodul e>
<web>

18

How it works

<web- uri >j boss- seamregi strati on. war </ web-uri >
<cont ext - root >/ seam r egi strati on</ cont ext - r oot >
</ web>
</ modul e>
<nmodul e>
<ej b>j boss-seamregi stration.jar</ejb>
</ modul e>
<modul e>
<j ava>j boss-seam j ar </ j ava>
</ nodul e>
<modul e>
<java>el -ri.jar</java>
</ modul e>

</ applicati on>

Example 2.9.

This deployment descriptor links modules in the enterprise archive and binds the web
application to the context root / seam r egi strati on.

2.2. How it works

When the form is submitted, JSF asks Seam to resolve the variable named user . Since there is
no value already bound to that name (in any Seam context), Seam instantiates the user
component, and returns the resulting User entity bean instance to JSF after storing it in the
Seam session context.

The form input values are now validated against the Hibernate Validator constraints specified on
the User entity. If the constraints are violated, JSF redisplays the page. Otherwise, JSF binds
the form input values to properties of the User entity bean.

Next, JSF asks Seam to resolve the variable named r egi st er . Seam finds the
Regi st er Act i on stateless session bean in the stateless context and returns it. JSF invokes the
regi ster() action listener method.

Seam intercepts the method call and injects the User entity from the Seam session context,
before continuing the invocation.

The r egi st er () method checks if a user with the entered username already exists. If so, an
error message is queued with the FacesMessages component, and a null outcome is returned,
causing a page redisplay. The FacesMessages component interpolates the JSF expression
embedded in the message string and adds a JSF FacesMessage to the view.

If no user with that username exists, the "/ r egi st er ed. j sp" outcome triggers a browser
redirect to the r egi st er ed. j sp page. When JSF comes to render the page, it asks Seam to
resolve the variable named user and uses property values of the returned User entity from

19

Chapter 2. Seam Tutorial

Seam's session scope.

3. Clickable lists in Seam: the messages example

Clickable lists of database search results are such an important part of any online application
that Seam provides special functionality on top of JSF to make it easier to query data using
EJB-QL or HQL and display it as a clickable list using a JSF <h: dat aTabl e>. The messages
example demonstrates this functionality.

) Messages - Mozilla Firefox
File Edit View Go Bookmarks Tools Help

G- -8 O &)L nip:/focahost:s080 ¥ | © Go [[Cl

B3 Latest Headlines €3 The World Clock B XE Currency Converter % Hibernate JIRA
|] Chapter 1. Seam Tutoral | [Messages]

Message List

Read Title Date/Time

Greetings Earthling Feb 4, 2006 9:40 AM
Hello World Jan 2, 2006 7:00 AM

Greetings Earthling

This is another example of a message.

3.1. Understanding the code

The message list example has one entity bean, Message, one session bean, MessagelLi st Bean
and one JSP.

3.1.1. The entity bean: message. j ava

The Message entity defines the title, text, date and time of a message, and a flag indicating
whether the message has been read:

@ntity
@\ane(" message")
@scope(EVENT)

20

Understanding the code

public class Message inplenments Serializable

{

private Long id;
private String title;
private String text;
private bool ean read;
private Date dateting;

@d @cener at edVal ue

public Long getld() ({
return id;

}

public void setld(Long id) {
this.id = id;

}

@Not Nul I @engt h(max=100)

public String getTitle() {
return titl e;

}

public void setTitle(String title) {
this.title = title;

}

@\ot Nul | @b

public String getText() {
return text;

}

public void setText(String text) {
this.text = text;

}

@Not Nul |

publ i c bool ean i sRead() {
return read;

}

public void set Read(bool ean read) ({
this.read = read;

}

@Not Nul |
@Basi ¢ @enpor al (Tenpor al Type. TI MESTAMP)
public Date getDatetime() {
return datetine;
}
public void setDateti ne(Date datetine) {
this.datetine = dateti ne;

}

Example 2.10.

21

Chapter 2. Seam Tutorial

3.1.2. The stateful session bean: messagemanager Bean. j ava

Just like in the previous example, we have a session bean, MessageManager Bean, which
defines the action listener methods for the two buttons on our form. One of the buttons selects a
message from the list, and displays that message. The other button deletes a message. So far,
this is not so different to the previous example.

But MessageManager Bean is also responsible for fetching the list of messages the first time we
navigate to the message list page. There are various ways the user could navigate to the page,
and not all of them are preceded by a JSF action—the user might have bookmarked the page,
for example. So the job of fetching the message list takes place in a Seam factory method,
instead of in an action listener method.

We want to cache the list of messages in memory between server requests, so we will make
this a stateful session bean.

@5t at ef ul

@cope(SESSI ON)

@Nanme(" messageManager ")

public class MessageManagerBean i npl enents Seri al i zabl e, MessageManager

{

@at aMobdel
private List<Message> nessageli st;

@at aMbdel Sel ecti on
@ut (requi red=f al se)
private Message nessage;

@er si st enceCont ext (t ype=EXTENDED)
private EntityManager em

@ act ory("messageli st")
public void findMessages()
{
messageli st = em createQuery("from Message nsg order by nsg.datetine
desc").get Resul tList();

}

public void select()

{
nmessage. set Read(true);

}

public void del ete()

{
nmessagelLi st. renove(nessage) ;
em r enove(message) ;
message=nul | ;

}

@Renpve @estr oy
public void destroy() {}

22

Understanding the code

. The @at aMbdel annotation exposes an attibute of type j ava. uti | . Li st to the JSF page as
an instance of j avax. f aces. nodel . Dat aMbdel . This allows us to use the list in a JSF

<h: dat aTabl e> with clickable links for each row. In this case, the Dat aMbdel is made
available in a session context variable named nessagelLi st.

. The @pat aMbdel Sel ect i on annotation tells Seam to inject the Li st element that
corresponded to the clicked link.

. The @ut annotation then exposes the selected value directly to the page. So ever time a row
of the clickable list is selected, the Message is injected to the attribute of the stateful bean,
and the subsequently outjected to the event context variable named nessage.

. This stateful bean has an EJB3 extended persistence context. The messages retrieved in the
query remain in the managed state as long as the bean exists, so any subsequent method
calls to the stateful bean can update them without needing to make any explicit call to the
EntityManager.

. The first time we navigate to the JSP page, there will be no value in the messagelLi st context
variable. The @act ory annotation tells Seam to create an instance of MessageManager Bean
and invoke the fi ndMessages() method to initialize the value. We call fi ndMessages() a
factory method for nessages.

. The sel ect () action listener method marks the selected Message as read, and updates it in
the database.

. The del et e() action listener method removes the selected Message from the database.

. All stateful session bean Seam components must have a method marked @Renove @est r oy
to ensure that Seam will remove the stateful bean when the Seam context ends, and clean
up any server-side state.

Example 2.11.

Note that this is a session-scoped Seam component. It is associated with the user login session,
and all requests from a login session share the same instance of the component. (In Seam
applications, we usually use session-scoped components sparingly.)

3.1.3. The session bean local interface: messagemanager. j ava

All session beans have a business interface, of course.

@ocal

23

Chapter 2. Seam Tutorial

public interface MessageManager

{
public void findMessages();
public void select();
public void delete();
public void destroy();

}

From now on, we won't show local interfaces in our code examples.

Let's skip over conponent s. xnl , persi stence. xm , web. xm , ej b-jar. xm ,
faces-config. xm and application.xnl since they are much the same as the previous
example, and go straight to the JSP.

3.1.4. The view: nessages. | sp

The JSP page is a straightforward use of the JSF <h: dat aTabl e> component. Again, nothing
specific to Seam.

<v@taglib uri
<v@taglib uri
<ht ml >
<head>
<title>Messages</title>
</ head>
<body>
<f:vi ew>
<h: for n»
<h2>Message Li st</h2>
<h: out put Text val ue="No nessages to di spl ay"
r ender ed="#{ messageli st . r onCount ==0}"/ >
<h: dat aTabl e var="nsg" val ue="#{messagelList}"
r ender ed="#{ nessageli st . rowCount >0} " >
<h: col utm>
<f:facet name="header">
<h: out put Text val ue="Read"/>
</f:facet>
<h: sel ect Bool eanCheckbox val ue="#{nsg.read}" disabl ed="true"/>
</ h: col um>
<h: col utm>
<f:facet name="header">
<h: out put Text value="Title"/>
</f:facet>
<h: commandLi nk val ue="#{nsg.title}"
acti on="#{messageManager . sel ect}"/>
</ h: col utm>
<h: col um>
<f:facet name="header">
<h: out put Text val ue="Dat e/ Ti ne"/ >
</f:facet>
<h: out put Text val ue="#{nsg. dateti ne}">
<f:convertDateTi ne type="both" dateStyl e="nedi unt
ti meStyl e="short"/>

"http://java.sun.com jsf/htm" prefix="h" %
"http://java.sun.com jsf/core" prefix="f" %

24

How it works

</ h: out put Text >
</ h: col utm>
<h: col um>
<h: conmandBut t on val ue="Del et e"
acti on="#{ messageManager . del ete}"/>
</ h: col um>
</ h: dat aTabl e>
<h3><h: out put Text val ue="#{nessage.title}"/></h3>
<di v><h: out put Text val ue="#{nessage.text}"/></di v>
</ h: fornm
</f:view
</ body>
</htm >

Example 2.12.

3.2. How it works

The first time we navigate to the nessages. j sp page, whether by a JSF postback (faces
request) or a direct browser GET request (non-faces request), the page will try to resolve the
messageli st context variable. Since this context variable is not initialized, Seam will call the
factory method f i ndMessages(), which performs a query against the database and results in a
Dat aMbdel being outjected. This Dat aMbdel provides the row data needed for rendering the
<h: dat aTabl e>.

When the user clicks the <h: commandLi nk>, JSF calls the sel ect () action listener. Seam
intercepts this call and injects the selected row data into the nessage attribute of the
messageManager component. The action listener fires, marking the selected Message as read.
At the end of the call, Seam outjects the selected Message to the context variable named
message. Next, the EJB container commits the transaction, and the change to the Message is
flushed to the database. Finally, the page is re-rendered, redisplaying the message list, and
displaying the selected message below it.

If the user clicks the <h: conmandBut t on>, JSF calls the del et e() action listener. Seam
intercepts this call and injects the selected row data into the nessage attribute of the

messagelLi st component. The action listener fires, removing the selected Message from the list,
and also calling renove() on the Entit yManager . At the end of the call, Seam refreshes the
messageli st context variable and clears the context variable named nessage. The EJB
container commits the transaction, and deletes the Message from the database. Finally, the
page is re-rendered, redisplaying the message list.

4. Seam and jBPM: the todo list example

jBPM provides sophisticated functionality for workflow and task management. To get a small
taste of how jBPM integrates with Seam, we'll show you a simple "todo list" application. Since
managing lists of tasks is such core functionality for jBPM, there is hardly any Java code at all in

25

Chapter 2. Seam Tutorial

this example.

) Todo List - Mozilla Firefox
File Edt View Go Bookmarks Tools Help

G- -8) [nitp://localnost:8080/seam-todo/todo.seam v| ©® o G,

[} Chapter 1. Seam Tutorial |[ETodo List | 380ss DVD Store

Todo List

Description Created Priority Due Date

|Bookﬂightto Isreal |Ja.n 13, 2006 |

|Get1‘he stupid Seam release finished! |Ja_|:. 13, 2006 |1f1?1'ﬂ'ﬁ
[Haircut |7an 1320063 | |
Review Hibernate in Action second edition	Ja_] 13, 2006
Kick Roy out of my office	Jaﬂ 13, 2006	
Blog aboutworkspace management	Jan 13, 2006	

Update ltems

| |[Create New ltem]

4.1. Understanding the code

The center of this example is the jBPM process definition. There are also two JSPs and two
trivial JavaBeans (There was no reason to use session beans, since they do not access the
database, or have any other transactional behavior). Let's start with the process definition:

<process-definition name="t odo">

<start-state nane="start">
<transition to="todo"/>
</start-state>

<t ask- node nanme="t odo" >
<task nanme="todo" description="#{todoLi st.description}">
<assi gnment actor-id="#{actor.id}"/>
</ task>
<transition to="done"/>
</t ask- node>

<end- st at e nanme="done"/ >

</ process-definition>

1. The <st art - st at e> node represents the logical start of the process. When the process
starts, it immediately transitions to the t odo node.

26

Understanding the code

2. The <t ask- node> node represents a wait state, where business process execution pauses,
waiting for one or more tasks to be performed.

3. The <t ask> element defines a task to be performed by a user. Since there is only one task
defined on this node, when it is complete, execution resumes, and we transition to the end
state. The task gets its description from a Seam component named t odoLi st (one of the
JavaBeans).

4. Tasks need to be assigned to a user or group of users when they are created. In this case,
the task is assigned to the current user, which we get from a built-in Seam component named
act or . Any Seam component may be used to perform task assignment.

5. The <end- st at e> node defines the logical end of the business process. When execution
reaches this node, the process instance is destroyed.

Example 2.13.

If we view this process definition using the process definition editor provided by JBossIDE, this
is what it looks like:

<=<5lart State=>
e start

. ==Tlask Node=>
todo

<=fEnd State==
]
done

This document defines our business process as a graph of nodes. This is the most trivial
possible business process: there is one task to be performed, and when that task is complete,
the business process ends.

27

Chapter 2. Seam Tutorial

The first JavaBean handles the login screen | ogi n. j sp. Its job is just to initialize the jBPM actor
id using the act or component. (In a real application, it would also need to authenticate the
user.)

@Nanme(" | ogi n")

public class Login {

@n
private Actor actor;

private String user;

public String getUser() {
return user;

}

public void setUser(String user) {
this.user = user

}

public String | ogin()

{
actor.setld(user);
return "/todo.jsp";

}

}
Example 2.14.

Here we see the use of @ n to inject the built-in Act or component.

The JSP itself is trivial:

<U@taglib uri="http://java.sun.com jsf/htm" prefix="h"%
<U@taglib uri="http://java.sun.conljsf/core" prefix="f"%
<htm >
<head>
<title>Login</title>
</ head>
<body>
<hl>Logi n</ hl>
<f:vi ew>
<h: f or n>
<di v>
<h:i nput Text val ue="#{l ogi n.user}"/>
<h: commandBut t on val ue="Logi n" action="#{l ogi n.|ogin}"/>
</ di v>
</ h: fornm
</f:view
</ body>
</htm >

28

Understanding the code

Example 2.15.

The second JavaBean is responsible for starting business process instances, and ending tasks.

@Nane("todoList")
public class TodoList {

private String description;
public String getDescription()
{

return description;

}

public void setDescription(String description) {
this.description = description;

}

@Cr eat eProcess(definition="todo")
public void createTodo() {}

@5t art Task @ndTask
public void done() {}

1. The description property accepts user input form the JSP page, and exposes it to the process
definition, allowing the task description to be set.

2. The Seam @r eat ePr ocess annotation creates a new jBPM process instance for the named
process definition.

3. The Seam @t art Task annotation starts work on a task. The @ndTask ends the task, and
allows the business process execution to resume.

Example 2.16.

In a more realistic example, @t art Task and @ndTask would not appear on the same method,
because there is usually work to be done using the application in order to complete the task.

Finally, the meat of the application is in t odo. j sp:

<U@taglib uri="http://java.sun.com jsf/htm" prefix="h" %

29

Chapter 2. Seam Tutorial

<v@taglib uri="http://]java.sun.com jsf/core" prefix="f" %
<U@taglib uri="http://]jboss. conl products/seam taglib" prefix=
<htm >
<head>
<title>Todo List</title>
</ head>
<body>
<h1>Todo List</hl>
<f:view
<h:formid="list">
<di v>
<h: out put Text val ue="There are no todo itens." rendered="#{enpty
taskl nst ancelList}"/>
<h: dat aTabl e val ue="#{t askl nstancelLi st}" var="task" rendered="#{not

s" %

enpty
t askl nst ancelLi st}">
<h: col um>
<f:facet name="header">
<h: out put Text val ue="Descri ption"/>
</f:facet>
<h:i nput Text val ue="#{t ask. description}"/>
</ h: col uim>
<h: col utm>
<f:facet nanme="header">
<h: out put Text val ue="Created"/>
</f:facet>
<h: out put Text
val ue="#{t ask. t askMgnt | nst ance. processl nst ance. start}">
<f:convertDateTi ne type="date"/>
</ h: out put Text >
</ h: col uim>
<h: col utm>
<f:facet nanme="header">
<h: out put Text val ue="Priority"/>
</f:facet>
<h:i nput Text val ue="#{task.priority}" style="wi dth: 30"/>
</ h: col um>
<h: col um>
<f:facet nane="header">
<h: out put Text val ue="Due Date"/>
</f:facet>
<h:i nput Text val ue="#{task. dueDate}" style="w dth: 100">
<f:convertDateTi ne type="date" dateStyle="short"/>
</ h: i nput Text >
</ h: col um>
<h: col utm>
<s: button val ue="Done" action="#{todoLi st.done}"
t askl nst ance="#{t ask}"/>
</ h: col um>
</ h: dat aTabl e>
</ di v>
<di v>
<h: messages/ >
</ di v>
<di v>
<h: commandBut t on val ue="Update Itens" acti on="update"/>

30

Understanding the code

</ di v>
</ h: fornr
<h: form i d="new'>
<di v>
<h:i nput Text val ue="#{t odoLi st. description}"/>
<h: commandBut t on val ue="Create New |tent
action="#{todoLi st.createTodo}"/>
</ di v>
</ h: form
</f:view
</ body>
</htm >

Example 2.17.

Let's take this one piece at a time.

The page renders a list of tasks, which it gets from a built-in Seam component named
t askl nst ancelLi st . The list is defined inside a JSF form.

<h:formid="list">
<di v>
<h: out put Text val ue="There are no todo itens." rendered="#{enpty
t askl nst anceList}"/>
<h: dat aTabl e val ue="#{t askl nstanceLi st}" var="task" rendered="#{not
enpty tasklnstancelList}">

</ h: dat aTabl e>
</ di v>
</ h: fornm

Each element of the list is an instance of the jBPM class Taskl nst ance. The following code
simply displays the interesting properties of each task in the list. For the description, priority and
due date, we use input controls, to allow the user to update these values.

<h: col um>
<f:facet name="header">
<h: out put Text val ue="Descri ption"/>
</f:facet>
<h:i nput Text val ue="#{t ask. description}"/>
</ h: col um>
<h: col utm>
<f:facet nane="header">
<h: out put Text val ue="Created"/>
</f:facet>
<h: out put Text val ue="#{task.taskMynt| nstance. processl nstance. start}">
<f:convertDateTi ne type="date"/>
</ h: out put Text >
</ h: col um>
<h: col utm>

31

Chapter 2. Seam Tutorial

<f:facet nane="header">
<h: out put Text val ue="Priority"/>
</f:facet>
<h:i nput Text val ue="#{task.priority}" style="wi dth: 30"/>
</ h: col uim>
<h: col umm>
<f:facet nane="header">
<h: out put Text val ue="Due Date"/>
</f:facet>
<h:i nput Text val ue="#{task. dueDate}" style="w dth: 100">
<f:convertDateTi ne type="date" dateStyle="short"/>
</ h: i nput Text >
</ h: col um>

This button ends the task by calling the action method annotated @t art Task @ndTask. It
passes the task id to Seam as a request parameter:

<h: col um>

<s: button val ue="Done" action="#{todoLi st.done}"
t askl nst ance="#{t ask}"/>
</ h: col utm>

(Note that this is using a Seam <s: but t on> JSF control from the seam ui . j ar package.)

This button is used to update the properties of the tasks. When the form is submitted, Seam and
jBPM will make any changes to the tasks persistent. There is no need for any action listener
method:

<h: commandBut t on val ue="Update Itens" action="update"/>

A second form on the page is used to create new items, by calling the action method annotated
@Cr eat ePr ocess.

<h: form i d="new'>
<di v>
<h:i nput Text val ue="#{t odoLi st. description}"/>
<h: commandBut t on val ue="Create New Itenf
acti on="#{t odoLi st. creat eTodo}"/ >
</ di v>
</ h: fornm

There are several other files needed for the example, but they are just standard jBPM and
Seam configuration and not very interesting.

4.2. How it works

TODO

32

Understanding the code

5. Seam pageflow: the numberguess example

For Seam applications with relatively freeform (ad hoc) navigation, JSF/Seam navigation rules
are a perfectly good way to define the page flow. For applications with a more constrained style
of navigation, especially for user interfaces which are more stateful, navigation rules make it
difficult to really understand the flow of the system. To understand the flow, you need to piece it
together from the view pages, the actions and the navigation rules.

Seam allows you to use a jPDL process definition to define pageflow. The simple number
guessing example shows how this is done.

) Guess a number... - Mozilla Firefox |Z||§||Z|

File Edit View Go Bookmarks Tools Help

<:§| ¥ E() hd %‘_‘] @ ‘@ http://localhost:8080/seam-numberguess/numberGuess.seam?conversationId=1 V‘ © Go HQ!,
| [] Chapter 1. Seam Tutoril |] Guess a number... ‘

Guess a number...

Lower!
T'm thinking of a number between 1 and 49. You have 9 guesses.
Your guess: 50 H Guess]

5.1. Understanding the code

The example is implemented using one JavaBean, three JSP pages and a jPDL pageflow
definition. Let's begin with the pageflow:

<pagef| ow defi ni ti on name="nunber Guess" >

<start-page name="di spl ayGuess" vi ew i d="/nunber Guess.jsp">
<redirect/>
<transition name="guess" to="eval uat eGuess">
<action expressi on="#{ nunber Guess. guess}" />
</transition>
</start - page>

<deci si on nane="eval uat eGuess" expressi on="#{nunber Quess. correct Guess}">
<transition name="true" to="win"/>
<transition nanme="fal se" to="eval uat eRemai ni ngGuesses"/ >

</ deci si on>

<deci si on nane="eval uat eRenmai ni ngGuesses"
expr essi on="#{ nunber Guess. | ast Guess}" >
<transition name="true" to="|ose"/>
<transition name="fal se" to="displ ayGuess"/>
</ deci si on>

<page nane="wi n" viewid="/wn.jsp">

33

Chapter 2. Seam Tutorial

<redirect/>
<end- conversation />
</ page>

<page name="| ose" viewid="/|ose.jsp">
<redirect/>
<end- conversation />

</ page>

</ pagef | ow definition>

. The <page> element defines a wait state where the system displays a particular JSF view

and waits for user input. The vi ew i d is the same JSF view id used in plain JSF navigation
rules. The r edi r ect attribute tells Seam to use post-then-redirect when navigating to the
page. (This results in friendly browser URLS.)

. The <transi ti on> element names a JSF outcome. The transition is triggered when a JSF

action results in that outcome. Execution will then proceed to the next node of the pageflow
graph, after invocation of any jBPM transition actions.

. A transition <act i on> is just like a JSF action, except that it occurs when a jBPM transition

occurs. The transition action can invoke any Seam component.

. A <deci si on> node branches the pageflow, and determines the next node to execute by

evaluating a JSF EL expression.

Example 2.18.

Here is what the pageflow looks like in the JBossIDE pageflow editor:

34

Understanding the code

=<Start State==
o start

: <=g ge:::-j::—
~ displayGuess

guess false

5 <<Decision>> false =2 <<Decision>>
Coud 5. . u
evaluateGuess evaluateRemainingGuesses
true true
=_ =] _ el
g Pa.ge m Page
win lose

Now that we have seen the pageflow, it is very, very easy to understand the rest of the
application!

Here is the main page of the application, nunber Guess. j sp:

<U@taglib uri="http://java.sun.comjsf/htm" prefix="h"%
<v@taglib uri="http://java.sun.com jsf/core" prefix="f"%
<htm >
<head>
<title>@uess a nunmber...</title>
</ head>
<body>
<hl>Cuess a nunber...</hl>
<f:vi ew>
<h: f or n»
<h: out put Text val ue="Hi gher!"
r ender ed="#{ nunber Guess. r andomN\unber >nunber Guess. current Guess}" />
<h: out put Text val ue="Lower!"
render ed="#{ nunber Guess. randomNunber <nunber Guess. current Guess}" />

I''mthinking of a nunber between <h: out put Text
val ue="#{ nunber Guess. snal l est}" /> and
<h: out put Text val ue="#{nunber Guess. bi ggest}" />. You have
<h: out put Text val ue="#{nunber Guess. r emai ni ngGuesses}" /> guesses.

Your guess:
<h:i nput Text val ue="#{nunber Guess. current Guess}" id="guess"
requi red="true">
<f:val i dat eLongRange
maxi mune" #{ nunber Guess. bi ggest } "
m ni mun=" #{ nunber Guess. snal l est}"/ >

35

Chapter 2. Seam Tutorial

</ h: i nput Text >
<h: commandButt on type="submt" val ue="CGuess" action="guess" />

<h: message for="guess" style="color: red"/>
</ h: fornm

</f:view

</ body>

</htm >

Example 2.19.

Notice how the command button names the guess transition instead of calling an action directly.
The wi n. j sp page is predictable:
<U@taglib uri="http://java.sun.com jsf/htm" prefix="h"%

<U@taglib uri="http://java.sun.conljsf/core" prefix="f"%
<htm >

<head>

<title>You won!</title>

</ head>

<body>

<h1>You won! </ h1>

<f:vi ew>
Yes, the answer was <h:out put Text val ue="#{nunber Guess. current Guess}"

/>
It took you <h:out put Text val ue="#{nunber Guess. guessCount}" /> guesses
Wuld you like to pl ay agai n</ a>?

</f:view>
</ body>
</htm >
Example 2.20.

As is | ose. j sp (which | can't be bothered copy/pasting). Finally, the JavaBean Seam
component:

@Name(" nunber Guess")
@cope(ScopeType. CONVERSATI ON)
public class Nunber Guess {

private int randonNunber;
private |nteger currentCGuess;
private int biggest;

private int smallest;

private int guessCount;
private int naxQuesses

36

Understanding the code

@r eat e
@egi n(pagef | ow="nunber Guess")
public void begin()

{
randomNunber = new Randon{) . next | nt (100);
guessCount = 0
bi ggest = 100;
smal | est = 1;
}
public void setCurrent Guess(| nteger guess)
{
this.current Guess = guess;
}

public I nteger getCurrent Guess()
{

return current Guess;

}

public void guess()

{ i f (current Guess>randoniNumnber)
{ bi ggest = current Guess - 1;
?f (current Guess<r andomNunber)
{ smal | est = current Guess + 1;
guessCDunt ++;

}

publ i ¢ bool ean i sCorrect Guess()

{

return current Guess==r andonNunber ;

}

public int getBiggest()
{ return biggest;

}

public int getSmallest()
{ return snal | est;

}

public int get@GessCount ()
{

}

return guessCount;

publ i ¢ bool ean isLast Guess()

{

37

Chapter 2. Seam Tutorial

return guessCount ==maxCGuesses;

}

public int getRenmi ni ngGuesses() {
return maxQ@uesses- guessCount;

}

public void set MaxGuesses(int maxGuesses) {
t hi s. maxQuesses = nmax@iesses;

}

public int get MaxGuesses() {
return maxQ@uesses;

}

public int get RandomNunber () {
return randomNunber ;

}

1. The first time a JSP page asks for a nunber Guess component, Seam will create a new one
for it, and the @r eat e method will be invoked, allowing the component to initialize itself.

2. The @egi n annotation starts a Seam conversation (much more about that later), and
specifies the pageflow definition to use for the conversation's page flow.

Example 2.21.

As you can see, this Seam component is pure business logic! It doesn't need to know anything
at all about the user interaction flow. This makes the component potentially more reuseable.
5.2. How it works

TODO

6. A complete Seam application: the Hotel Booking
example

6.1. Introduction

The booking application is a complete hotel room reservation system incorporating the following
features:

» User registration

38

Introduction

Login

Logout

Set password

Hotel search

Hotel selection

Room reservation
Reservation confirmation

Existing reservation list

39

Chapter 2. Seam Tutorial

ites ' seam framework demo

. Thank you, Gavin King, your confimation number for Doubletree is 1
State management in

Seam Search Hotels

State in Seam is contextual.
When you click "Find Atlants Find Hotels

Hotels", the application

retrieves a list of hotels Maximum results: | 10/¥
from the database and

caches it in the session Name Address City, State Zip | Action

context. When you navigate

Marriott Tower Place Atlanta, GA View

to one of the hotel records ! ! " 30305 ——
o o i Courtyard Buckhead usa Hotel
by clicking the "View Hotel' :
link, a conversation begins. Doubletree ;—S:kirezljce* fj‘:i”ta* GA, 30305 ﬂl
The conversation is —
attached to a3 pa|‘t|cu|a|' Ritz Carlton Peachtree Rd, Atlanta, GA, 30326 View
tab, in a particular browser Buckhead UsA Hotel
window. You can navigate)
to multiple hotels using Current Hotel Bookings
"open in new tab" or "open
in new window" in your web City Check Check . o tion
f . .

browser. Each window will Name Address State Idnate g::e number Action
execute in the context of a
different conversation. The Tower

Doubletree Place, Atlanta, Apr 16, Apr 17, Cancel

application keeps state
associated with your hotel
booking in the conversation
context, which ensures that

Buckhead GA 2006 2006

the concurrent
conversations do not
interfare with each other.

How does the search page

work?

Created with JBoss EJB 3.0, Seam, MyFaces, and Facelets

Figure 2.1. Booking Example

The booking application uses JSF, EJB 3.0 and Seam, together with Facelets for the view.
There is also a port of this application to JSF, Facelets, Seam, JavaBeans and Hibernate3.

One of the things you'll notice if you play with this application for long enough is that it is
extremely robust. You can play with back buttons and browser refresh and opening multiple
windows and entering nonsensical data as much as you like and you will find it very difficult to
make the application crash. You might think that we spent weeks testing and fixing bugs to
achive this. Actually, this is not the case. Seam was designed to make it very straightforward to

40

Overview of the booking example

build robust web applications and a lot of robustness that you are probably used to having to
code yourself comes naturally and automatically with Seam.

As you browse the sourcecode of the example application, and learn how the application works,
observe how the declarative state management and integrated validation has been used to
achieve this robustness.

6.2. Overview of the booking example

The project structure is identical to the previous one, to install and deploy this application,
please refer to Section 1, “Try the examples”. Once you've successfully started the application,
you can access it by pointing your browser to ht t p: / / | ocal host : 8080/ seam booki ng/

Just nine classes (plus six session beans local interfaces) where used to implement this
application. Six session bean action listeners contain all the business logic for the listed
features.

» Booki ngLi st Act i on retrieves existing bookings for the currently logged in user.

» ChangePasswor dAct i on updates the password of the currently logged in user.

« Hot el Booki ngAct i on implements the core functionality of the application: hotel room
searching, selection, booking and booking confirmation. This functionality is implemented as a
conversation, so this is the most interesting class in the application.

* Regi st er Acti on registers a new system user.
Three entity beans implement the application's persistent domain model.

e Hot el is an entity bean that represents a hotel
« Booki ng is an entity bean that represents an existing booking

e User is an entity bean to represents a user who can make hotel bookings

6.3. Understanding Seam conversations

We encourage you browse the sourcecode at your pleasure. In this tutorial we'll concentrate
upon one particular piece of functionality: hotel search, selection, booking and confirmation.
From the point of view of the user, everything from selecting a hotel to confirming a booking is
one continuous unit of work, a conversation. Searching, however, is not part of the
conversation. The user can select multiple hotels from the same search results page, in different
browser tabs.

Most web application architectures have no first class construct to represent a conversation.
This causes enormous problems managing state associated with the conversation. Usually,
Java web applications use a combination of two techniques: first, some state is thrown into the

41

http://localhost:8080/seam-booking/

Chapter 2. Seam Tutorial

Ht t pSessi on; second, persistable state is flushed to the database after every request, and
reconstructed from the database at the beginning of each new request.

Since the database is the least scalable tier, this often results in an utterly unacceptable lack of
scalability. Added latency is also a problem, due to the extra traffic to and from the database on
every request. To reduce this redundant traffic, Java applications often introduce a data
(second-level) cache that keeps commonly accessed data between requests. This cache is
necessarily inefficient, because invalidation is based upon an LRU policy instead of being based
upon when the user has finished working with the data. Furthermore, because the cache is
shared between many concurrent transactions, we've introduced a whole raft of problem's
associated with keeping the cached state consistent with the database.

Now consider the state held in the Ht t pSessi on. By very careful programming, we might be
able to control the size of the session data. This is a lot more difficult than it sounds, since web
browsers permit ad hoc non-linear navigation. But suppose we suddenly discover a system
requirement that says that a user is allowed to have mutiple concurrent conversations, halfway
through the development of the system (this has happened to me). Developing mechanisms to
isolate session state associated with different concurrent conversations, and incorporating
failsafes to ensure that conversation state is destroyed when the user aborts one of the
conversations by closing a browser window or tab is not for the faint hearted (I've implemented
this stuff twice so far, once for a client application, once for Seam, but I'm famously psychotic).

Now there is a better way.

Seam introduces the conversation context as a first class construct. You can safely keep
conversational state in this context, and be assured that it will have a well-defined lifecycle.
Even better, you won't need to be continually pushing data back and forth between the
application server and the database, since the conversation context is a natural cache of data
that the user is currently working with.

Usually, the components we keep in the conversation context are stateful session beans. (We
can also keep entity beans and JavaBeans in the conversation context.) There is an ancient
canard in the Java community that stateful session beans are a scalability killer. This may have
been true in 1998 when WebFoobar 1.0 was released. It is no longer true today. Application
servers like JBoss 4.0 have extremely sophisticated mechanisms for stateful session bean state
replication. (For example, the JBoss EJB3 container performs fine-grained replication,
replicating only those bean attribute values which actually changed.) Note that all the traditional
technical arguments for why stateful beans are inefficient apply equally to the Ht t pSessi on, so
the practice of shifting state from business tier stateful session bean components to the web
session to try and improve performance is unbelievably misguided. It is certainly possible to
write unscalable applications using stateful session beans, by using stateful beans incorrectly,
or by using them for the wrong thing. But that doesn't mean you should never use them.
Anyway, Seam guides you toward a safe usage model. Welcome to 2005.

OK, I'll stop ranting now, and get back to the tutorial.

The booking example application shows how stateful components with different scopes can
collaborate together to achieve complex behaviors. The main page of the booking application
allows the user to search for hotels. The search results are kept in the Seam session scope.

42

Understanding Seam conversations

When the user navigates to one of these hotels, a conversation begins, and a conversation
scoped component calls back to the session scoped component to retrieve the selected hotel.

The booking example also demonstrates the use of Ajax4JSF to implement rich client behavior
without the use of handwritten JavaScript.

The search functionality is implemented using a session-scope stateful session bean, similar to
the one we saw in the message list example above.

@bt at ef ul

@\anme(" hot el Search")

@cope(ScopeType. SESSI ON)

@restrict("#{identity.| oggedln}")

publ i c cl ass Hot el Sear chi ngActi on i npl enents Hot el Sear chi ng
{

@Per si st enceCont ext
private EntityManager em

private String searchString;
private int pageSize = 10;
private int page;

@at aModel
private List<Hotel> hotels;

public String find()

{
page = O;
quer yHot el s() ;
return "min";
}
public String nextPage()
{
page++;
queryHot el s();
return "nmain";
}
private void queryHotel s()
{
String searchPattern = searchString==null ? "% : '% +
searchString.toLower Case().replace('*', '%) + '%;
hotel s = em createQuery("select h from Hotel h where | ower(h.nane)
l'i ke
:search or lower(h.city) like :search
or lower(h.zip) like :search or |ower(h.address) like :search")
. set Paranet er ("search", searchPattern)
. set MaxResul t s(pageSi ze)
.setFirstResult(page * pageSi ze)
.get Resul tList();
}

publ i ¢ bool ean i sNext PageAvai | abl e()

43

Chapter 2. Seam Tutorial

{
}

return hotel s!=null && hotels. size()==pageSi ze;

public int getPageSize() {
return pagesSi ze;

}

public void set PageSi ze(i nt pageSi ze) {
thi s. pageSi ze = pageSi ze;

}

public String getSearchString()

{ return searchString;

}

public void setSearchString(String searchString)
{ this.searchString = searchString;

}

@est roy @RrRenove
public void destroy() {}

. The EJB standard @t at ef ul annotation identifies this class as a stateful session bean.

Stateful session beans are scoped to the conversation context by default.

. The @rest ri ct annotation applies a security restriction to the component. It restricts access

to the component allowing only logged-in users. The security chapter explains more about
security in Seam.

. The @at aMbdel annotation exposes a Li st as a JSF Li st Dat aMbdel . This makes it easy to

implement clickable lists for search screens. In this case, the list of hotels is exposed to the
page as a Li st Dat aMbdel in the conversation variable named hot el s.

. The EJB standard @enove annotation specifies that a stateful session bean should be

removed and its state destroyed after invocation of the annotated method. In Seam, all
stateful session beans should define a method marked @estroy @renove. This is the EJB
remove method that will be called when Seam destroys the session context. Actually, the
@est r oy annotation is of more general usefulness, since it can be used for any kind of
cleanup that should happen when any Seam context ends. If you don't have an @est r oy
@enove method, state will leak and you will suffer performance problems.

Example 2.22.

44

Understanding Seam conversations

The main page of the application is a Facelets page. Let's look at the fragment which relates to
searching for hotels:

<di v class="section">
<h: f or n»>

<h: messages gl obal Onl y="true"/>
</ span>

<h1>Search Hot el s</ h1l>
<fiel dset>
<h:i nput Text val ue="#{hot el Search. searchString}" style="wi dth: 165px;">
<a: support event="onkeyup" acti onLi stener="#{hot el Search. find}"
reRender ="searchResul ts" />
</ h:i nput Text >

<a: commandBut t on val ue="Fi nd Hotel s" acti on="#{hot el Search. fi nd}"
styl eCl ass="button" reRender="searchResults"/>

<a: st at us>

<f:facet name="start">
<h: gr aphi cl rage val ue="/i ng/ spi nner.gif"/>

</f:facet>

</ a: st at us>

<br/ >

<h: out put Label for="pageSi ze">Maxi mum resul t s: </ h: out put Label >

<h: sel ect OneMenu val ue="#{ hot el Sear ch. pageSi ze}" i d="pageSi ze">
<f:selectltemitenlLabel ="5" itenVal ue="5"/>
<f:selectltemitemnlabel ="10" itenVal ue="10"/>
<f:selectltemitenlabel ="20" itenVal ue="20"/>

</ h: sel ect GCneMenu>

</fieldset>

</ h: fornpr
</ di v>

<a: out put Panel id="searchResults">
<di v cl ass="section">
<h: out put Text val ue="No Hotel s Found"
rendered="#{hotels != null and hotels.rowCount==0}"/>
<h: dat aTabl e val ue="#{hotel s}" var="hot" rendered="#{hotel s. r owCount >0} " >
<h: col utm>
<f:facet nanme="header">Nane</f:facet>
#{ hot . nanme}
</ h: col um>
<h: col um>
<f:facet name="header" >Address</f:facet>
#{ hot . addr ess}
</ h: col um>
<h: col utMm>
<f:facet name="header">City, State</f:facet>
#{hot.city}, #{hot.state}, #{hot.country}
</ h: col um>
<h: col utm>

45

Chapter 2. Seam Tutorial

<f:facet name="header">Zi p</f:facet>
#{ hot . zi p}
</ h: col uim>
<h: col um>
<f:facet name="header">Action</f:facet>
<s:link val ue="View Hotel " acti on="#{hot el Booki ng. sel ect Hot el (hot) }"/>
</ h: col utm>
</ h: dat aTabl e>
<s:link value="Mre resul ts" acti on="#{hot el Sear ch. next Page}"
r ender ed="#{ hot el Sear ch. next PageAvai | abl e}"/ >
</ di v>
</ a: out put Panel >

1. The Ajax4JSF <a: support > tag allows a JSF action event listener to be called by
asynchronous XMLHt t pRequest when a JavaScript event like onkeyup occurs. Even better,
the r eRender attribute lets us render a fragment of the JSF page and perform a partial page
update when the asynchronous response is received.

2. The Ajax4JSF <a: st at us> tag lets us display a cheesy annimated image while we wait for
asynchronous requests to return.

3. The Ajax4JSF <a: out put Panel > tag defines a region of the page which can be re-rendered
by an asynchronous request.

4. The Seam <s: | i nk> tag lets us attach a JSF action listener to an ordinary (non-JavaScript)
HTML link. The advantage of this over the standard JSF <h: conmandLi nk> is that it
preserves the operation of "open in new window" and "open in new tab". Also notice that we
use a method binding with a parameter: #{ hot el Booki ng. sel ect Hot el (hot) }. This is not
possible in the standard Unified EL, but Seam provides an extension to the EL that lets you
use parameters on any method binding expression.

Example 2.23.

This page displays the search results dynamically as we type, and lets us choose a hotel and
pass it to the sel ect Hot el () method of the Hot el Booki ngAct i on, which is where the really
interesting stuff is going to happen.

Now lets see how the booking example application uses a conversation-scoped stateful session
bean to achieve a natural cache of persistent data related to the conversation. The following
code example is pretty long. But if you think of it as a list of scripted actions that implement the
various steps of the conversation, it's understandable. Read the class from top to bottom, as if it
were a story.

@t at ef ul
@Nane(" hot el Booki ng")

46

Understanding Seam conversations

@restrict("#{identity.| oggedln}")
public class Hotel Booki ngAction inpl ements Hot el Booki ng

{
@er si st enceCont ext (t ype=EXTENDED)
private EntityManager em
@n
private User user;
@n(required=fal se) @ut
private Hotel hotel;
@ n(required=fal se)
@ut (requi red=f al se)
private Booki ng booki ng;
@n
private FacesMessages facesMessages;
@n
private Events events;
@ogger
private Log | og;
@Begi n
public String sel ect Hotel (Hotel sel ectedHotel)
{
hotel = em nmerge(sel ectedHotel);
return "hotel ";
}
public String bookHotel ()
{
booki ng = new Booki ng(hotel, user);
Cal endar cal endar = Cal endar. get | nst ance();
booki ng. set Checki nDat e(cal endar. get Ti ne());
cal endar . add(Cal endar . DAY_OF_MONTH, 1);
booki ng. set Checkout Dat e(cal endar. get Ti me());
return "book";
}
public String setBooki ngDetail s()
{
i f (booking==null || hotel==null) return "main";
i f (!booking. get Checki nDat e(). before(booking. get CheckoutDate()))
{
f acesMessages. add(" Check out date must be |later than check in
date");
return null;
}
el se
{

return "confirni;

47

Chapter 2. Seam Tutorial

}
}
@nd
public String confirm()
{
i f (booking==null || hotel==null) return "main";

em per si st (booki ng) ;
f acesMessages. add
(" Thank you, #{user.nane}, your confimation nunber for #{hotel.nane}
i s #{booking.id}");
| 0g. i nfo("New booki ng: #{booking.id} for #{user.usernanme}");
events. r ai seEvent (" booki ngConfi rmed") ;
return "confirnmed";

}
@:nd
public String cancel ()
{
return "main";
}

@est roy @RrRenove
public void destroy() {}

. This bean uses an EJB3 extended persistence context, so that any entity instances remain

managed for the whole lifecycle of the stateful session bean.

. The @ut annotation declares that an attribute value is outjected to a context variable after

method invocations. In this case, the context variable named hot el will be set to the value of
the hot el instance variable after every action listener invocation completes.

. The @egi n annotation specifies that the annotated method begins a long-running

conversation, so the current conversation context will not be destroyed at the end of the
request. Instead, it will be reassociated with every request from the current window, and
destroyed either by timeout due to conversation inactivity or invocation of a matching @nd
method.

. The @nd annotation specifies that the annotated method ends the current long-running

conversation, so the current conversation context will be destroyed at the end of the request.

. This EJB remove method will be called when Seam destroys the conversation context. Don't

ever forget to define this method!

Example 2.24.

48

The Seam Ul control library

Hot el Booki ngAct i on contains all the action listener methods that implement selection, booking
and booking confirmation, and holds state related to this work in its instance variables. We think
you'll agree that this code is much cleaner and simpler than getting and setting Ht t pSessi on
attributes.

Even better, a user can have multiple isolated conversations per login session. Try it! Log in, run
a search, and navigate to different hotel pages in multiple browser tabs. You'll be able to work
on creating two different hotel reservations at the same time. If you leave any one conversation
inactive for long enough, Seam will eventually time out that conversation and destroy its state.

If, after ending a conversation, you backbutton to a page of that conversation and try to perform
an action, Seam will detect that the conversation was already ended, and redirect you to the
search page.

6.4. The Seam Ul control library

If you check inside the WAR file for the booking application, you'll find seam ui . j ar in the
VEB- | NF/ | i b directory. This package contains a number of JSF custom controls that integrate
with Seam. The booking application uses the <s: | i nk> control for navigation from the search
screen to the hotel page:

<s:link value="View Hotel " acti on="#{hot el Booki ng. sel ect Hotel }"/>

The use of <s: | i nk> here allows us to attach an action listener to a HTML link without breaking
the browser's "open in new window" feature. The standard JSF <h: commandLi nk> does not
work with "open in new window". We'll see later that <s: | i nk> also offers a number of other
useful features, including conversation propagation rules.

The booking application uses some other Seam and Ajax4JSF controls, especially on the

/ book. xht nl page. We won't get into the details of those controls here, but if you want to
understand this code, please refer to the chapter covering Seam's functionality for JSF form
validation.

6.5. The Seam Debug Page

The WAR also includes seam debug. j ar . If this jar is deployed in VEB- | NF/ | i b, along with the
Facelets, and if you set the following Seam property in web. xm or seam properti es:

<cont ext - par an>
<par am nanme>or g. j boss. seam core. i ni t. debug</ par am nanme>
<par am val ue>t r ue</ par am val ue>

</ cont ext - par an>

Then the Seam debug page will be available. This page lets you browse and inspect the Seam
components in any of the Seam contexts associated with your current login session. Just point
your browser at htt p: / /| ocal host : 8080/ seam booki ng/ debug. seam

49

http://localhost:8080/seam-booking/debug.seam

Chapter 2. Seam Tutorial

JBoss Seam Debug Page

This page allows you to view and inspect any component in any Seam context associated with the current session.

Conversations

conversation id activity description view id

4 1:51:34 AM - 1:51:34 AM Search hotels: M fmain.xhtml Select conversation context
6 1:51:40 AM - 1:52:23 AM Book hotel: Marriott Courtyard fbook.xhtml Select conversation context

- Component (booking)

checkinDate FriJan 20 20:52:20 EST 2006

checkoutDate Sat.Jan 21 20:52:20 EST 2006

class class org.jboss.seam.example.booking.Booking
creditCard

description Marriott Courtyard, Jan 20, 2006 to Jan 21, 2006
hotel Hotel(Tower Place, Buckhead, Atlanta, 30305)

id

user User(gavin)

- Conversation Context (6)

booking

conversation

hotel

hotelBooking
hotels

- Business Process Context
Empty business process context

+ Session Context

+ Application Context

7. A complete application featuring Seam and jBPM: the
DVD Store example

The DVD Store demo application shows the practical usage of jBPM for both task management
and pageflow.

The user screens take advantage of a jPDL pageflow to implement searching and shopping cart
functionality.

50

A complete application featuring Seam and

Search for Movies

My Orders

Search Results

Add to cart Title

O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O

Life is Beautiful
Finding Nemo
March of the Penguins

Indiana Jones and the Temple of Doom

Clear and Present Danger
Roman Holiday
Breakfast at Tiffany's
Sabrina

Sabrina

Kill Bill Vol, 1

Kill Bill vol. 2

Lost in Translation
Broken Flowers

Better Off Dead
Grosse Pointe Blank
High Fidelity
Somewhere in Time
Superman - The Movie
Superman II

Superman III

Update Shopping Cart

Actor

Roberto Benini
Albert Brooks
Morgan Freeman
Harisson Ford
Harisson Ford
Audrey Hepburn
Audrey Hepburn
Audrey Hepburn
Harrison Ford
Uma Thurman
Uma Thurman

Bill Murray

Bill Murray

John Cusak

John Cusak

John Cusak
Christopher Reeve
Christopher Reeve
Christopher Reeve

Christopher Reeve

m Welcome, Harry

Price

$12.00
$22.49
$16.98
$19.99
$19.99
$12.99
$12.99
$12.99
$19.99
$19.99
$19.99
$19.99
$19.99
$8.99

$11.99
$14.99
$11.24
$14.99
$14.99
$14.99

Thank you for choosing
the DVD Store

Logout
U
Title:
Actor:
Category:
| Any |
Results Per Page:
20]
Search

Shopping Cart

1 Napoleon Dynamite

Total:$14.06

Checkout

Done

The administration screens take use jBPM to manage the approval and shipping cycle for
orders. The business process may even be changed dynamically, by selecting a different
process definition!

51

Chapter 2. Seam Tutorial

Manage Orders

Order Management

Welcome, Albus

Pending orders are shown here on the order management screen for the store Thank you for choosing

manager to process. Rather than being data-driven, order management is the DVD Stare
process-driven. A JBoss jBPM process assigns fulfilment tasks to the manager ‘ L . ‘
. ogou
based on the wversion of the process loaded. The manager can change the 9
version of the process at any time using the admin options box to the right. T
e Order process 1 sends orders immediately to shipping, where the manager should Statistics .
ship the order and record the tracking number for the user to see.
. . Inventory
* Order process 2 adds an approval step where the manager is first given the 38 sold, 2473 in stock

chance to approve the order before sending it to shipping. In each case, the

status of the order is shown in the customer's order list. =

$437.63 from 7 orders
® Order process 3 introduces a decision node. Only orders over $100.00 need to
be accepted. Smaller orders are automatically approved for shipping.

Admin Options
Task Assignment
Process Management

Order Id Order Amount Customer Task ordermanagement3 | v
5 12.99 userl shi i

$ P Assign ‘ Switch Order Process ‘
7 £77.70 user2 ship Assign

Order Acceptance

There are no orders to be accepted.

Shipping
Order Id Order Amount Customer
<] $04.0% userl Ship
Done
TODO

Look in the dvdst or e directory.

8. A complete application featuring Seam workspace
management: the Issue Tracker example

The Issue Tracker demo shows off Seam's workspace management functionality: the
conversation switcher, conversation list and breadcrumbs.

\[e}{]

To log into the Issue Tracker demo you must provide a username and password.
You can find this in the r esour ces/ i nport. sql file or use "gavin" and "foobar"
for username and password respectively.

52

jBPM: the DVD Store example

Update/Delete Issue

Home | Find Issues | Create Issue | Logout | Project [HHH] | Issue [1] for Project [HHH] Issue [1] for Project [HHH] (v
—lssue Attributes ——
d Reporter
Username Name
Status - B
gavin Gavin King
Short description
My laptop does notHibernate
Version PI'O]ECt
31 L.
Name Description
Long description HHH Hibernate 3 Core
Select Project
Assigned developer
Mo Assigned developer
Created
L Comments
[Update][Deolete ” Done] Comment text Created Action
[BeahalEaie Go to the user forum! Jan 14, 2006
Create Comment

TODO

Look in the i ssues directory.

9. An example of Seam with Hibernate: the Hibernate
Booking example

The Hibernate Booking demo is a straight port of the Booking demo to an alternative
architecture that uses Hibernate for persistence and JavaBeans instead of session beans.

TODO

Look in the hi ber nat e directory.

10. A RESTful Seam application: the Blog example

Seam makes it very easy to implement applications which keep state on the server-side.
However, server-side state is not always appropriate, especially in for functionality that serves
up content. For this kind of problem we often need to let the user bookmark pages and have a
relatively stateless server, so that any page can be accessed at any time, via the bookmark.
The Blog example shows how to a implement RESTful application using Seam. Every page of
the application can be bookmarked, including the search results page.

53

Chapter 2. Seam Tutorial

) JBoss Seam Blog - Mozilla Firefox
File Edit View Go Bookmarks Tools Help delicio.us

<:E| © |—; o @] @ E tag | - hitp:/flocalhost:8080/seam-blog/entry.seam?blogEntryld=i18n v | @ Go

Intérnationalizastion

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip
ex ea commeodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu

fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa gqui officia deserunt
mollit anim id est labarum.

[Posted on 5/01/2006 17:03:00]

JBoss Seam Blog: [Al posts][Recent posts][Write new post]
Total pageviews: 1007

Done (/]

The Blog example demonstrates the use of "pull"-style MVC, where instead of using action
listener methods to retrieve data and prepare the data for the view, the view pulls data from
components as it is being rendered.

10.1. Using "pull"-style MVC

This snippet from the i ndex. xht m facelets page displays a list of recent blog entries:

<h: dat aTabl e val ue="#{bl og. recent Bl ogEntri es}" var="bl ogEntry" rows="3">
<h: col um>
<di v cl ass="bl ogEntry">
<h3>#{ bl ogEntry.titl e} </h3>
<di v>
<h: out put Text escape="fal se"
val ue="#{bl ogEntry. excerpt ==nul | ? bl ogEntry. body :
bl ogEntry. excerpt}"/>
</ di v>
<p>
<h: out put Li nk val ue="entry. seant
render ed="#{ bl ogEntry. excerpt!=nul | }">
<f: param nane="bl ogEntryl d" val ue="#{bl ogEntry.id}"/>
Read nore. ..
</ h: out put Li nk>
</ p>

54

Using "pull"-style MVC

<p>
[Posted on
<h: out put Text val ue="#{bl ogEntry. date}">
<f:convertDateTi ne ti mneZone="#{bl og.ti neZone}"
| ocal e="#{bl og. | ocal e}"
type="bot h"/>
</ h: out put Text >]

<h: out put Li nk val ue="entry. seant >[Li nk]
<f: param name="bl ogEnt ryl d" val ue="#{bl ogEntry.id}"/>
</ h: out put Li nk>
</ p>
</ di v>
</ h: col um>
</ h: dat aTabl e>

Example 2.25.

If we navigate to this page from a bookmark, how does the data used by the <h: dat aTabl e>
actually get initialized? Well, what happens is that the Bl og is retrieved lazily—"pulled"—when
needed, by a Seam component hamed bl og. This is the opposite flow of control to what is usual
in traditional web action-based frameworks like Struts.

@Nane(" bl og")
@cope(ScopeType. STATELESS)
public class Bl ogService

{
@n
private EntityManager entityManager;
@Jnwr ap
public Bl og get Bl og()
{

return (Bl og) entityMinager.createQuery("fromBlog b left join fetch
b. bl ogEntri es")
.set H nt ("org. hi bernate. cacheabl e", true)
. get Si ngl eResul t () ;

1. This component uses a seam-managed persistence context. Unlike the other examples
we've seen, this persistence context is managed by Seam, instead of by the EJB3 container.
The persistence context spans the entire web request, allowing us to avoid any exceptions
that occur when accessing unfetched associations in the view.

55

Chapter 2. Seam Tutorial

2. The @inwr ap annotation tells Seam to provide the return value of the method—the
Bl og—instead of the actual Bl ogSer vi ce component to clients. This is the Seam manager
component pattern.

Example 2.26.

This is good so far, but what about bookmarking the result of form submissions, such as a
search results page?

10.2. Bookmarkable search results page

The blog example has a tiny form in the top right of each page that allows the user to search for
blog entries. This is defined in a file, menu. xht nl , included by the facelets template,
templ ate. xhtm :

<div id="search">
<h: f or n»
<h:i nput Text val ue="#{searchActi on. searchPattern}"/>
<h: commandBut t on val ue="Search" action="/search. xhtm "/>

</ h: fornm>
</ di v>
Example 2.27.

To implement a bookmarkable search results page, we need to perform a browser redirect after
processing the search form submission. Because we used the JSF view id as the action
outcome, Seam automatically redirects to the view id when the form is submitted. Alternatively,
we could have defined a navigation rule like this:

<navi gati on-rul e>
<navi gati on- case>
<f rom out come>sear chResul t s</ f rom out cone>
<t o-vi ew i d>/ search. xht m </t o-vi ewi d>
<redirect/>
</ navi gati on- case>
</ navi gati on-rul e>

Example 2.28.

Then the form would have looked like this:

<di v id="search">

56

Bookmarkable search results page

<h: f or n>
<h:i nput Text val ue="#{searchActi on. searchPattern}"/>
<h: commandBut t on val ue="Search" acti on="searchResults"/>

</ h: fornpe
</ di v>
Example 2.29.

But when we redirect, we need to include the values submitted with the form as request
parameters, to get a bookmarkable URL like

http://1 ocal host: 8080/ seam bl og/ sear ch. seanPsear chPat t er n=seam JSF does not
provide an easy way to do this, but Seam does. We use a Seam page parameter, defined in
VEB- | NF/ pages. xni :

<pages>
<page vi ewi d="/search. xhtm ">
<par am nane="sear chPattern" val ue="#{searchService. searchPattern}"/>

</ page>

</pééés>
Example 2.30.

This tells Seam to include the value of #{ sear chSer vi ce. sear chPat t er n} as a request
parameter named sear chPat t er n when redirecting to the page, and then re-apply the value of
that parameter to the model before rendering the page.

The redirect takes us to the sear ch. xht M page:

<h: dat aTabl e val ue="#{searchResul ts}" var="bl ogEntry">
<h: col um>
<di v>
<h: out put Li nk val ue="entry. seant >
<f:param nane="bl ogEnt ryl d" val ue="#{bl ogEntry.id}"/>
#{bl ogEntry. titl e}
</ h: out put Li nk>
post ed on
<h: out put Text val ue="#{bl ogEntry. date}">
<f:convertDateTi ne tinmeZone="#{bl og.ti neZone}"
| ocal e="#{bl 0og. | ocal e}" type="both"/>
</ h: out put Text >
</ di v>
</ h: col um>
</ h: dat aTabl e>

57

Chapter 2. Seam Tutorial

Example 2.31.

Which again uses "pull"-style MVC to retrieve the actual search results:

@Nane(" sear chServi ce")
public class SearchService

@n
private EntityManager entityManager;

private String searchPattern;

@-actory("searchResul ts")
publ i c List<Bl ogEntry> get SearchResul t s()

{
i f (searchPattern==null)
{
return null;
}
el se
{

return entityManager.createQuery("sel ect be from Bl ogEntry be where

| ower (be.title)

like :searchPattern or |ower(be.body) |ike

:searchPattern

order by be.date desc")
.setParaneter("searchPattern", getSql SearchPattern())
. set MaxResul t s(100)
.getResul tList();

}
}
private String get Sql SearchPattern()
{
return searchPattern==null ? "" : "% +
searchPattern. toLower Case().replace('*', "%).replace('?, '_')
+ "% ;
}
public String getSearchPattern()
{
return searchPattern;
}
public void setSearchPattern(String searchPattern)
{
this.searchPattern = searchPattern;
}

58

Using "push"-style MVC in a RESTful

Example 2.32.

10.3. Using "push"-style MVC in a RESTful application

Very occasionally, it makes more sense to use push-style MVC for processing RESTful pages,
and so Seam provides the notion of a page action. The Blog example uses a page action for the
blog entry page, ent ry. xht ml . Note that this is a little bit contrived, it would have been easier to

use pull-style MVC here as well.

The ent ryAct i on component works much like an action class in a traditional push-MVC
action-oriented framework like Struts:

@\anme("entryAction")

@scope(STATELESS)
public class EntryAction
{

@n(create=true)
private Bl og bl og;

@ut
private Bl ogEntry bl ogEntry;

public void | oadBl ogEntry(String id) throws EntryNot FoundException

{
bl ogEntry = bl og. get Bl ogEntry(id);
if (blogEntry==null) throw new EntryNot FoundException(id);
}
}
Example 2.33.

Page actions are also declared in pages. xni :

<pages>

<page viewid="/entry.xhtm"
acti on="#{entryAction. | oadBl ogEntry(bl ogEntry.id)}">
<par am name="Dbl ogEntryl d" val ue="#{bl ogEntry.id}"/>
</ page>
<page viewid="/post.xhtm " action="#{l ogi nActi on.chal |l enge}"/>

<page viewid="*" action="#{bl og. hitCount.hit}"/>

</ pages>

59

Chapter 2. Seam Tutorial

Example 2.34.

Notice that the example is using page actions for some other functionality—the login challenge,
and the pageview counter. Also notice the use of a parameter in the page action method
binding. This is not a standard feature of JSF EL, but Seam lets you use it, not just for page
actions, but also in JSF method bindings.

When the ent ry. xht M page is requested, Seam first binds the page parameter bl ogEnt ryl d
to the model, then runs the page action, which retrieves the needed data—the bl ogEnt r y—and
places it in the Seam event context. Finally, the following is rendered:

<di v class="bl ogEntry">
<h3>#{ bl ogEntry.titl e} </h3>
<di v>
<h: out put Text escape="fal se" val ue="#{bl ogEntry. body}"/>
</ di v>
<p>
[Posted on
<h: out put Text val ue="#{bl ogEntry. date}">
<f:convertDateTi ne ti mezone="#{bl og.ti neZone}"
| ocal e="#{bl og. | ocal e}" type="both"/>
</ h: out put Text >]
</ p>
</ di v>

Example 2.35.

If the blog entry is not found in the database, the Ent r yNot FoundExcept i on exception is
thrown. We want this exception to result in a 404 error, not a 505, so we annotate the exception
class:

@\ppl i cati onExcepti on(rol | back=true)
@t t pError (error Code=Htt pSer vl et Response. SC_NOT_FOUND)
publ i c class EntryNot FoundExcepti on extends Exception

{
Ent r yNot FoundExcepti on(String i d)
{
super("entry not found: " + id);
}
}
Example 2.36.

An alternative implementation of the example does not use the parameter in the method

60

application

binding:

@\ane("entryAction")

@cope(STATELESS)
public class EntryAction
{

@n(create=true)
private Bl og bl og;

@n @out
private Bl ogEntry bl ogEntry;

public void | oadBl ogEntry() throws EntryNot FoundExcepti on

{
bl ogEntry = bl og. get Bl ogEntry(bl ogEntry. getld());
if (blogEntry==null) throw new EntryNot FoundException(id);
}
}
<pages>
<page viewid="/entry.xhtm" action="#{entryAction.| oadBl ogEntry}">
<par am nanme="bl ogEntryl d" val ue="#{bl ogEntry.id}"/>
</ page>
</ pages>
Example 2.37.

It is a matter of taste which implementation you prefer.

61

62

Chapter 3.

The contextual component model

The two core concepts in Seam are the notion of a context and the notion of a component.
Components are stateful objects, usually EJBs, and an instance of a component is associated
with a context, and given a hame in that context. Bijection provides a mechanism for aliasing
internal component names (instance variables) to contextual names, allowing component trees
to be dynamically assembled, and reassembled by Seam.

Let's start by describing the contexts built in to Seam.

1. Seam contexts

Seam contexts are created and destroyed by the framework. The application does not control
context demarcation via explicit Java API calls. Context are usually implicit. In some cases,
however, contexts are demarcated via annotations.

The basic Seam contexts are:

» Stateless context

» Event (or request) context

* Page context

« Conversation context

» Session context

» Business process context

* Application context

You will recognize some of these contexts from servlet and related specifications. However, two
of them might be new to you: conversation context, and business process context. One reason
state management in web applications is so fragile and error-prone is that the three built-in
contexts (request, session and application) are not especially meaningful from the point of view
of the business logic. A user login session, for example, is a fairly arbitrary construct in terms of
the actual application work flow. Therefore, most Seam components are scoped to the

conversation or business process contexts, since they are the contexts which are most
meaningful in terms of the application.

Let's look at each context in turn.

1.1. Stateless context

Components which are truly stateless (stateless session beans, primarily) always live in the
stateless context (this is really a non-context). Stateless components are not very interesting,
and are arguably not very object-oriented. Nevertheless, they are important and often useful.

63

Chapter 3. The contextual component model

1.2. Event context

The event context is the "narrowest" stateful context, and is a generalization of the notion of the
web request context to cover other kinds of events. Nevertheless, the event context associated
with the lifecycle of a JSF request is the most important example of an event context, and the
one you will work with most often. Components associated with the event context are destroyed
at the end of the request, but their state is available and well-defined for at least the lifecycle of
the request.

When you invoke a Seam component via RMI, or Seam Remoting, the event context is created
and destroyed just for the invocation.

1.3. Page context

The page context allows you to associate state with a particular instance of a rendered page.
You can initialize state in your event listener, or while actually rendering the page, and then
have access to it from any event that originates from that page. This is especially useful for
functionality like clickable lists, where the list is backed by changing data on the server side. The
state is actually serialized to the client, so this construct is extremely robust with respect to
multi-window operation and the back button.

1.4. Conversation context

The conversation context is a truly central concept in Seam. A conversation is a unit of work
from the point of view of the user. It might span several interactions with the user, several
requests, and several database transactions. But to the user, a conversation solves a single
problem. For example, "book hotel", "approve contract", "create order" are all conversations.
You might like to think of a conversation implementing a single "use case" or "user story", but

the relationship is not necessarily quite exact.

A conversation holds state associated with "what the user is doing now, in this window". A
single user may have multiple conversations in progress at any point in time, usually in multiple
windows. The conversation context allows us to ensure that state from the different
conversations does not collide and cause bugs.

It might take you some time to get used to thinking of applications in terms of conversations. But
once you get used to it, we think you'll love the notion, and never be able to not think in terms of
conversations again!

Some conversations last for just a single request. Conversations that span multiple requests
must be demarcated using annotations provided by Seam.

Some conversations are also tasks. A task is a conversation that is significant in terms of a
long-running business process, and has the potential to trigger a business process state
transition when it is successfully completed. Seam provides a special set of annotations for task
demarcation.

Conversations may be nested, with one conversation taking place "inside" a wider conversation.
This is an advanced feature.

64

Session context

Usually, conversation state is actually held by Seam in the servlet session between requests.
Seam implements configurable conversation timeout, automatically destroying inactive
conversations, and thus ensuring that the state held by a single user login session does not
grow without bound if the user abandons conversations.

Seam serializes processing of concurrent requests that take place in the same long-running
conversation context, in the same process.

Alternatively, Seam may be configured to keep conversational state in the client browser.

1.5. Session context

A session context holds state associated with the user login session. While there are some
cases where it is useful to share state between several conversations, we generally frown on
the use of session context for holding components other than global information about the
logged in user.

In a JSR-168 portal environment, the session context represents the portlet session.

1.6. Business process context

The business process context holds state associated with the long running business process.
This state is managed and made persistent by the BPM engine (JBoss jBPM). The business
process spans multiple interactions with multiple users, so this state is shared between multiple
users, but in a well-defined manner. The current task determines the current business process
instance, and the lifecycle of the business process is defined externally using a process
definition language, so there are no special annotations for business process demarcation.

1.7. Application context

The application context is the familiar servlet context from the servlet spec. Application context
is mainly useful for holding static information such as configuration data, reference data or
metamodels. For example, Seam stores its own configuration and metamodel in the application
context.

1.8. Context variables

A context defines a namespace, a set of context variables. These work much the same as
session or request attributes in the servlet spec. You may bind any value you like to a context
variable, but usually we bind Seam component instances to context variables.

So, within a context, a component instance is identified by the context variable name (this is
usually, but not always, the same as the component name). You may programatically access a
named component instance in a particular scope via the Cont ext s class, which provides access
to several thread-bound instances of the Cont ext interface:

User user = (User) Contexts.getSessionContext().get("user");

65

Chapter 3. The contextual component model

You may also set or change the value associated with a name:

Cont ext s. get Sessi onCont ext (). set ("user", user);

Usually, however, we obtain components from a context via injection, and put component
instances into a context via outjection.

1.9. Context search priority

Sometimes, as above, component instances are obtained from a particular known scope. Other
times, all stateful scopes are searched, in priority order. The order is as follows:

* Event context

» Page context

« Conversation context

» Session context

» Business process context

 Application context

You can perform a priority search by calling Cont ext s. | ookupl nSt at ef ul Cont ext s() .
Whenever you access a component by name from a JSF page, a priority search occurs.

1.10. Concurrency model

Neither the servlet nor EJB specifications define any facilities for managing concurrent requests
originating from the same client. The servlet container simply lets all threads run concurrently
and leaves enforcing threadsafeness to application code. The EJB container allows stateless
components to be accessed concurrently, and throws an exception if multiple threads access a
stateful session bean.

This behavior might have been okay in old-style web applications which were based around
fine-grained, synchronous requests. But for modern applications which make heavy use of
many fine-grained, asynchronous (AJAX) requests, concurrency is a fact of life, and must be
supported by the programming model. Seam weaves a concurrency management layer into its
context model.

The Seam session and application contexts are multithreaded. Seam will allow concurrent
requests in a context to be processed concurrently. The event and page contexts are by nature
single threaded. The business process context is strictly speaking multi-threaded, but in practice
concurrency is sufficiently rare that this fact may be disregarded most of the time. Finally, Seam
enforces a single thread per conversation per process model for the conversation context by
serializing concurrent requests in the same long-running conversation context.

66

Seam components

Since the session context is multithreaded, and often contains volatile state, session scope
components are always protected by Seam from concurrent access. Seam serializes requests
to session scope session beans and JavaBeans by default (and detects and breaks any
deadlocks that occur). This is not the default behaviour for application scoped components
however, since application scoped components do not usually hold volatile state and because
synchronization at the global level is extremely expensive. However, you can force a serialized
threading model on any session bean or JavaBean component by adding the @ynchr oni zed
annotation.

This concurrency model means that AJAX clients can safely use volatile session and
conversational state, without the need for any special work on the part of the developer.

2. Seam components

Seam components are POJOs (Plain Old Java Objects). In particular, they are JavaBeans or
EJB 3.0 enterprise beans. While Seam does not require that components be EJBs and can
even be used without an EJB 3.0 compliant container, Seam was designed with EJB 3.0 in mind
and includes deep integration with EJB 3.0. Seam supports the following component types.

EJB 3.0 stateless session beans

EJB 3.0 stateful session beans

EJB 3.0 entity beans

e JavaBeans

EJB 3.0 message-driven beans

2.1. Stateless session beans

Stateless session bean components are not able to hold state across multiple invocations.
Therefore, they usually work by operating upon the state of other components in the various
Seam contexts. They may be used as JSF action listeners, but cannot provide properties to JSF
components for display.

Stateless session beans always live in the stateless context.

Stateless session beans are the least interesting kind of Seam component.

2.2. Stateful session beans

Stateful session bean components are able to hold state not only across multiple invocations of
the bean, but also across multiple requests. Application state that does not belong in the
database should usually be held by stateful session beans. This is a major difference between
Seam and many other web application frameworks. Instead of sticking information about the
current conversation directly in the Ht t pSessi on, you should keep it in instance variables of a

67

Chapter 3. The contextual component model

stateful session bean that is bound to the conversation context. This allows Seam to manage
the lifecycle of this state for you, and ensure that there are no collisions between state relating
to different concurrent conversations.

Stateful session beans are often used as JSF action listener, and as backing beans that provide
properties to JSF components for display or form submission.

By default, stateful session beans are bound to the conversation context. They may never be
bound to the page or stateless contexts.

Concurrent requests to session-scoped stateful session beans are always serialized by Seam.

2.3. Entity beans

Entity beans may be bound to a context variable and function as a seam component. Because
entities have a persistent identity in addition to their contextual identity, entity instances are
usually bound explicitly in Java code, rather than being instantiated implicitly by Seam.

Entity bean components do not support bijection or context demarcation. Nor does invocation of
an entity bean trigger validation.

Entity beans are not usually used as JSF action listeners, but do often function as backing
beans that provide properties to JSF components for display or form submission. In particular, it
is common to use an entity as a backing bean, together with a stateless session bean action
listener to implement create/update/delete type functionality.

By default, entity beans are bound to the conversation context. They may never be bound to the
stateless context.

Note that it in a clustered environment is somewhat less efficient to bind an entity bean directly
to a conversation or session scoped Seam context variable than it would be to hold a reference
to the entity bean in a stateful session bean. For this reason, not all Seam applications define
entity beans to be Seam components.

2.4. JavaBeans

Javabeans may be used just like a stateless or stateful session bean. However, they do not
provide the functionality of a session bean (declarative transaction demarcation, declarative
security, efficient clustered state replication, EJB 3.0 persistence, timeout methods, etc).

In a later chapter, we show you how to use Seam and Hibernate without an EJB container. In
this use case, components are JavaBeans instead of session beans. Note, however, that in
many application servers it is somewhat less efficient to cluster conversation or session scoped
Seam JavaBean components than it is to cluster stateful session bean components.

By default, JavaBeans are bound to the event context.

Concurrent requests to session-scoped JavaBeans are always serialized by Seam.

2.5. Message-driven beans

68

Interception

Message-driven beans may function as a seam component. However, message-driven beans
are called quite differently to other Seam components - instead of invoking them via the context
variable, they listen for messages sent to a JMS queue or topic.

Message-driven beans may not be bound to a Seam context. Nor do they have access to the
session or conversation state of their "caller". However, they do support bijection and some
other Seam functionality.

2.6. Interception

In order to perform its magic (bijection, context demarcation, validation, etc), Seam must
intercept component invocations. For JavaBeans, Seam is in full control of instantiation of the
component, and no special configuration is needed. For entity beans, interception is not
required since bijection and context demarcation are not defined. For session beans, we must
register an EJB interceptor for the session bean component. We could use an annotation, as
follows:

@t at el ess
@ nt er cept or s(Seam nt er cept or . cl ass)
public class Logi nAction inplenments Login {

}

But a much better way is to define the interceptor in ej b-j ar. xmi .

<i nt er cept or s>
<i nt er cept or >

<i nterceptor-class>org.jboss. seam ej b. Seam nt er cept or </ i nt er cept or - cl ass>
</interceptor>

</interceptors>

<assenbl y-descri pt or >
<i nt er cept or - bi ndi ng>
<ej b- nane>*</ ej b- nane>
<i nterceptor-class>org.jboss. seam ej b. Seam nt er cept or </ i nt er cept or - cl ass>
</i nt er cept or - bi ndi ng>
</ assenbl y- descri pt or >

2.7. Component names

All seam components need a name. We can assign a name to a component using the @ame
annotation:

@\anme("| ogi nActi on")
@t at el ess
public class Logi nAction inplenments Login {

}

69

Chapter 3. The contextual component model

This name is the seam component hame and is not related to any other name defined by the
EJB specification. However, seam component names work just like JSF managed bean names
and you can think of the two concepts as identical.

@\ane is not the only way to define a component name, but we always need to specify the name
somewhere. If we don't, then none of the other Seam annotations will function.

Just like in JSF, a seam component instance is usually bound to a context variable with the
same name as the component name. So, for example, we would access the Logi nAct i on using
Cont ext s. get St at el essCont ext (). get ("l ogi nAction"). In particular, whenever Seam itself
instantiates a component, it binds the new instance to a variable with the component name.
However, again like JSF, it is possible for the application to bind a component to some other
context variable by programmatic API call. This is only useful if a particular component serves
more than one role in the system. For example, the currently logged in User might be bound to
the current User session context variable, while a User that is the subject of some
administration functionality might be bound to the user conversation context variable.

For very large applications, and for built-in seam components, qualified names are often used.

@Nanme("com j boss. nyapp. | ogi nActi on")

@t at el ess

@ nt er cept or s(Seam nt er cept or . cl ass)

public class Logi nAction inplenents Login {

}

We may use the qualified component name both in Java code and in JSF's expression
language:

<h: commandBut t on type="submt" val ue="Logi n"
acti on="#{com j boss. nyapp. | ogi nActi on. | ogin}"/>
Since this is noisy, Seam also provides a means of aliasing a qualified name to a simple name.

Add a line like this to the conponent s. xm file:

<factory name="| ogi nActi on" scope="STATELESS"
val ue="#{com j boss. nyapp. | ogi nAction}"/>

All of the built-in Seam components have qualified names, but most of them are aliased to a

simple name by the conponent s. xnl file included in the Seam jar.

2.8. Defining the component scope

We can override the default scope (context) of a component using the @cope annotation. This
lets us define what context a component instance is bound to, when it is instantiated by Seam.

@Nane("user")

70

Components with multiple roles

@ntity
@scope(SESSI ON)
public class User {

}

org. j boss. seam ScopeType defines an enumeration of possible scopes.

2.9. Components with multiple roles

Some Seam component classes can fulfill more than one role in the system. For example, we
often have a User class which is usually used as a session-scoped component representing the
current user but is used in user administration screens as a conversation-scoped component.
The @Rol e annotation lets us define an additional named role for a component, with a different
scope—it lets us bind the same component class to different context variables. (Any Seam
component instance may be bound to multiple context variables, but this lets us do it at the
class level, and take advantage of auto-instantiation.)

@Nane("user")

@ntity

@cope(CONVERSATI ON)

@Rol e(name="current User", scope=SESSI ON)
public class User {

}

The @Rol es annotation lets us specify as many additional roles as we like.

@Nane("user")

@ntity

@cope(CONVERSATI ON)

@rol es({ @ol e(name="current User”, scope=SESSI ON)
@®ol e(name="t enpUser", scope=EVENT)})

public class User {

}

2.10. Built-in components

Like many good frameworks, Seam eats its own dogfood and is implemented mostly as a set of
built-in Seam interceptors (see later) and Seam components. This makes it easy for applications
to interact with built-in components at runtime or even customize the basic functionality of Seam
by replacing the built-in components with custom implementations. The built-in components are
defined in the Seam namespace or g. j boss. seam cor e and the Java package of the same
name.

The built-in components may be injected, just like any Seam components, but they also provide

71

Chapter 3. The contextual component model

convenient static i nst ance() methods:

FacesMessages. i nst ance() . add(" Wl cone back, #{user.nane}!");

Seam was designed to integrate tightly in a Java EE 5 environment. However, we understand
that there are many projects which are not running in a full EE environment. We also realize the
critical importance of easy unit and integration testing using frameworks such as TestNG and
JUnit. So, we've made it easy to run Seam in Java SE environments by allowing you to
boostrap certain critical infrastructure normally only found in EE environments by installing
built-in Seam components.

For example, you can run your EJB3 components in Tomcat or an integration test suite just by
installing the built-in component or g. j boss. seam cor e. ej b, which automatically bootstraps
the JBoss Embeddable EJB3 container and deploys your EJB components.

Or, if you're not quite ready for the Brave New World of EJB 3.0, you can write a Seam
application that uses only JavaBean components, together with Hibernate3 for persistence, by
installing a built-in component that manages a Hibernate Sessi onFact or y. When using
Hibernate outside of a J2EE environment, you will also probably need a JTA transaction
manager and JNDI server, which are available via the built-in component

org. j boss. seam core. mi crocont ai ner. This lets you use the bulletproof JTA/JCA pooling
datasource from JBoss application server in an SE environment like Tomcat!

3. Bijection

Dependency injection or inversion of control is by now a familiar concept to most Java
developers. Dependency injection allows a component to obtain a reference to another
component by having the container "inject" the other component to a setter method or instance
variable. In all dependency injection implementations that we have seen, injection occurs when
the component is constructed, and the reference does not subsequently change for the lifetime
of the component instance. For stateless components, this is reasonable. From the point of view
of a client, all instances of a particular stateless component are interchangeable. On the other
hand, Seam emphasizes the use of stateful components. So traditional dependency injection is
no longer a very useful construct. Seam introduces the notion of bijection as a generalization of
injection. In contrast to injection, bijection is:

« contextual - bijection is used to assemble stateful components from various different contexts
(a component from a "wider" context may even have a reference to a component from a
"narrower" context)

« bidirectional - values are injected from context variables into attributes of the component
being invoked, and also outjected from the component attributes back out to the context,
allowing the component being invoked to manipulate the values of contextual variables simply
by setting its own instance variables

< dynamic - since the value of contextual variables changes over time, and since Seam

72

Bijection

components are stateful, bijection takes place every time a component is invoked

In essence, bijection lets you alias a context variable to a component instance variable, by
specifying that the value of the instance variable is injected, outjected, or both. Of course, we
use annotations to enable bijection.

The @ n annotation specifies that a value should be injected, either into an instance variable:

@\anme("l ogi nActi on")

@t at el ess

@ nt er cept or s(Seam nt er cept or . cl ass)

public class Logi nAction inplenents Login {
@n User user;

or into a setter method:

@Nane("| ogi nAction")

@t at el ess

@ nt er cept or s(Seam nt er cept or . cl ass)

public class Logi nAction inplenents Login {
User user;

@n
public void setUser(User user) ({
t hi s. user=user;

}

By default, Seam will do a priority search of all contexts, using the name of the property or
instance variable that is being injected. You may wish to specify the context variable name
explicitly, using, for example, @ n("current User").

If you want Seam to create an instance of the component when there is no existing component
instance bound to the named context variable, you should specify @ n(cr eat e=true) . If the
value is optional (it can be null), specify @ n(r equi r ed=f al se).

For some components, it can be repetitive to have to specify @ n(cr eat e=t r ue) everywhere
they are used. In such cases, you can annotate the component @ut oCr eat e, and then it will
always be created, whenever needed, even without the explicit use of cr eat e=tr ue.

You can even inject the value of an expression:

@\anme("l ogi nActi on")

@t at el ess

@ nt er cept or s(Seam nt er cept or. cl ass)

public class Logi nAction inplenments Login {

73

Chapter 3. The contextual component model

@n("#{user.usernane}") String usernane;

(There is much more information about component lifecycle and injection in the next chapter.)

The @ut annotation specifies that an attribute should be outjected, either from an instance
variable:

@Nane("| ogi nAction")

@t at el ess

@ nt er cept or s(Seam nt er cept or . cl ass)

public class Logi nAction inplenments Login {
@ut User user;

or from a getter method:

@\anme("l ogi nActi on")

@t at el ess

@ nt ercept or s(Seam nt er cept or. cl ass)

public class Logi nAction inplenents Login {
User user;

@ut
public User getUser() {
return user;

}

An attribute may be both injected and outjected:

@\anme("l ogi nActi on")

@bt at el ess

@ nt ercept or s(Seam nt er cept or. cl ass)

public class Logi nAction inplenents Login {
@n @ut User user;

or:

@\anme("l ogi nActi on")

@t at el ess

@ nt er cept or s(Seam nt er cept or . cl ass)

public class Logi nAction inplenments Login {
User user;

74

Lifecycle methods

@n
public void setUser(User user) {
t hi s. user =user;

}

@ut
public User getUser() {
return user;

}

4. Lifecycle methods

Session bean and entity bean Seam components support all the usual EJB 3.0 lifecycle
callback (@ost Const r uct , @r eDest r oy, etc). Seam extends all of these callbacks except
@r eDest r oy to JavaBean components. But Seam also defines its own component lifecycle
callbacks.

The @r eat e method is called every time Seam instantiates a component. Unlike the

@ost Const ruct method, this method is called after the component is fully constructed by the
EJB container, and has access to all the usual Seam functionality (bijection, etc). Components
may define only one @r eat e method.

The @est r oy method is called when the context that the Seam component is bound to ends.
Components may define only one @est r oy method. Stateful session bean components must
define a method annotated @est roy @Renove.

Finally, a related annotation is the @5t ar t up annotation, which may be applied to any
application or session scoped component. The @t ar t up annotation tells Seam to instantiate
the component immediately, when the context begins, instead of waiting until it is first
referenced by a client. It is possible to control the order of instantiation of startup components
by specifying @t art up(depends={....}).

5. Conditional installation

The @ nst al | annotation lets you control conditional installation of components that are
required in some deployment scenarios and not in others. This is useful if:

* You want to mock out some infrastructural component in tests.

* You want change the implementation of a component in certain deployment scenarios.

* You want to install some components only if their dependencies are available (useful for
framework authors).

75

Chapter 3. The contextual component model

@ nst al | works by letting you specify precedence and dependencies.

The precedence of a component is a number that Seam uses to decide which component to
install when there are multiple classes with the same component name in the classpath. Seam
will choose the component with the higher precendence. There are some predefined
precedence values (in ascending order):

1. BUI LT_I N— the lowest precedece components are the components built in to Seam.

2. FRAMEWORK — components defined by third-party frameworks may override built-in
components, but are overridden by application components.

3. APPLI CATI ON — the default precedence. This is appropriate for most application
components.

4. DEPLOYMENT — for application components which are deployment-specific.

5. MOCK — for mock objects used in testing.

Suppose we have a component named messageSender that talks to a JMS queue.

@\ane(" messageSender ")
public class MessageSender {
public void sendMessage() {
//do sonething with JVMS

}

In our unit tests, we don't have a JMS queue available, so we would like to stub out this method.
We'll create a mock component that exists in the classpath when unit tests are running, but is
never deployed with the application:

@\anme(" messageSender ")
@ nst al | (pr ecedence=MOCK)
public class MdckMessageSender extends MessageSender {
public void sendMessage() {
//do not hi ng!

}

The pr ecedence helps Seam decide which version to use when it finds both components in the
classpath.

This is nice if we are able to control exactly which classes are in the classpath. But if I'm writing
a reusable framework with many dependecies, | don't want to have to break that framework
across many jars. | want to be able to decide which components to install depending upon what
other components are installed, and upon what classes are available in the classpath. The

@ nst al | annotation also controls this functionality. Seam uses this mechanism internally to

76

Logging

enable conditional installation of many of the built-in components. However, you probably won't
need to use it in your application.

6. Logging
Who is not totally fed up with seeing noisy code like this?

private static final Log | og = LogFactory. get Log(Creat eO derActi on. cl ass);

public Order createOrder(User user, Product product, int quantity) {
if (1og.isDebugEnabled()) {
| og. debug("Creating new order for user: " + user.usernane() +
product: " + product. name()
+ " quantity: " + quantity);
}

return new Order(user, product, quantity);

It is difficult to imagine how the code for a simple log message could possibly be more verbose.
There is more lines of code tied up in logging than in the actual business logic! | remain totally
astonished that the Java community has not come up with anything better in 10 years.

Seam provides a logging API that simplifies this code significantly:

@ogger private Log | og;

public Order createOrder(User user, Product product, int quantity) {
| og. debug("Creati ng new order for user: #0 product: #1 quantity: #2",
user . user nane(),
product. nane(), quantity);
return new Order(user, product, quantity);

It doesn't matter if you declare the | og variable static or not—it will work either way, except for
entity bean components which require the | og variable to be static.

Note that we don't need the noisy i f (| og.isDebugEnabl ed()) guard, since string
concatenation happens inside the debug() method. Note also that we don't usually need to
specify the log category explicitly, since Seam knows what component it is injecting the Log
into.

If User and Product are Seam components available in the current contexts, it gets even better:

@ogger private Log | og;

public Order createOrder(User user, Product product, int quantity) {
| og. debug("Creati ng new order for user: #{user.usernane} product:
#{ pr oduct . nane}
quantity: #0", quantity);
return new Order(user, product, quantity);

77

Chapter 3. The contextual component model

Seam logging automagically chooses whether to send output to log4j or JDK logging. If log4j is
in the classpath, Seam with use it. If it is not, Seam will use JDK logging.

7. The wtani e INterface and aeadoniy

Many application servers feature an amazingly broken implementation of Ht t pSessi on
clustering, where changes to the state of mutable objects bound to the session are only
replicated when the application calls set At t ri but e() explicitly. This is a source of bugs that
can not effectively be tested for at development time, since they will only manifest when failover
occurs. Furthermore, the actual replication message contains the entire serialized object graph
bound to the session attribute, which is inefficient.

Of course, EJB stateful session beans must perform automatic dirty checking and replication of
mutable state and a sophisticated EJB container can introduce optimizations such as
attribute-level replication. Unfortunately, not all Seam users have the good fortune to be working
in an environment that supports EJB 3.0. So, for session and conversation scoped JavaBean
and entity bean components, Seam provides an extra layer of cluster-safe state management
over the top of the web container session clustering.

For session or conversation scoped JavaBean components, Seam automatically forces
replication to occur by calling set Att ri but e() once in every request that the component was
invoked by the application. Of course, this strategy is inefficient for read-mostly components.
You can control this behavior by implementing the or g. j boss. seam cor e. Mut abl e interface,
or by extending or g. j boss. seam cor e. Abst r act Mut abl e, and writing your own dirty-checking
logic inside the component. For example,

@\ane("account ")
public class Account extends AbstractMitabl e

{
private Bi gDeci mal bal ance;
public void setBal ance(Bi gDeci mal bal ance)
{
setDirty(this.bal ance, bal ance);
t hi s. bal ance = bal ance;
}
publ i ¢ Bi gDeci mal get Bal ance()
{
return bal ance;
}
}

Or, you can use the @eadOnl y annotation to achieve a similar effect:

78

Factory and manager components

@\ane("account ")
public class Account

{
private Bi gDeci mal bal ance;
public voi d setBal ance(Bi gDeci nal bal ance)
{
t hi s. bal ance = bal ance;
}
@ReadOnl y
publ i c Bi gDeci mal get Bal ance()
{
return bal ance;
}
}

For session or conversation scoped entity bean components, Seam automatically forces
replication to occur by calling set Attri but e() once in every request, unless the
(conversation-scoped) entity is currently associated with a Seam-managed persistence context,
in which case no replication is needed. This strategy is not necessarily efficient, so session or
conversation scope entity beans should be used with care. You can always write a stateful
session bean or JavaBean component to "manage" the entity bean instance. For example,

@t at ef ul
@Nane("account ")
publi c class Account Manager extends Abstract Mut abl e

{
private Account account; // an entity bean
@Jnwr ap
public void get Account ()
{
return account;
}
}

Note that the Ent i t yHone class in the Seam Application Framework provides a great example
of this pattern.

8. Factory and manager components

We often need to work with objects that are not Seam components. But we still want to be able
to inject them into our components using @ n and use them in value and method binding

79

Chapter 3. The contextual component model

expressions, etc. Sometimes, we even need to tie them into the Seam context lifecycle
(@est r oy, for example). So the Seam contexts can contain objects which are not Seam
components, and Seam provides a couple of nice features that make it easier to work with
non-component objects bound to contexts.

The factory component pattern lets a Seam component act as the instantiator for a
non-component object. A factory method will be called when a context variable is referenced but
has no value bound to it. We define factory methods using the @act or y annotation. The factory
method binds a value to the context variable, and determines the scope of the bound value.
There are two styles of factory method. The first style returns a value, which is bound to the
context by Seam:

@ract or y(scope=CONVERSATI ON)
public List<Custoner> get CustonerlList() {
return ... ;

}

The second style is a method of type voi d which binds the value to the context variable itself:

@at aMbdel Li st <Custoner> cust onerLi st;

@actory("custonerlList")
public void initCustonerList() {
custonerList = ... ;

}

In both cases, the factory method is called when we reference the cust oner Li st context
variable and its value is null, and then has no further part to play in the lifecycle of the value. An
even more powerful pattern is the manager component pattern. In this case, we have a Seam
component that is bound to a context variable, that manages the value of the context variable,
while remaining invisible to clients.

A manager component is any component with an @hnw ap method. This method returns the
value that will be visable to clients, and is called every time a context variable is referenced.

@\ane("cust omer Li st")
@cope(CONVERSATI ON)
public class CustonerListManager

{
@Jnwr ap
public List<Custoner> get CustonerList() {
return ... ;
}
}

This pattern is especially useful if we have some heavyweight object that needs a cleanup
operation when the context ends. In this case, the manager component may perform cleanup in

80

Factory and manager components

the @est r oy method.

81

82

Chapter 4.

Configuring Seam components

The philosophy of minimizing XML-based configuration is extremely strong in Seam.
Nevertheless, there are various reasons why we might want to configure a Seam component
using XML: to isolate deployment-specific information from the Java code, to enable the
creation of re-usable frameworks, to configure Seam's built-in functionality, etc. Seam provides
two basic approaches to configuring components: configuration via property settings in a
properties file or web. xni , and configuration via conponent s. xm .

1. Configuring components via property settings

Seam components may be provided with configuration properties either via servlet context
parameters, or via a properties file named seam properti es in the root of the classpath.

The configurable Seam component must expose JavaBeans-style property setter methods for
the configurable attributes. If a seam component named com j boss. nmyapp. settings has a
setter method named set Local e(), we can provide a property named

com j boss. nyapp. settings. | ocal e inthe seam properti es file or as a servlet context
parameter, and Seam will set the value of the | ocal e attribute whenever it instantiates the
component.

The same mechanism is used to configure Seam itself. For example, to set the conversation
timeout, we provide a value for or g. j boss. seam cor e. manager . conver sat i onTi meout in
web. xm or seam properties. (There is a built-in Seam component named

org. j boss. seam cor e. manager with a setter method named set Conver sati onTi neout () .)

2. Configuring components via components.xml

The conponent s. xm file is a bit more powerful than property settings. It lets you:

« Configure components that have been installed automatically—including both built-in
components, and application components that have been annotated with the @ame
annotation and picked up by Seam's deployment scanner.

« Install classes with no @ame annotation as Seam components—this is most useful for certain
kinds of infrastructural components which can be installed multiple times different names (for
example Seam-managed persistence contexts).

* Install components that do have a @ane annotation but are not installed by default because
of an @ nst al | annotation that indicates the component should not be installed.

« Override the scope of a component.
A conponent s. xn file may appear in one of three different places:

* The WEB- | NF directory of a war .

83

Chapter 4. Configuring Seam components

e The META- | NF directory of aj ar.

* Any directory of a j ar that contains classes with an @lane annotation.

Usually, Seam components are installed when the deployment scanner discovers a class with a
@lane annotation sitting in an archive with a seam properti es file or a

META- | NF/ conponent s. xnd file. (Unless the component has an @ nst al | annotation indicating
it should not be installed by default.) The conponent s. xni file lets us handle special cases
where we need to override the annotations.

For example, the following conponent s. xm file installs the JBoss Embeddable EJB3 container:

<conmponents xm ns="http://jboss. com product s/ sean conponent s"
xm ns: core="http://jboss. conf product s/ seani core" >
<core:ejb/>
</ conponent s>

This example does the same thing:

<conponent s>
<component cl ass="org.j boss. seam core. Ej b"/>
</ conponent s>

This one installs and configures two different Seam-managed persistence contexts:

<conmponents xm ns="http://jboss. com product s/ sean conponent s"
xm ns: core="http://jboss. conf product s/ seani cor e"

<cor e: managed- per si st ence- cont ext name="cust oner Dat abase"
persi st ence-unit-jndi - name="j ava: / cust omer Ent i t yManager Fact ory"/>

<cor e: managed- per si st ence- cont ext nanme="accounti ngDat abase"
persi stence-unit-jndi - nane="j ava: / accounti ngEnti t yManager Fact ory"/ >

</ conponent s>

As does this one:

<conponent s>
<component nane="cust oner Dat abase"
cl ass="org.j boss. seam cor e. ManagedPer si st enceCont ext " >
<property
nane="per si st enceUni t Jndi Nane" >j ava: / cust oner Ent i t yManager Fact or y</ pr operty>
</ conponent >

<component nane="accounti ngDat abase"
cl ass="org.] boss. seam cor e. ManagedPer si st enceCont ext " >
<property
name="per si st enceUni t Jndi Name" >j ava: / account i ngEnt i t yManager Fact or y</ pr operty>

84

Configuring components via

</ conponent >
</ conponent s>

This example creates a session-scoped Seam-managed persistence context (this is not
recommended in practice):

<components xm ns="http://jboss. com product s/ sean conponent s"
xm ns: core="http://jboss. conf product s/ seani cor e"

<cor e: managed- per si st ence- cont ext nanme="pr oduct Dat abase"
scope="sessi on"
persi stence-unit-jndi -nane="j ava: / product Ent i t yManager Fact ory"/ >

</ conponent s>

<conponent s>

<conponent nane="product Dat abase"
scope="sessi on"
cl ass="org.j boss. seam cor e. ManagedPer si st enceCont ext " >
<property
nanme="per si st enceUni t Jndi Nane" >j ava: / pr oduct Ent i t yManager Fact or y</ property>
</ conponent >

</ conponent s>

It is common to use the aut o- cr eat e option for infrastructural objects like persistence contexts,
which saves you from having to explicitly specify cr eat e=t r ue when you use the @ n
annotation.

<components xm ns="http://jboss. con product s/ sean conponent s"
xm ns: core="http://jboss. conf product s/ seani cor e"

<cor e: managed- per si st ence- cont ext nane="pr oduct Dat abase"
aut o-create="true"
per si st ence-uni t-jndi - name="j ava: / product Enti t yManager Fact ory"/ >

</ conponent s>

<conponent s>

<conponent nane="product Dat abase"
auto-create="true"
cl ass="org. j boss. seam cor e. ManagedPer si st enceCont ext " >
<property
name="per si st enceUni t Indi Nane" >j ava: / pr oduct Ent i t yManager Fact or y</ property>
</ conponent >

</ conponent s>

85

Chapter 4. Configuring Seam components

The <f act or y> declaration lets you specify a value or method binding expression that will be
evaluated to initialize the value of a context variable when it is first referenced.

<conponent s>

<factory nane="contact" met hod="#{contact Manager. | oadCont act }"
scope=" CONVERSATI ON"/ >

</ conponent s>

You can create an "alias" (a second name) for a Seam component like so:

<conponent s>
<factory nanme="user" val ue="#{actor}" scope="STATELESS"/>

</ conponent s>

You can even create an "alias" for a commonly used expression:

<conponent s>

<factory nane="contact" val ue="#{cont act Manager. contact}"
scope="STATELESS"/ >

</ conponent s>

It is especially common to see the use of aut o- creat e="tr ue" with the <f act or y> declaration:

<conponent s>

<factory name="session" val ue="#{entityManager. del egate}"
scope=" STATELESS"
auto-create="true"/>

</ conponent s>

Sometimes we want to reuse the same conponent s. xnl file with minor changes during both
deployment and testing. Seam lets you place wildcards of the form @ni | dcar d@in the
conponent s. xnl file which can be replaced either by your Ant build script (at deployment time)
or by providing a file named conponent s. properti es in the classpath (at development time).
You'll see this approach used in the Seam examples.

3. Fine-grained configuration files

86

components.xml

If you have a large number of components that need to be configured in XML, it makes much
more sense to split up the information in conponent s. xm into many small files. Seam lets you
put configuration for a class named, for example, com hel | owor | d. Hel | o in a resource named
com hel | owor | d/ Hel | 0. conponent . xni . (You might be familiar with this pattern, since it is the
same one we use in Hibernate.) The root element of the file may be either a <conponent s> or
<conponent > element.

The first option lets you define multiple components in the file:

<conponent s>
<conmponent cl ass="com hel | owor| d. Hel | 0" nane="hel | 0" >
<property nane="nane">#{user. nane}</ property>
</ conponent >
<factory name="nmessage" val ue="#{hell o. message}"/>
</ conponent s>

The second option only lets you define or configure one component, but is less noisy:

<conmponent nane="hel | 0" >
<property nane="nane">#{user. nanme}</property>
</ conponent >

In the second option, the class name is implied by the file in which the component definition
appears.

Alternatively, you may put configuration for all classes in the com hel | owor | d package in
coni hel | owor | d/ conponents. xm .

4. Configurable property types

Properties of string, primitive or primitive wrapper type may be configured just as you would
expect:

org. j boss. seam cor e. manager . conver sati onTi meout 60000
<cor e: manager conversation-ti meout="60000"/>

<component name="org.j boss. seam cor e. manager ">
<property nane="conversati onTi neout " >60000</ pr operty>
</ conponent >

Arrays, sets and lists of strings or primitives are also supported:

org.j boss. seam core. j bpm processDefinitions order.jpdl.xm, return.jpdl.xnm,
i nventory.jpdl.xm

87

Chapter 4. Configuring Seam components

<core: | bpn>
<cor e: process-definiti ons>
<val ue>order.j pdl . xm </ val ue>
<val ue>return.jpdl.xm </ val ue>
<val ue>i nventory. j pdl . xm </ val ue>
</ core: process-definitions>
</ core:jbpnr

<component nane="or(g.j boss.seam core. | bpm' >
<property name="processDefinitions">
<val ue>order. | pdl . xm </ val ue>
<val ue>return.jpdl.xm </val ue>
<val ue>i nventory. j pdl . xm </ val ue>
</ property>
</ conponent >

Even maps with String-valued keys and string or primitive values are supported:

<conponent nane="i ssueEditor">
<property nane="i ssueSt at uses" >
<key>open</ key> <val ue>open i ssue</val ue>
<key>r esol ved</ key> <val ue>i ssue resol ved by devel oper</val ue>
<key>cl osed</ key> <val ue>resol uti on accepted by user</val ue>
</ pr operty>
</ conponent >

Finally, you may wire together components using a value-binding expression. Note that this is
quite different to injection using @ n, since it happens at component instantiation time instead of
invocation time. It is therefore much more similar to the dependency injection facilities offered by
traditional IoC containers like JSF or Spring.

<dr ool s: managed- wor ki ng- menory nane="pol i cyPri ci ngWor ki ngMenor y"
rul e- base="#{pol i cyPrici ngRul es}"/>

<conponent nane="pol i cyPri ci ngWr ki ngMenor y"
cl ass="org. j boss. seam dr ool s. ManagedWr ki ngMenor y" >
<property nanme="rul eBase">#{pol i cyPrici ngRul es}</property>
</ conponent >

5. Using XML Namespaces

Throughout the examples, there have been two competing ways of declaring components: with
and without the use of XML namespaces. The following shows a typical conponent s. xni file
without namespaces. It uses the Seam Components DTD:

88

Using XML Namespaces

<?xm version="1.0" encodi ng="UTF- 8" >

<! DOCTYPE conponents PUBLI C "-//JBoss/ Seam Conponent Confi gurati on DTD
1.2/ /EN

"http://jboss. conl product s/ seam conponent s-1. 2. dt d" >

<conponent s>

<conmponent cl ass="org.jboss.seamcore.init">

<property nane="debug">true</property>

<property nane="j ndi Pattern">@ ndi Pattern@/ property>
</ conponent >

<conponent nane="org.j boss. sean. core. ej b" install ed="@nbeddedEj b@ />

</ conponent s>

As you can see, this is somewhat verbose. Even worse, the component and attribute names
cannot be validated at development time.

The namespaced version looks like this:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<components xm ns="http://jboss. com product s/ sean conponent s"

xm ns: core="http://jboss. conf product s/ seani cor e"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"

xsi : schemalLocat i on=

"http://jboss. conl product s/ seani cor e
http://jboss. conf product s/ sean core-1. 2. xsd
http://jboss. com product s/ seanf conmponent s

http://jboss. conl product s/ seani conponent s- 1. 2. xsd" >

<core:init debug="true" jndi-pattern="@ndi Pattern@/>
<core:ejb instal |l ed=" @nbeddedEj b@/ >

</ conponent s>

Even though the schema declarations are verbose, the actual XML content is lean and easy to
understand. The schemas provide detailed information about each component and the
attributes available, allowing XML editors to offer intelligent autocomplete. The use of
namespaced elements makes generating and maintaining correct conponent s. xni files much
simpler.

Now, this works great for the built-in Seam components, but what about user components?
There are two options. First, Seam supports mixing the two models, allowing the use of the
generic <conponent > declarations for user components, along with namespaced declarations
for built-in components. But even better, Seam allows you to quickly declare hamespaces for
your own components.

Any Java package can be associated with an XML namespace by annotating the package with
the @lanespace annotation. (Package-level annotations are declared in a file named

89

Chapter 4. Configuring Seam components

package-i nf 0. j ava in the package directory.) Here is an example from the seampay demo:

@Nanespace(val ue="http://jboss. conf product s/ seanf exanpl es/ seanpay")
package org.j boss. seam exanpl e. seanpay;

i mport org.jboss. seam annot ati ons. Nanespace;

That is all you need to do to use the namespaced style in conponent s. xn ! Now we can write:

<conmponents xm ns="http://jboss. com product s/ sean’ conponent s"
xm ns: pay="http://jboss. conl product s/ sean exanpl es/ seanpay”
>

<pay: paynment - home new- i nst ance="#{ newPaynent } "
creat ed- nessage="Created a new paynent to
#{ newPaynent . payee}" />

<pay: paynment nanme="newPaynent"
payee="Sonebody"
account =" #{ sel ect edAccount } "
paynent - dat e="#{ current Dat eti ne}"
created-date="#{currentDatetine}" />

</ conponent s>

Or:

<components xm ns="http://jboss. com product s/ seam conponent s"
xm ns: pay="http://jboss. conl product s/ seam exanpl es/ seanpay
>

<pay: payment - home>
<pay: new i nst ance>"#{ newPaynent } " </ pay: new- i nst ance>
<pay: cr eat ed- message>Created a new paynment to
#{ newPaynent . payee} </ pay: cr eat ed- mnessage>
</ pay: paynent - hone>

<pay: payment name="newPaynent">
<pay: payee>Sonebody" </ pay: payee>
<pay: account >#{ sel ect edAccount } </ pay: account >
<pay: paynent - dat e>#{ cur r ent Dat et i ne} </ pay: paynent - dat e>
<pay: cr eat ed- dat e>#{ cur r ent Dat et i ne} </ pay: cr eat ed- dat e>
</ pay: paynent >

</ conponent s>

These examples illustrate the two usage models of a namespaced element. In the first
declaration, the <pay: paynent - honme> references the paynent Home component:

package org.j boss. seam exanpl e. seanpay;

@\ane(" paynent Home")

90

Using XML Namespaces

public class Payment Controller
ext ends EntityHone<Paynent >

{
}

The element name is the hyphenated form of the component name. The attributes of the
element are the hyphenated form of the property names.

In the second declaration, the <pay: paynent > element refers to the Paynment class in the
org. j boss. seam exanpl e. seanpay package. In this case Paynent is an entity that is being
declared as a Seam component:

package org.j boss. seam exanpl e. seanpay;
@ntity
public class Paynent

i mpl emrents Serializabl e

{
}

If we want validation and autocompletion to work for user-defined components, we will need a
schema. Seam does not yet provide a mechanism to automatically generate a schema for a set
of components, so it is necessary to generate one manually. The schema definitions for the
standard Seam packages can be used for guidance.

The following are the the namespaces used by Seam:

* components — http://jboss. con product s/ seani conmponent s
e core —http://jboss. coni product s/ seani core

e drools — http://jboss. com product s/ sean dr ool s

« framework — http://j boss. conf product s/ sean f r anewor k

e jms—http://jboss. com products/sean j s

e remoting — http://jboss. conf product s/ seanf renoti ng

e theme — http://jboss. com products/seani t heme

e security — http://jboss. com product s/ seanm security

e mail —http://jboss. con products/seam mai |

e web —http://jboss. com product s/ seam web

91

92

Chapter 5.

Events, interceptors and exception
handling

Complementing the contextual component model, there are two further basic concepts that
facilitate the extreme loose-coupling that is the distinctive feature of Seam applications. The first
is a strong event model where events may be mapped to event listeners via JSF-like method
binding expressions. The second is the pervasive use of annotations and interceptors to apply
cross-cutting concerns to components which implement business logic.

1. Seam events

The Seam component model was developed for use with event-driven applications, specifically
to enable the development of fine-grained, loosely-coupled components in a fine-grained
eventing model. Events in Seam come in several types, most of which we have already seen:

JSF events

jBPM transition events

e Seam page actions

e Seam component-driven events
» Seam contextual events

All of these various kinds of events are mapped to Seam components via JSF EL method
binding expressions. For a JSF event, this is defined in the JSF template:

<h: commandButt on val ue="Click ne!" action="#{hell oWrl d. sayHel | 0}"/>

For a jBPM transition event, it is specified in the jBPM process definition or pageflow definition:

<start-page nane="hell 0" viewid="/hello.jsp">
<transition to="hel |l 0">
<action expression="#{hell oWrl| d. sayHel | 0}"/ >
</transition>
</start - page>

You can find out more information about JSF events and jBPM events elsewhere. Lets
concentrate for now upon the two additional kinds of events defined by Seam.

1.1. Page actions

A Seam page action is an event that occurs just before we render a page. We declare page

93

Chapter 5. Events, interceptors and exception handling

actions in VEB- | NF/ pages. xnl . We can define a page action for either a particular JSF view id:

<pages>
<page viewid="/hello.jsp" action="#{hell oWrl d. sayHel |l 0}"/>
</ pages>

Or we can use a wildcard to specify an action that applies to all view ids that match the pattern:

<pages>
<page viewid="/hello/*" action="#{hell oWrld.sayHello}"/>
</ pages>

If multiple wildcarded page actions match the current view-id, Seam will call all the actions, in
order of least-specific to most-specific.

The page action method can return a JSF outcome. If the outcome is non-null, Seam will use
the defined navigation rules to navigate to a view.

Furthermore, the view id mentioned in the <page> element need not correspond to a real JSP or
Facelets page! So, we can reproduce the functionality of a traditional action-oriented framework
like Struts or WebWork using page actions. For example:

TODO translate struts action into page action

This is quite useful if you want to do complex things in response to non-faces requests (for
example, HTTP GET requests).

1.1.1. Page parameters

A JSF faces request (a form submission) encapsulates both an "action" (a method binding) and
"parameters" (input value bindings). A page action might also needs parameters!

Since GET requests are bookmarkable, page parameters are passed as human-readable
request parameters. (Unlike JSF form inputs, which are anything but!)

Seam lets us provide a value binding that maps a named request parameter to an attribute of a
model object.

<pages>
<page viewid="/hello.jsp" action="#{hell oWrl d.sayHel | 0}">
<par am nanme="first Nane" val ue="#{person. firstNane}"/>
<par am nanme="| ast Nane" val ue="#{person. | ast Nane}"/ >
</ page>
</ pages>

The <par ane declaration is bidirectional, just like a value binding for a JSF input:

94

Page actions

« When a non-faces (GET) request for the view id occurs, Seam sets the value of the named
request parameter onto the model object, after performing appropriate type conversions.

« Any <s: | i nk> or <s: but t on> transparently includes the request parameter. The value of the
parameter is determined by evaluating the value binding during the render phase (when the
<s: | i nk> is rendered).

< Any navigation rule with a <r edi r ect / > to the view id transparently includes the request
parameter. The value of the parameter is determined by evaluating the value binding at the
end of the invoke application phase.

« The value is transparently propagated with any JSF form submission for the page with the
given view id. (This means that view parameters behave like PAGE-scoped context variables
for faces requests.

The essential idea behind all this is that however we get from any other page to / hel | 0. j sp (or
from/ hel | 0. j sp back to/ hel | o. j sp), the value of the model attribute referred to in the value
binding is "remembered", without the need for a conversation (or other server-side state).

This all sounds pretty complex, and you're probably wondering if such an exotic construct is
really worth the effort. Actually, the idea is very natural once you "get it". It is definitely worth
taking the time to understand this stuff. Page parameters are the most elegant way to propagate
state across a non-faces request. They are especially cool for problems like search screens with
bookmarkable results pages, where we would like to be able to write our application code to
handle both POST and GET requests with the same code. Page parameters eliminate repetitive
listing of request parameters in the view definition and make redirects much easier to code.

Note that you don't need an actual page action method binding to use a page parameter. The
following is perfectly valid:

<pages>
<page viewid="/hello.jsp">
<par am narme="first Nane" val ue="#{person.firstNane}"/>
<par am nane="| ast Nane" val ue="#{person. | ast Nane}"/ >
</ page>
</ pages>

You can even specify a JSF converter:

<pages>
<page viewid="/cal cul ator.jsp" action="#{cal cul ator.cal cul ate}">
<par am nane="x" val ue="#{cal cul ator.| hs}"/>
<param nanme="y" val ue="#{cal cul ator.rhs}"/>
<par am nane="op" converterld="com ny. cal cul at or. Oper at or Converter"
val ue="#{cal cul ator. op}"/>
</ page>
</ pages>

95

Chapter 5. Events, interceptors and exception handling

<pages>
<page vi ewid="/cal cul ator.jsp" action="#{cal cul ator.cal cul ate}">
<par am nanme="x" val ue="#{cal cul ator.| hs}"/>
<par am nane="y" val ue="#{cal cul ator.rhs}"/>
<par am name="op" converter="#{operat or Converter}"
val ue="#{cal cul ator.op}"/>
</ page>
</ pages>

1.1.2. Navigation

You can use standard JSF navigation rules defined in f aces- confi g. xm in a Seam
application. However, JSF navigation rules have a number of annoying limitations:

« ltis not possible to specify request parameters to be used when redirecting.
« ltis not possible to begin or end conversations from a rule.

» Rules work by evaluating the return value of the action method; it is not possible to evaluate
an arbitrary EL expression.

A further problem is that "orchestration" logic gets scattered between pages. xm and
faces-confi g. xnl . It's better to unify this logic into pages. xm .

This JSF navigation rule:

<navi gati on-rul e>
<fromvi ew i d>/ edi t Docunent . xht m </ fromvi ew i d>

<navi gati on- case>
<from acti on>#{ docunent Edi t or . updat e} </ f rom act i on>
<f r om out come>success</from out cone>
<t 0-vi ewi d>/ vi ewDocunent . xht ml </t o-vi ew i d>
<redirect/>

</ navi gati on- case>

</ navi gati on-rul e>

Can be rewritten as follows:

<page vi ew i d="/editDocunent.xhtm ">

<navi gati on from acti on="#{docunent Edi t or. update}" >
<rul e if-outcome="success">
<redirect viewid="/viewDocunent.xhtm"/>
</rul e>
</ navi gat i on>

</ page>

96

Page actions

But it would be even nicer if we didn't have to pollute our Docunent Edi t or component with
string-valued return values (the JSF outcomes). So Seam lets us write:

<page vi ew i d="/editDocunment.xhtmn ">

<navi gati on from action="#{docunent Edi t or. updat e} "
eval uat e="#{docunent Edi tor. errors. si ze}">
<rul e if-outconme="0">
<redirect viewid="/viewDocunment.xhtm "/>
</rul e>
</ navi gati on>

</ page>

Or even:

<page vi ew i d="/editDocunent.xhtm ">

<navi gati on from action="#{docunent Edi t or. updat e}" >
<rule if="#{docunentEditor.errors.enpty}">
<redirect viewid="/viewDocunment.xhtm "/>
</rul e>
</ navi gati on>

</ page>

The first form evaluates a value binding to determine the outcome value to be used by the
subsequent rules. The second approach ignores the outcome and evaluates a value binding for
each possible rule.

Of course, when an update succeeds, we probably want to end the current conversation. We
can do that like this:

<page vi ew i d="/editDocunent.xhtm ">

<navi gati on from acti on="#{docunent Edi t or. update}" >
<rule if="#{docunentEditor.errors.enpty}">
<end- conver sati on/ >
<redirect viewid="/viewbocunent.xhtm"/>
</rul e>
</ navi gati on>

</ page>

But ending the conversation loses any state associated with the conversation, including the
document we are currently interested in! One solution would be to use an immediate render
instead of a redirect:

<page vi ew i d="/editDocunent.xhtm ">

97

Chapter 5. Events, interceptors and exception handling

<navi gati on from action="#{docunent Edi t or. updat e}" >
<rule if="#{docunentEditor.errors.enpty}">
<end- conver sati on/ >
<render viewid="/vi ewbDocunent.xhtm"/>
</rul e>
</ navi gati on>

</ page>

But the correct solution is to pass the document id as a request parameter:

<page vi ew i d="/editDocunent.xhtm ">

<navi gati on from acti on="#{docunent Edi t or. updat e}" >
<rule if="#{docunentEditor.errors.enpty}">
<end- conver sati on/ >
<redirect viewid="/viewbDocunment.xhtm ">
<par am nane="docunent | d"
val ue="#{docunent Edi t or . docunent 1 d} "/ >
</redirect>
</rul e>
</ navi gati on>

</ page>

Null outcomes are a special case in JSF. The null outcome is interpreted to mean "redisplay the
page". The following navigation rule matches any non-null outcome, but not the null outcome:

<page vi ew i d="/edit Docunent.xhtm ">
<navi gati on from acti on="#{docunent Edi t or. updat e}" >
<rul e>
<render viewid="/viewbocunent.xhtm "/>
</rul e>
</ navi gati on>

</ page>

If you want to perform navigation when a null outcome occurs, use the following form instead:

<page vi ew i d="/edit Docunent.xhtm ">
<navi gati on from action="#{docunent Edi t or . updat e}" >
<render viewid="/viewbocunent.xhtm "/>

</ navi gati on>

</ page>

1.1.3. Fine-grained files for definition of navigation, page actions and

98

Component-driven events

parameters

If you have a lot of different page actions and page parameters, or even just a lot of navigation
rules, you will almost certainly want to split the declarations up over multiple files. You can
define actions and parameters for a page with the view id / cal ¢/ cal cul at or. j sp in a resource
named cal c/ cal cul at or. page. xm . The root element in this case is the <page> element, and

the view id is implied:

<page action="#{cal cul ator. cal cul ate}">
<par am nane="x" val ue="#{cal cul ator.| hs}"/>
<param nanme="y" val ue="#{cal cul ator.rhs}"/>
<par am nane="op" converter="#{operator Converter}"

val ue="#{cal cul ator.op}"/>

</ page>

1.2. Component-driven events

Seam components can interact by simply calling each others methods. Stateful components
may even implement the observer/observable pattern. But to enable components to interact in a
more loosely-coupled fashion than is possible when the components call each others methods
directly, Seam provides component-driven events.

We specify event listeners (observers) in conponent s. xmi .

<conponent s>
<event type="hello">
<action expressi on="#{hel | oLi st ener. sayHel | oBack}"/>
<action expressi on="#{| ogger.|ogHel | 0}"/>
</ event >
</ conponent s>

Where the event type is just an arbitrary string.

When an event occurs, the actions registered for that event will be called in the order they
appear in conponent s. xm . How does a component raise an event? Seam provides a built-in
component for this.

@Nare(" hel | oWor | d")
public class HelloWwrld {
public void sayHello() {
FacesMessages. i nstance().add("Hello World!");
Events.instance().rai seEvent ("hello0");

Or you can use an annotation.

@\anme(" hel | oWor | d")

99

Chapter 5. Events, interceptors and exception handling

public class HelloWwrld {
@Rai seEvent ("hel | 0")
public void sayHello() {
FacesMessages. i nstance().add("Hello World!");

}

Notice that this event producer has no dependency upon event consumers. The event listener
may now be implemented with absolutely no dependency upon the producer:

@\ane(" hel | oLi st ener")
public class HelloListener {
public void sayHel | oBack() {
FacesMessages. i nst ance().add("Hello to you too!");

}

The method binding defined in conponent s. xm above takes care of mapping the event to the
consumer. If you don't like futzing about in the conponent s. xni file, you can use an annotation
instead:

@\anme(" hel | oLi st ener")
public class HelloListener {
@xserver ("hel | 0")
public void sayHel | oBack() {
FacesMessages. i nstance().add("Hello to you too!");

}

You might wonder why I've not mentioned anything about event objects in this discussion. In
Seam, there is no need for an event object to propagate state between event producer and
listener. State is held in the Seam contexts, and is shared between components. However, if
you really want to pass an event object, you can:

@\ane(" hel | oWor | d")
public class HelloWwrld {
private String nane;
public void sayHello() {
FacesMessages. i nstance().add("Hello Wrld, ny nane is #0.", nane);
Events. i nstance().rai seEvent("hell 0", nane);

@Nane(" hel | oLi st ener")
public class HelloListener {
@xserver ("hel | 0")
public void sayHel | oBack(String nanme) {
FacesMessages. i nstance().add("Hell o #0!", nane);

}

100

Contextual events

1.3. Contextual events

Seam defines a number of built-in events that the application can use to perform special kinds
of framework integration. The events are:

* org.jboss.

* org.jboss.

seam val i dat i onFai | ed — called when JSF validation fails

seam noConver sat i on — called when there is no long running conversation and

a long running conversation is required

* org.jboss.
set

* org.jboss.
set

e org.jboss.
is unset

* org.jboss.
is unset

* org.jboss.
destroyed

* org.jboss.
destroyed

* org.jboss.
begins

* org.jboss.
* org.jboss.
* org.jboss.
* org.jboss.
* org.jboss.

* org.jboss.

seam pr eSet Vari abl e. <name> — called when the context variable <name> is

seam post Set Vari abl e. <name> — called when the context variable <name> is

seam pr eRenoveVari abl e. <nanme> — called when the context variable <name>

seam post RenpveVari abl e. <name> — called when the context variable <name>

seam pr eDest r oyCont ext . <SCOPE> — called before the <SCOPE> context is

seam post Dest r oyCont ext . <SCOPE> — called after the <SCOPE> context is

seam begi nConver sati on — called whenever a long-running conversation

seam endConver sati on — called whenever a long-running conversation ends
seam begi nPagef | ow. <nanme> — called when the pageflow <name> begins
seam endPagef | ow. <name> — called when the pageflow <name> ends

seam cr eat ePr ocess. <name> — called when the process <name> is created
seam endPr ocess. <nane> — called when the process <name> ends

seam i ni t Process. <nane> — called when the process <name> is associated

with the conversation

* org.jboss.

seam i ni t Task. <name> — called when the task <name> is associated with the

conversation

101

Chapter 5. Events, interceptors and exception handling

* org.jboss.
* org.jboss.
* org.jboss.
* org.jboss.
* org.jboss.
* org.jboss.
* org.jboss.

* org.jboss.

user

* org.jboss.

required

* org.jboss.

cookie

seam st art Task. <name> — called when the task <name> is started

seam endTask. <nane> — called when the task <name> is ended

seam post Cr eat e. <nanme> — called when the component <name> is created
seam pr eDest r oy. <name> — called when the component <name> is destroyed
seam bef or ePhase — called before the start of a JSF phase

seam af t er Phase — called after the end of a JSF phase

seam post Aut hent i cat e. <nane> — called after a user is authenticated

seam pr eAut hent i cat e. <nane> — called before attempting to authenticate a

seam not Loggedl n — called there is no authenticated user and authentication is

seam r enenber Me — occurs when Seam security detects the username in a

Seam components may observe any of these events in just the same way they observe any
other component-driven events.

2. Seam interceptors

EJB 3.0 introduced a standard interceptor model for session bean components. To add an
interceptor to a bean, you need to write a class with a method annotated @r oundl nvoke and
annotate the bean with an @ nt er cept or s annotation that specifies the name of the interceptor
class. For example, the following interceptor checks that the user is logged in before allowing
invoking an action listener method:

public cl

ass Loggedl nlnterceptor {

@\r ound! nvoke
publ i c Obj ect checkLoggedl n(I nvocati onCont ext invocation) throws
Exception {

bool ean i sLoggedl n =

Cont ext s.
i f

get Sessi onCont ext (). get ("1 oggedl n") ! =nul | ;
(i sLoggedln) {

//the user is already |ogged in

return invocation. proceed();

}

el se {
//the user is not logged in, fwd to | ogi n page
return "l ogin";

}

102

Seam interceptors

To apply this interceptor to a session bean which acts as an action listener, we must annotate
the session bean @ nt er cept or s(LoggedI nl nt er cept or. cl ass) . This is a somewhat ugly
annotation. Seam builds upon the interceptor framework in EJB3 by allowing you to use

@ nt er cept or s as a meta-annotation. In our example, we would create an @.oggedl! n
annotation, as follows:

@rar get (TYPE)

@ret ent i on(RUNTI MVE)

@ nt er cept or s(LoggedI nl nt ercept or. cl ass)
public @nterface Loggedln {}

We can now simply annotate our action listener bean with @.ogged! n to apply the interceptor.

@>t at el ess
@\anme(" changePasswor dAct i on")

@oggedl n
@ nt ercept or s(Seam nt er cept or. cl ass)
publi c cl ass ChangePasswor dActi on inpl enents ChangePassword {

public String changePassword() { ... }

If interceptor ordering is important (it usually is), you can add @ nt er cept or annotations to your
interceptor classes to specify a partial order of interceptors.

@ nt ercept or (around={Bi j ecti onl nt er cept or. cl ass,
Val i dati onl nt ercept or. cl ass,
Conver sati onl nt erceptor. cl ass},
wi t hi n=Renpvel nt er cept or. cl ass)
publ i c cl ass Loggedl nl ntercept or

{
}

You can even have a "client-side" interceptor, that runs around any of the built-in functionality of
EJB3:

@ nt ercept or (t ype=CLI ENT)
publ i c class Loggedl nl nterceptor

{
}

103

Chapter 5. Events, interceptors and exception handling

EJB interceptors are stateful, with a lifecycle that is the same as the component they intercept.
For interceptors which do not need to maintain state, Seam lets you get a performance
optimization by specifying @ nt er cept or (st at el ess=true).

Much of the functionality of Seam is implemented as a set of built-in Seam interceptors,
including the interceptors named in the previous example. You don't have to explicitly specify
these interceptors by annotating your components; they exist for all interceptable Seam
components.

You can even use Seam interceptors with JavaBean components, not just EJB3 beans!

EJB defines interception not only for business methods (using @\ oundl nvoke), but also for the
lifecycle methods @Post Const ruct , @r eDest r oy, @r ePassi vat e and @ost Acti ve. Seam
supports all these lifecycle methods on both component and interceptor not only for EJB3
beans, but also for JavaBean components (except @r eDest r oy which is not meaningful for
JavaBean components).

3. Managing exceptions

JSF is surprisingly limited when it comes to exception handling. As a partial workaround for this
problem, Seam lets you define how a particular class of exception is to be treated by annotating
the exception class, or declaring the exception class in an XML file. This facility is meant to be
combined with the EJB 3.0-standard @ppl i cati onExcept i on annotation which specifies
whether the exception should cause a transaction rollback.

3.1. Exceptions and transactions

EJB specifies well-defined rules that let us control whether an exception immediately marks the
current transaction for rollback when it is thrown by a business method of the bean: system
exceptions always cause a transaction rollback, application exceptions do not cause a rollback
by default, but they do if @\ppl i cati onException(rol | back=true) is specified. (An
application exception is any checked exception, or any unchecked exception annotated

@vppl i cati onExcepti on. A system exception is any unchecked exception without an

@\ppl i cati onExcepti on annotation.)

Note that there is a difference between marking a transaction for rollback, and actually rolling it
back. The exception rules say that the transaction should be marked rollback only, but it may
still be active after the exception is thrown.

Seam applies the EJB 3.0 exception rollback rules also to Seam JavaBean components.

But these rules only apply in the Seam component layer. What about an exception that is
uncaught and propagates out of the Seam component layer, and out of the JSF layer? Well, it is
always wrong to leave a dangling transaction open, so Seam rolls back any active transaction
when an exception occurs and is uncaught in the Seam component layer.

3.2. Enabling Seam exception handling

104

Using annotations for exception handling

To enable Seam's exception handling, we need to make sure we have the master servlet filter
declared in web. xm :

<filter>
<filter-name>Seam Filter</filter-name>
<filter-class>org.jboss. seam servlet. SeanFilter</filter-class>
</filter>

<filter-mppi ng>
<filter-name>Seam Filter</filter-name>
<url -pattern>*.seanx/url -pattern>
</filter-nmappi ng>

You may also need to disable Facelets development mode in web. xnl and Seam debug mode
in conponent s. xni if you want your exception handlers to fire.

3.3. Using annotations for exception handling

The following exception results in a HTTP 404 error whenever it propagates out of the Seam
component layer. It does not roll back the current transaction immediately when thrown, but the
transaction will be rolled back if it the exception is not caught by another Seam component.

@t t pError (error Code=404)
public class ApplicationException extends Exception { ... }

This exception results in a browser redirect whenever it propagates out of the Seam component
layer. It also ends the current conversation. It causes an immediate rollback of the current
transaction.

@redirect (viewl d="/failure.xhtm ", end=true)
@\ppl i cati onExcepti on(rol | back=true)
publi c class Unrecoverabl eApplicati onExcepti on extends Runti neException {

}

Note that @Redi r ect does not work for exceptions which occur during the render phase of the
JSF lifecycle.

This exception results in a redirect, along with a message to the user, when it propagates out of
the Seam component layer. It also immediately rolls back the current transaction.

@Redi rect (viewld="/error.xhtm ", nmessage="Unexpected error")
public class SystenException extends RuntineException { ... }

3.4. Using XML for exception handling

Since we can't add annotations to all the exception classes we are interested in, Seam also lets

105

Chapter 5. Events, interceptors and exception handling

us specify this functionality in pages. xm .

<pages>

<exception cl ass="j avax. persi stence. Enti t yNot FoundExcepti on">
<http-error error-code="404"/>
</ excepti on>

<exception cl ass="j avax. persi stence. Persi st enceExcepti on">
<end- conversation/ >
<redirect viewid="/error.xhtm">
<nessage>Dat abase access fail ed</ message>
</redirect>
</ excepti on>

<exception>
<end- conver sati on/ >
<redirect viewid="/error.xhtm ">
<message>Unexpect ed fail ure</ message>
</redirect>
</ excepti on>

</ pages>

The last <except i on> declaration does not specify a class, and is a catch-all for any exception
for which handling is not otherwise specified via annotations or in pages. xn .

You can also access the handled exception instance through EL, Seam places it in the
conversation context, e.g. to access the message of the exception:

t hrow new Aut hori zat i onException("You are not allowed to do this!");
<pages>

<exception cl ass="org.j boss. seam security. Aut hori zati onExcepti on">
<end- conversati on/ >
<redirect viewid="/error.xhtm ">
<nmessage severity="WARN'>#{ handl edExcepti on. mnessage} </ nessage>
</redirect>
</ excepti on>

</ pages>

106

Chapter 6.

Conversations and workspace
management

It's time to understand Seam's conversation model in more detail.

Historically, the notion of a Seam "conversation" came about as a merger of three different
ideas:

» The idea of a workspace, which | encountered in a project for the Victorian government in
2002. In this project | was forced to implement workspace management on top of Struts, an
experience | pray never to repeat.

« The idea of an application transaction with optimistic semantics, and the realization that
existing frameworks based around a stateless architecture could not provide effective
management of extended persistence contexts. (The Hibernate team is truly fed up with
copping the blame for Lazyl ni ti al i zat i onExcept i ons, which are not really Hibernate's
fault, but rather the fault of the extremely limiting persistence context model supported by
stateless architectures such as the Spring framework or the traditional stateless session
facade (anti)pattern in J2EE.)

* The idea of a workflow task.

By unifying these ideas and providing deep support in the framework, we have a powerful
construct that lets us build richer and more efficient applications with less code than before.

1. Seam's conversation model

The examples we have seen so far make use of a very simple conversation model that follows
these rules:

» There is always a conversation context active during the apply request values, process
validations, update model values, invoke application and render response phases of the JSF
request lifecycle.

« At the end of the restore view phase of the JSF request lifecycle, Seam attempts to restore
any previous long-running conversation context. If none exists, Seam creates a new
temporary conversation context.

« When an @egi n method is encountered, the temporary conversation context is promoted to
a long running conversation.

* When an @nd method is encountered, any long-running conversation context is demoted to a
temporary conversation.

« At the end of the render response phase of the JSF request lifecycle, Seam stores the

107

Chapter 6. Conversations and workspace management

contents of a long running conversation context or destroys the contents of a temporary
conversation context.

« Any faces request (a JSF postback) will propagate the conversation context. By default,
non-faces requests (GET requests, for example) do not propagate the conversation context,
but see below for more information on this.

« If the JSF request lifecycle is foreshortened by a redirect, Seam transparently stores and
restores the current conversation context—unless the conversation was already ended via
@nd(bef or eRedi rect =true) .

Seam transparently propagates the conversation context across JSF postbacks and redirects. If
you don't do anything special, a non-faces request (a GET request for example) will not
propagate the conversation context and will be processed in a new temporary conversation.
This is usually - but not always - the desired behavior.

If you want to propagate a Seam conversation across a non-faces request, you need to
explicitly code the Seam conversation id as a request parameter:

Conti nue

Or, the more JSF-ish:

<h: out put Li nk val ue="main.jsf">
<f: param name="conversationl d" val ue="#{conversation.id}"/>
<h: out put Text val ue="Conti nue"/>

</ h: out put Li nk>

If you use the Seam tag library, this is equivalent:

<h: out put Li nk val ue="main. jsf">

<s: conversationl d/ >

<h: out put Text val ue="Conti nue"/>
</ h: out put Li nk>

If you wish to disable propagation of the conversation context for a postback, a similar trick is
used:

<h: commandLi nk acti on="nmai n" val ue="Exit">
<f: param nanme="conver sati onPropagati on" val ue="none"/ >
</ h: conmandLi nk>

If you use the Seam tag library, this is equivalent:

<h: conmandLi nk acti on="mai n* val ue="Exit">
<s:conversati onPropagati on type="none"/>

108

Nested conversations

</ h: conmandLi nk>

Note that disabling conversation context propagation is absolutely not the same thing as ending
the conversation.

The conver sat i onPr opagat i on request parameter, or the <s: conver sat i onPr opagat i on> tag
may even be used to begin and end conversation, or begin a nested conversation.

<h: commandLi nk acti on="nmmi n" val ue="Exit">
<s:conversati onPropagati on type="end"/>
</ h: commandLi nk>

<h: commandLi nk acti on="nmai n" val ue="Sel ect Child">
<s:conversati onPropagati on type="nested"/>
</ h: conmandLi nk>

<h: commandLi nk acti on="mai n" val ue="Sel ect Hotel ">
<s:conversati onPropagati on type="begi n"/>
</ h: conmandLi nk>

<h: commandLi nk acti on="nmi n" val ue="Sel ect Hotel ">
<s:conversati onPropagati on type="join"/>
</ h: conmandLi nk>

This conversation model makes it easy to build applications which behave correctly with respect
to multi-window operation. For many applications, this is all that is needed. Some complex
applications have either or both of the following additional requirements:

» A conversation spans many smaller units of user interaction, which execute serially or even
concurrently. The smaller nested conversations have their own isolated set of conversation
state, and also have access to the state of the outer conversation.

« The user is able to switch between many conversations within the same browser window.
This feature is called workspace management.

2. Nested conversations

A nested conversation is created by invoking a method marked @egi n(nest ed=t r ue) inside
the scope of an existing conversation. A nested conversation has its own conversation context,
and also has read-only access to the context of the outer conversation. (It can read the outer
conversation's context variables, but not write to them.) When an @nd is subsequently
encountered, the nested conversation will be destroyed, and the outer conversation will resume,
by "popping" the conversation stack. Conversations may be nested to any arbitrary depth.

109

Chapter 6. Conversations and workspace management

Certain user activity (workspace management, or the back button) can cause the outer
conversation to be resumed before the inner conversation is ended. In this case it is possible to
have multiple concurrent nested conversations belonging to the same outer conversation. If the
outer conversation ends before a nested conversation ends, Seam destroys all nested
conversation contexts along with the outer context.

A conversation may be thought of as a continuable state. Nested conversations allow the
application to capture a consistent continuable state at various points in a user interaction, thus
insuring truly correct behavior in the face of backbuttoning and workspace management.

TODO: an example to show how a nested conversation prevents bad stuff happening when you
backbutton.

Usually, if a component exists in a parent conversation of the current nested conversation, the
nested conversation will use the same instance. Occasionally, it is useful to have a different
instance in each nested conversation, so that the component instance that exists in the parent
conversation is invisible to its child conversations. You can achieve this behavior by annotating
the component @er Nest edConver sat i on.

3. Starting conversations with GET requests

JSF does not define any kind of action listener that is triggered when a page is accessed via a
non-faces request (for example, a HTTP GET request). This can occur if the user bookmarks
the page, or if we navigate to the page via an <h: out put Li nk>.

Sometimes we want to begin a conversation immediately the page is accessed. Since there is
no JSF action method, we can't solve the problem in the usual way, by annotating the action
with @egi n.

A further problem arises if the page needs some state to be fetched into a context variable.
We've already seen two ways to solve this problem. If that state is held in a Seam component,
we can fetch the state in a @r eat e method. If not, we can define a @act ory method for the
context variable.

If none of these options works for you, Seam lets you define a page action in the pages. xni file.

<pages>
<page vi ew i d="/nessagelLi st.jsp" action="#{nmessageManager.|list}"/>

</ pages>

This action method is called at the beginning of the render response phase, any time the page
is about to be rendered. If a page action returns a non-null outcome, Seam will process any
appropriate JSF and Seam navigation rules, possibly resulting in a completely different page
being rendered.

If all you want to do before rendering the page is begin a conversation, you could use a built-in
action method that does just that:

110

Using <s: | i nk>and <s: but t on>

<pages>
<page vi ew i d="/nessagelLi st.jsp" acti on="#{conversation. begin}"/>

</ pages>
Note that you can also call this built-in action from a JSF control, and, similarly, you can use
#{ conver sat i on. end} to end conversations.

If you want more control, to join existing conversations or begin a nested conversion, to begin a
pageflow or an atomic conversation, you should use the <begi n- conver sat i on> element.

<pages>
<page vi ew i d="/nessagelList.jsp">
<begi n-conversati on nested="true" pagefl ow="Addltent/>
<page>

</ pages>
There is also an <end- conver sat i on> element.

<pages>
<page vi ewid="/hone.jsp">
<end- conver sati on/ >
<page>

</ pages>

To solve the first problem, we now have five options:

Annotate the @r eat e method with @egi n

Annotate the @act ory method with @egi n

Annotate the Seam page action method with @egi n
* Use <begi n- conver sati on> in pages. xni .

» Use #{conversati on. begi n} as the Seam page action method

4. USing <s:1ink> @and <s: button>

JSF command links always perform a form submission via JavaScript, which breaks the web
browser's "open in new window" or "open in new tab" feature. In plain JSF, you need to use an
<h: out put Li nk> if you need this functionality. But there are two major limitations to

<h: out put Li nk>.

111

Chapter 6. Conversations and workspace management

« JSF provides no way to attach an action listener to an <h: out put Li nk>.
» JSF does not propagate the selected row of a Dat aMbdel since there is no actual form

submission.

Seam provides the notion of a page action to help solve the first problem, but this does nothing
to help us with the second problem. We could work around this by using the RESTful approach
of passing a request parameter and requerying for the selected object on the server side. In
some cases—such as the Seam blog example application—this is indeed the best approach.
The RESTful style supports bookmarking, since it does not require server-side state. In other
cases, where we don't care about bookmarks, the use of @at aMbdel and

@pat aMbdel Sel ect i on is just so convenient and transparent!

To fill in this missing functionality, and to make conversation propagation even simpler to
manage, Seam provides the <s: | i nk> JSF tag.

The link may specify just the JSF view id:

<s:link view="/1ogin.xhtm " val ue="Login”/>

Or, it may specify an action method (in which case the action outcome determines the page that
results):

<s:link action="#{| ogi n.| ogout}” val ue="Logout”/>

If you specify both a JSF view id and an action method, the 'view' will be used unless the action
method returns a non-null outcome:

<s:link view="/1oggedQut.xhtm" action="#{l ogin.logout}” val ue=*Logout”/>

The link automatically propagates the selected row of a Dat aMbdel using inside
<h: dat aTabl e>:

<s:link view="/hotel.xhtm” action="#{hotel Search. sel ect Hotel }”
val ue="#{hot el . nane}”/ >

You can leave the scope of an existing conversation:

<s:link view="/main.xhtm” propagation="“none”/>

You can begin, end, or nest conversations:

<s:link action="#{i ssueEditor.vi ewComment}” propagation="nest”/>

112

Success messages

If the link begins a conversation, you can even specify a pageflow to be used:

<s:link action="#{docunment Edi t or. get Docunent }” propagati on="begi n”
pagef | ow=" Edi t Docunment "/ >

The t askl nst ance attribute if for use in jBPM task lists:

<s:link action="#{docunment Appr oval . approveOr Rej ect}”
t askl nst ance="#{t ask}”/>

(See the DVD Store demo application for examples of this.)

Finally, if you need the "link" to be rendered as a button, use <s: but t on>:

<s:button action="#{login.logout}” val ue=“Logout”/>

5. Success messages

It is quite common to display a message to the user indicating success or failure of an action. It
is convenient to use a JSF FacesMessage for this. Unfortunately, a successful action often
requires a browser redirect, and JSF does not propagate faces messages across redirects. This
makes it quite difficult to display success messages in plain JSF.

The built in conversation-scoped Seam component named f acesMessages solves this problem.
(You must have the Seam redirect filter installed.)

@\ane(" edi t Docunment Acti on")

@t at el ess

public class EditDocunent Bean i npl enents EditDocunent {
@n EntityManager em
@n Docunent docunent;
@n FacesMessages facesMessages;

public String update() {

em ner ge(docunent) ;
f acesMessages. add(" Docunent updated");

Any message added to f acesMessages is used in the very next render response phase for the
current conversation. This even works when there is no long-running conversation since Seam
preserves even temporary conversation contexts across redirects.

You can even include JSF EL expressions in a faces message summary:

facesMessages. add(" Document #{docunent.title} was updated");

113

Chapter 6. Conversations and workspace management

You may display the messages in the usual way, for example:

<h: messages gl obal Onl y="true"/>

6. Using an "explicit" conversation id

Ordinarily, Seam generates a meaningless unique id for each conversation in each session.
You can customize the id value when you begin the conversation.

This feature can be used to customize the conversation id generation algorithm like so:

@egi n(i d="#{nyConver sati onl dGener at or. next1d}")
public void editHotel () { ... }

Or it can be used to assign a meaningful conversation id:

@Begi n(i d="hot el #{ hotel .id}")
public String editHotel () { ... }

@egi n(i d="hot el #{ hot el sDat aMbdel . rowDat a. i d}")
public String selectHotel () { ... }

@egi n(i d="entry#{parans['blogld]}")
public String viewBlogEntry() { ... }

@Begi nTask(i d="t ask#{t askl nstance.id}")
public String approveDocunent() { ... }

Clearly, these example result in the same conversation id every time a particular hotel, blog or
task is selected. So what happens if a conversation with the same conversation id already exists
when the new conversation begins? Well, Seam detects the existing conversation and redirects
to that conversation without running the @egi n method again. This feature helps control the
number of workspaces that are created when using workspace management.

7. Workspace management

Workspace management is the ability to "switch" conversations in a single window. Seam
makes workspace management completely transparent at the level of the Java code. To enable
workspace management, all you need to do is:

» Provide description text for each view id (when using JSF or Seam navigation rules) or page
node (when using jPDL pageflows). This description text is displayed to the user by the

114

Workspace management and JSF navigation

workspace switchers.

* Include one or more of the standard workspace switcher JSP or facelets fragments in your
pages. The standard fragments support workspace management via a drop down menu, a list
of conversations, or breadcrumbs.

7.1. Workspace management and JSF navigation

When you use JSF or Seam navigation rules, Seam switches to a conversation by restoring the
current vi ew i d for that conversation. The descriptive text for the workspace is defined in a file
called pages. xnl that Seam expects to find in the WEB- | NF directory, right next to
faces-config. xm :

<pages>

<page vi ewid="/main.xhtm ">Search hotel s:
#{ hot el Booki ng. sear chSt ri ng} </ page>

<page view id="/hotel.xhtm ">View hotel: #{hotel.nane}</page>

<page vi ew i d="/book. xht M ">Book hotel: #{hotel.nane}</page>

<page viewid="/confirmxhtm ">Confirm #{booking. description}</page>
</ pages>

Note that if this file is missing, the Seam application will continue to work perfectly! The only
missing functionality will be the ability to switch workspaces.

7.2. Workspace management and jPDL pageflow

When you use a jPDL pageflow definition, Seam switches to a conversation by restoring the
current jBPM process state. This is a more flexible model since it allows the same vi ewi d to
have different descriptions depending upon the current <page> node. The description text is
defined by the <page> node:

<pagef| ow defi ni ti on name="shoppi ng" >

<start-state nane="start">
<transition to="browse"/>
</start-state>

<page name="browse" viewid="/browse. xhtm ">
<descri pti on>DVD Search: #{search. searchPattern}</description>
<transition to="browse"/>
<transition name="checkout" to="checkout"/>

</ page>

<page name="checkout" viewid="/checkout.xhtm ">
<descri pti on>Pur chase: $#{cart.total}</description>
<transition to="checkout"/>
<transition name="conpl ete" to="conplete"/>

</ page>

<page nanme="conpl ete" viewid="/conpl ete.xhtm ">

115

Chapter 6. Conversations and workspace management

<end- conversation />
</ page>

</ pagef | ow definition>

7.3. The conversation switcher

Include the following fragment in your JSP or facelets page to get a drop-down menu that lets
you switch to any current conversation, or to any other page of the application:

<h: sel ect OneMenu val ue="#{swi t cher. conversati onl dO Qut cone}" >
<f:selectltemitenliabel ="Find | ssues" itenVal ue="findl ssue"/>
<f:selectltemiteniabel ="Create |ssue" itenVal ue="editlssue"/>
<f:selectltens val ue="#{switcher.selectltens}"/>

</ h: sel ect OneMenu>
<h: commandBut t on action="#{swi tcher.select}" value="Sw tch"/>

In this example, we have a menu that includes an item for each conversation, together with two
additional items that let the user begin a new conversation.

CnmmentnnIssue['l]fanrnJect[HHH] =
Find Issues
Create Issue
Browse Projects

Create Project
Me | |55ue [1] for Project [HHH]

an K Project [HHH
Comment on Issue [1] for Project [HHH]

7.4. The conversation list

The conversation list is very similar to the conversation switcher, except that it is displayed as a

table:

<h: dat aTabl e val ue="#{conversationList}" var="entry"
render ed="#{not enpty conversationList}">
<h: col um>
<f:facet name="header">Wrkspace</f:facet>
<h: commandLi nk action="#{entry. sel ect}"

val ue="#{entry. description}"/>
<h: out put Text val ue="[current]" rendered="#{entry.current}"/>
</ h: col um>

<h: col utm>
<f:facet nanme="header">Activity</f:facet>

<h: out put Text val ue="#{entry.startDateti ne}">

116

Breadcrumbs

<f:convertDateTi ne type="tine" pattern="hh:nmma"/>
</ h: out put Text >
<h: out put Text val ue=" - "/>
<h: out put Text val ue="#{entry.| astDatetinme}">
<f:convertDateTi ne type="tine" pattern="hh:nmma"/>
</ h: out put Text >
</ h: col utm>
<h: col utm>
<f:facet name="header">Action</f:facet>
<h: commandButt on action="#{entry.select}" value="#{msg. Switch}"/>
<h: commandBut t on action="#{entry. destroy}" val ue="#{nsg. Destroy}"/>
</ h: col uim>
</ h: dat aTabl e>

We imagine that you will want to customize this for your own application.

Workspace Workspace activity Action

Comment on Issue [1] for Project [HHH] 01:18 PM - 01:18 PM [Switch || Destroy |
Issue [1] for Project [HHH] 01:18 PM - 01:18 PM [Switch | Destroy |
Project [HHH] 01:18 PM - 01:18 PM | switch || Destroy |

The conversation list is nice, but it takes up a lot of space on the page, so you probably don't
want to put it on every page.

Notice that the conversation list lets the user destroy workspaces.
7.5. Breadcrumbs

Breadcrumbs are useful in applications which use a nested conversation model. The
breadcrumbs are a list of links to conversations in the current conversation stack:

<t:datalLi st val ue="#{conversationStack}" var="entry">

<h: out put Text val ue=" | "/>

<h: commandLi nk val ue="#{entry. description}" action="#{entry.select}"/>
</t:dataLi st>

Home | Find Issues | Create Issue | Project [HHH] | Issue [1] for Project [HHH]
—lssue Attributes ,

Please refer to the Seam Issue Tracker demo to see all this functionality in action!

8. Conversational components and JSF component
bindings

Conversational components have one minor limitation: they cannot be used to hold bindings to
JSF components. (We generally prefer not to use this feature of JSF unless absolutely

117

Chapter 6. Conversations and workspace management

necessary, since it creates a hard dependency from application logic to the view.) On a
postback request, component bindings are updated during the Restore View phase, before the
Seam conversation context has been restored.

To work around this use an event scoped component to store the component bindings and
inject it into the conversation scoped component that requires it.

@Nanme("grid")
@cope(ScopeType. EVENT)
public class Gid

{
private H i Panel Gid htnl Panel Gri d;

/'l getters and setters

@Nanme("gri dEditor")
@cope(ScopeType. CONVERSATI ON)
public class Gi dEditor
{
@n(required=fal se)
private Gid grid;

118

Chapter 7.

Pageflows and business processes

JBoss jBPM is a business process management engine for any Java SE or EE environment.
jBPM lets you represent a business process or user interaction as a graph of nodes
representing wait states, decisions, tasks, web pages, etc. The graph is defined using a simple,
very readable, XML dialect called jPDL, and may be edited and visualised graphically using an
eclipse plugin. jPDL is an extensible language, and is suitable for a range of problems, from
defining web application page flow, to traditional workflow management, all the way up to
orchestration of services in a SOA environment.

Seam applications use jBPM for two different problems:

» Defining the pageflow involved in complex user interactions. A jPDL process definition defines
the page flow for a single conversation. A Seam conversation is considered to be a relatively
short-running interaction with a single user.

» Defining the overarching business process. The business process may span multiple
conversations with multiple users. Its state is persistent in the jBPM database, so it is
considered long-running. Coordination of the activities of multiple users is a much more
complex problem than scripting an interaction with a single user, so jBPM offers sophisticated
facilities for task management and dealing with multiple concurrent paths of execution.

Don't get these two things confused ! They operate at very different levels or granularity.
Pageflow, conversation and task all refer to a single interaction with a single user. A business
process spans many tasks. Futhermore, the two applications of jBPM are totally orthogonal.
You can use them together or independently or not at all.

You don't have to know jDPL to use Seam. If you're perfectly happy defining pageflow using
JSF or Seam navigation rules, and if your application is more data-driven that process-driven,
you probably don't need jBPM. But we're finding that thinking of user interaction in terms of a
well-defined graphical representation is helping us build more robust applications.

1. Pageflow in Seam

There are two ways to define pageflow in Seam:

» Using JSF or Seam navigation rules - the stateless navigation model

* Using jPDL - the stateful navigation model

Very simple applications will only need the stateless navigation model. Very complex
applications will use both models in different places. Each model has its strengths and
weaknesses!

1.1. The two navigation models

119

Chapter 7. Pageflows and business processes

The stateless model defines a mapping from a set of named, logical outcomes of an event
directly to the resulting page of the view. The navigation rules are entirely oblivious to any state
held by the application other than what page was the source of the event. This means that your
action listener methods must sometimes make decisions about the page flow, since only they
have access to the current state of the application.

Here is an example page flow definition using JSF navigation rules:

<navi gati on-rul e>
<from vi ew i d>/ number Guess. j sp</fromvi ewi d>

<pavi gati on- case>
<f r om out cone>guess</ f r om out cone>
<t 0- vi ew i d>/ nunber Guess. j sp</to-vi ewi d>
<redirect/>

</ navi gati on- case>

<navi gati on- case>
<fr om out cone>w n</ f r om out come>
<to-viewid>wn.jsp</to-viewid>
<redirect/>

</ navi gati on- case>

<navi gati on- case>
<from out cone>| ose</ from out cone>
<to-vi ewid>/|ose.jsp</to-viewid>
<redirect/>

</ navi gati on- case>

</ navi gati on-rul e>

Here is the same example page flow definition using Seam navigation rules:

<page vi ew i d="/nunber GQuess. jsp">

<navi gati on>
<rul e if-outconme="guess">
<redirect viewid="/nunberQuess.jsp"/>
</rul e>
<rule if-outcome="w n">
<redirect viewid="/win.jsp"/>
</rul e>
<rul e if-outcome="|ose">
<redirect viewid="/|ose.jsp"/>
</rul e>
</ navi gati on- case>

</ navi gati on-rul e>

If you find navigation rules overly verbose, you can return view ids directly from your action
listener methods:

120

The two navigation models

public String guess() {
i f (guess==randomNunber) return "/wn.jsp";
i f (++guessCount ==maxCQuesses) return "/l ose.jsp";
return null;

Note that this results in a redirect. You can even specify parameters to be used in the redirect:

public String search() {
return "/searchResults.jsp?searchPattern=#{searchActi on. searchPattern}"

}

The stateful model defines a set of transitions between a set of named, logical application
states. In this model, it is possible to express the flow of any user interaction entirely in the jPDL
pageflow definition, and write action listener methods that are completely unaware of the flow of
the interaction.

Here is an example page flow definition using jPDL:

<pagef | owdefi ni ti on nane="nunber Guess" >

<start-page name="di spl ayGuess" viewid="/nunber Cuess.jsp">
<redirect/>
<transition nanme="guess" to="eval uat eCuess" >
<action expressi on="#{nunber Guess. guess}" />
</transition>
</ start - page>

<deci si on nanme="eval uat eGuess" expressi on="#{nunber Guess. correct Guess}">
<transition name="true" to="win"/>
<transition name="fal se" to="eval uat eRemai ni ngGuesses"/>

</ deci si on>

<deci si on nanme="eval uat eRenmi ni ngGuesses"
expr essi on="#{ nunber Guess. | ast Guess}" >
<transition name="true" to="|ose"/>
<transition name="fal se" to="di spl ayGuess"/>
</ deci si on>

<page name="win" viewid="/w n.jsp">
<redirect/>
<end- conversation />

</ page>

<page name="| ose" viewid="/|ose.jsp">
<redirect/>
<end- conversation />

</ page>

</ pagef | ow definiti on>

121

Chapter 7. Pageflows and business processes

[seam.test X = 0| 5= outline 2 =0
[s Select 7l &
3 Margues e ey 7@ numberGuess
3 Start e
2 Decision
=
El Page ?@ <ange>>
—* Transition displayGuess
quess false
o ==Decision== false 2 ==acision==
“evaluateGuess “ evaluateRemainingGuesses
frue frue
Page==
f. ==Page== ? =
& win & lose
Diagram | Design | Source

There are two things we notice immediately here:

» The JSF/Seam navigation rules are much simpler. (However, this obscures the fact that the
underlying Java code is more complex.)

« The jPDL makes the user interaction immediately understandable, without us needing to even
look at the JSP or Java code.

In addition, the stateful model is more constrained. For each logical state (each step in the page
flow), there are a constrained set of possible transitions to other states. The stateless model is
an ad hoc model which is suitable to relatively unconstrained, freeform navigation where the
user decides where he/she wants to go next, not the application.

The stateful/stateless navigation distinction is quite similar to the traditional view of
modal/modeless interaction. Now, Seam applications are not usually modal in the simple sense
of the word - indeed, avoiding application modal behavior is one of the main reasons for having
conversations! However, Seam applications can be, and often are, modal at the level of a
particular conversation. It is well-known that modal behavior is something to avoid as much as
possible; it is very difficult to predict the order in which your users are going to want to do things!
However, there is no doubt that the stateful model has its place.

The biggest contrast between the two models is the back-button behavior.

1.2. Seam and the back button

When JSF or Seam navigation rules are used, Seam lets the user freely navigate via the back,
forward and refresh buttons. It is the responsibility of the application to ensure that

122

Seam and the back button

conversational state remains internally consistent when this occurs. Experience with the
combination of web application frameworks like Struts or WebWork - that do not support a
conversational model - and stateless component models like EJB stateless session beans or
the Spring framework has taught many developers that this is close to impossible to do!
However, our experience is that in the context of Seam, where there is a well-defined
conversational model, backed by stateful session beans, it is actually quite straightforward.
Usually it is as simple as combining the use of no- conver sat i on- vi ew i d with null checks at
the beginning of action listener methods. We consider support for freeform navigation to be
almost always desirable.

In this case, the no- conver sati on-vi ew i d declaration goes in pages. xm . It tells Seam to
redirect to a different page if a request originates from a page rendered during a conversation,
and that conversation no longer exists:

<page vi ewid="/checkout.xhtm "
no- conversation-vi ewid="/nmain. xhtm "/ >

On the other hand, in the stateful model, backbuttoning is interpreted as an undefined transition
back to a previous state. Since the stateful model enforces a defined set of transitions from the
current state, back buttoning is be default disallowed in the stateful model! Seam transparently
detects the use of the back button, and blocks any attempt to perform an action from a previous,
"stale" page, and simply redirects the user to the "current” page (and displays a faces
message). Whether you consider this a feature or a limitation of the stateful model depends
upon your point of view: as an application developer, it is a feature; as a user, it might be
frustrating! You can enable backbutton navigation from a particular page node by setting
back="enabl ed".

<page nane="checkout"
vi ew i d="/ checkout . xht m "
back="enabl ed" >
<redirect/>
<transition to="checkout"/>
<transiti on name="conpl ete" to="conpl ete"/>
</ page>

This allows backbuttoning from the checkout state to any previous state!

Of course, we still need to define what happens if a request originates from a page rendered
during a pageflow, and the conversation with the pageflow no longer exists. In this case, the
no- conver sat i on-vi ew i d declaration goes into the pageflow definition:

<page nanme="checkout"
vi ew i d="/checkout . xht m "
back="enabl ed"
no- conver sati on-vi ew i d="/ mai n. xht m ">
<redirect/>
<transition to="checkout"/>
<transition nanme="conpl ete" to="conplete"/>

123

Chapter 7. Pageflows and business processes

</ page>

In practice, both navigation models have their place, and you'll quickly learn to recognize when
to prefer one model over the other.

2. Using jPDL pageflows

2.1. Installing pageflows

We need to install the Seam jBPM-related components, and tell them where to find our
pageflow definition. We can specify this Seam configuration in conmponent s. xni .

<core: | bpne
<core: pagef | ow definiti ons>
<val ue>pagef | ow. j pdl . xm </ val ue>
</ cor e: pagef | ow defi ni ti ons>
</ core:jbpnme

The first line installs jBPM, the second points to a jPDL-based pageflow definition.

2.2. Starting pageflows

We "start" a jPDL-based pageflow by specifying the name of the process definition using a
@Begi n, @egi nTask or @t art Task annotation:

@Begi n(pagef | ow="nunber guess")
public void begin() { ... }

Alternatively we can start a pageflow using pages.xml:

<page>
<begi n- conver sati on pagef| ow="nunber guess"/ >
</ page>

If we are beginning the pageflow during the RENDER_RESPONSE phase—during a @act ory or
@r eat e method, for example—we consider ourselves to be already at the page being
rendered, and use a <st art - page> node as the first node in the pageflow, as in the example
above.

But if the pageflow is begun as the result of an action listener invocation, the outcome of the
action listener determines which is the first page to be rendered. In this case, we use a
<start - st at e> as the first node in the pageflow, and declare a transition for each possible
outcome:

<pagef | ow defi ni ti on nane="vi ewEdi t Docunent " >

124

Page nodes and transitions

<start-state nanme="start">
<transiti on name="docunment Found" to="di spl ayDocunent"/>
<transition nanme="docunent Not Found" t o="not Found"/>
</start-state>

<page nane="di spl ayDocunent" vi ew i d="/docunent.jsp">
<transition name="edit" to="editDocunent"/>
<transition name="done" to="main"/>

</ page>

<page name="not Found" viewid="/404.jsp">
<end- conver sati on/ >
</ page>

</ pagef | ow defini ti on>

2.3. Page nodes and transitions
Each <page> node represents a state where the system is waiting for user input:

<page name="di spl ayGuess" view id="/nunber Guess.jsp">
<redirect/>
<transition nanme="guess" to="eval uateCGuess" >
<action expressi on="#{nunber Guess. guess}" />
</transition>
</ page>

The vi ewi d is the JSF view id. The <r edi r ect / > element has the same effect as

<redi rect/ > in a JSF navigation rule: namely, a post-then-redirect behavior, to overcome
problems with the browser's refresh button. (Note that Seam propagates conversation contexts
over these browser redirects. So there is no need for a Ruby on Rails style "flash" construct in
Seam!)

The transition name is the name of a JSF outcome triggered by clicking a command button or
command link in nunber Guess. j sp.

<h: commandButt on type="submit" val ue="Guess" acti on="guess"/>

When the transition is triggered by clicking this button, jBPM will activate the transition action by
calling the guess() method of the nunber Guess component. Notice that the syntax used for
specifying actions in the jPDL is just a familiar JSF EL expression, and that the transition action
handler is just a method of a Seam component in the current Seam contexts. So we have
exactly the same event model for jBPM events that we already have for JSF events! (The One
Kind of Stuff principle.)

125

Chapter 7. Pageflows and business processes

In the case of a null outcome (for example, a command button with no act i on defined), Seam
will signal the transition with no name if one exists, or else simply redisplay the page if all
transitions have names. So we could slightly simplify our example pageflow and this button:

<h: commandButton type="submit" val ue="CGuess"/>

Would fire the following un-named transition:

<page nanme="di spl ayGuess" vi ew i d="/nunber Guess.jsp">
<redirect/>
<transition to="eval uat eGuess">
<action expression="#{nunber Guess. guess}" />
</transition>
</ page>

It is even possible to have the button call an action method, in which case the action outcome
will determine the transition to be taken:

<h: commandBut t on type="subnit" val ue="Guess" acti on="#{nunber Cuess. guess}"/>

<page nanme="di spl ayGuess" view i d="/nunber Guess.jsp">
<transition nanme="correct Guess" to="win"/>
<transition name="i ncorrect Guess" to="eval uat eGuess"/>
</ page>

However, this is considered an inferior style, since it moves responsibility for controlling the flow
out of the pageflow definition and back into the other components. It is much better to centralize
this concern in the pageflow itself.

2.4. Controlling the flow

Usually, we don't need the more powerful features of jPDL when defining pageflows. We do
need the <deci si on> node, however:

<deci si on nane="eval uat eGuess" expressi on="#{nunmber Guess. correct Guess}" >
<transition nanme="true" to="wn"/>
<transition name="fal se" to="eval uat eRemai ni ngGuesses"/ >

</ deci si on>

A decision is made by evaluating a JSF EL expression in the Seam contexts.

2.5. Ending the flow

We end the conversation using <end- conver sat i on> or @nd. (In fact, for readability, use of
both is encouraged.)

126

Business process management in Seam

<page name="wi n" viewid="/win.jsp">
<redirect/>
<end- conver sati on/ >

</ page>

Optionally, we can end a task, specify a jBPM t r ansi ti on name. In this case, Seam will signal
the end of the current task in the overarching business process.

<page name="wi n" viewid="/win.jsp">
<redirect/>
<end-task transition="success"/>
</ page>

3. Business process management in Seam

A business process is a well-defined set of tasks that must be performed by users or software
systems according to well-defined rules about who can perform a task, and when it should be
performed. Seam's jBPM integration makes it easy to display lists of tasks to users and let them
manage their tasks. Seam also lets the application store state associated with the business
process in the BUSI NESS_PROCESS context, and have that state made persistent via jBPM
variables.

A simple business process definition looks much the same as a page flow definition (One Kind
of Stuff), except that instead of <page> nodes, we have <t ask- node> nodes. In a long-running
business process, the wait states are where the system is waiting for some user to log in and
perform a task.

<process-definition name="t odo">

<start-state nane="start">
<transition to="todo"/>
</start-state>

<t ask- node nane="t odo" >
<task name="todo" description="#{todoLi st.description}">
<assi gnment actor-id="#{actor.id}"/>
</t ask>
<transition to="done"/>
</t ask- node>

<end- st at e nane="done"/>

</ process-definition>

127

Chapter 7. Pageflows and business processes

[} Select | 5|
7 Marquee .
2 start

% State
End

o[2 Fork

&= Join . <=Task Node==
<7 Decision = todo

Node

¥ Task Node

i&i

o <<Start State>> Property Value ~

start Name
1 sSource start

Target todo

— Transition

==Fnd State==
done

[L]]

Diagram | Swimlanes | Design | Source

It is perfectly possible that we might have both jPDL business process definitions and jPDL
pageflow definitions in the same project. If so, the relationship between the two is that a single
<t ask> in a business process corresponds to a whole pageflow <pagef | ow defi ni ti on>

4. Using jPDL business process definitions

4.1. Installing process definitions
We need to install jBPM, and tell it where to find the business process definitions:

<core: | bpne
<cor e: process-definiti ons>
<val ue>t odo. j pdl . xm </ val ue>
</ core: process-definitions>
</ core:jbpnme

4.2. Initializing actor ids

We always need to know what user is currently logged in. jJBPM "knows" users by their actor id
and group actor ids. We specify the current actor ids using the built in Seam component named
actor:

@n Actor actor;
public String |ogin() {

actor.setld(user.getUserNanme());
actor. get G oupActorlds().addAl |l (user.get G oupNanes());

128

Task assignment

4.3. Initiating a business process

To initiate a business process instance, we use the @ eat ePr ocess annotation:

@Cr eat eProcess(definiti on="todo")
public void createTodo() { ... }

Alternatively we can initiate a business process using pages.xml:

<page>
<creat e-process definition="todo" />
</ page>

4.4. Task assignment

When a process starts, task instances are created. These must be assigned to users or user
groups. We can either hardcode our actor ids, or delegate to a Seam component:

<t ask name="todo" description="#{todoLi st.description}">
<assi gnment actor-id="#{actor.id}"/>
</t ask>

In this case, we have simply assigned the task to the current user. We can also assign tasks to
a pool:

<t ask name="todo" description="#{todoLi st.description}">
<assi gnment pool ed- act or s="enpl oyees"/ >
</ task>

4.5. Task lists

Several built-in Seam components make it easy to display task lists. The
pool edTaskl nst ancelLi st is a list of pooled tasks that users may assign to themselves:

<h: dat aTabl e val ue="#{pool edTaskl nst ancelLi st}" var="task">
<h: col utm>
<f:facet nanme="header">Descri ption</f:facet>
<h: out put Text val ue="#{t ask. description}"/>
</ h: col um>
<h: col utm>
<s:link action="#{pool edTask. assi gnToCurrent Actor}" val ue="Assign"
t askl nst ance="#{task}"/>
</ h: col utm>
</ h: dat aTabl e>

Note that instead of <s: | i nk> we could have used a plain JSF <h: commandLi nk>:

129

Chapter 7. Pageflows and business processes

<h: commandLi nk acti on="#{ pool edTask. assi gnToCur rent Actor}" >
<f:param nane="t askl d" val ue="#{task.id}"/>
</ h: commandLi nk>

The pool edTask component is a built-in component that simply assigns the task to the current
user.

The t askl nst anceli st For Type component includes tasks of a particular type that are
assigned to the current user:

<h: dat aTabl e val ue="#{t askl nst ancelLi st For Type['todo']}" var="task">
<h: col utm>
<f:facet name="header">Descri ption</f:facet>
<h: out put Text val ue="#{t ask. description}"/>
</ h: col utm>
<h: col um>
<s:link action="#{todoList.start}" value="Start Wrk"
t askl nst ance="#{t ask}"/>
</ h: col utm>
</ h: dat aTabl e>

4.6. Performing a task
To begin work on a task, we use either @t art Task or @egi nTask on the listener method:

@t art Task
public String start() { ... }

Alternatively we can begin work on a task using pages.xmi:

<page>
<start-task />
</ page>

These annotations begin a special kind of conversation that has significance in terms of the
overarching business process. Work done by this conversation has access to state held in the
business process context.

If we end the conversation using @ndTask, Seam will signal the completion of the task:

@ndTask(transiti on="conpl eted")
public String conpleted() { ... }

Alternatively we can use pages.xml:

<page>

130

Performing a task

<end-task transition="conpl eted" />
</ page>

(Alternatively, we could have used <end- conver sat i on> as shown above.)

At this point, jBPM takes over and continues executing the business process definition. (In more
complex processes, several tasks might need to be completed before process execution can
resume.)

Please refer to the jJBPM documentation for a more thorough overview of the sophisticated
features that jBPM provides for managing complex business processes.

131

132

Chapter 8.

Seam and Object/Relational Mapping

Seam provides extensive support for the two most popular persistence architectures for Java:
Hibernate3, and the Java Persistence API introduced with EJB 3.0. Seam's unique
state-management architecture allows the most sophisticated ORM integration of any web
application framework.

1. Introduction

Seam grew out of the frustration of the Hibernate team with the statelessness typical of the
previous generation of Java application architectures. The state management architecture of
Seam was originally designed to solve problems relating to persistence—in particular problems
associated with optimistic transaction processing. Scalable online applications always use
optimistic transactions. An atomic (database/JTA) level transaction should not span a user
interaction unless the application is designed to support only a very small number of concurrent
clients. But almost all interesting work involves first displaying data to a user, and then, slightly
later, updating the same data. So Hibernate was designed to support the idea of a persistence
context which spanned an optimistic transaction.

Unfortunately, the so-called "stateless" architectures that preceded Seam and EJB 3.0 had no
construct for representing an optimistic transaction. So, instead, these architectures provided
persistence contexts scoped to the atomic transaction. Of course, this resulted in many
problems for users, and is the cause of the number one user complaint about Hibernate: the
dreaded Lazyl ni ti al i zati onExcepti on. What we need is a construct for representing an
optimistic transaction in the application tier.

EJB 3.0 recognizes this problem, and introduces the idea of a stateful component (a stateful
session bean) with an extended persistence context scoped to the lifetime of the component.
This is a partial solution to the problem (and is a useful construct in and of itself) however there
are two problems:

» The lifecycle of the stateful session bean must be managed manually via code in the web tier
(it turns out that this is a subtle problem and much more difficult in practice than it sounds).

» Propagation of the persistence context between stateful components in the same optimistic
transaction is possible, but tricky.

Seam solves the first problem by providing conversations, and stateful session bean
components scoped to the conversation. (Most conversations actually represent optimistic
transactions in the data layer.) This is sufficient for many simple applications (such as the Seam
booking demo) where persistence context propagation is not needed. For more complex
applications, with many loosly-interacting components in each conversation, propagation of the
persistence context across components becomes an important issue. So Seam extends the
persistence context management model of EJB 3.0, to provide conversation-scoped extended
persistence contexts.

133

Chapter 8. Seam and Object/Relational Mapping

2. Seam managed transactions

EJB session beans feature declarative transaction management. The EJB container is able to
start a transaction transparently when the bean is invoked, and end it when the invocation ends.
If we write a session bean method that acts as a JSF action listener, we can do all the work
associated with that action in one transaction, and be sure that it is committed or rolled back
when we finish processing the action. This is a great feature, and all that is needed by some
Seam applications.

However, there is a problem with this approach. A Seam application may not perform all data
access for a request from a single method call to a session bean.

« The request might require processing by several loosly-coupled components, each of which is
called independently from the web layer. It is common to see several or even many calls per
request from the web layer to EJB components in Seam.

» Rendering of the view might require lazy fetching of associations.

The more transactions per request, the more likely we are to encounter atomicity and isolation
problems when our application is processing many concurrent requests. Certainly, all write
operations should occur in the same transaction!

Hibernate users developed the "open session in view" pattern to work around this problem. In
the Hibernate community, "open session in view" was historically even more important because
frameworks like Spring use transaction-scoped persistence contexts. So rendering the view
would cause Lazyl nitial i zati onExcepti ons when unfetched associations were accessed.

This pattern is usually implemented as a single transaction which spans the entire request.
There are several problems with this implementation, the most serious being that we can never
be sure that a transaction is successful until we commit it—but by the time the "open session in
view" transaction is committed, the view is fully rendered, and the rendered response may
already have been flushed to the client. How can we notify the user that their transaction was
unsuccessful?

Seam solves both the transaction isolation problem and the association fetching problem, while
working around the problems with "open session in view". The solution comes in two parts:

« use an extended persistence context that is scoped to the conversation, instead of to the
transaction

 use two transactions per request; the first spans the beginning of the update model values
phase until the end of the invoke application phase; the second spans the render response
phase

In the next section, we'll tell you how to set up a conversation-scope persistence context. But
first we need to tell you how to enable Seam transaction management. Note that you can use

134

Enabling Seam-managed transactions

conversation-scoped persistence contexts without Seam transaction management, and there
are good reasons to use Seam transaction management even when you're not using
Seam-managed persistence contexts. However, the two facilities were designed to work
together, and work best when used together.

2.1. Enabling Seam-managed transactions

To make use of Seam managed transactions, you need to use
Transact i onal SeanPhaselLi st ener in place of SeanPhaselLi st ener.

<lifecycl e>
<phase-|i st ener >
org.j boss. seam j sf. Transact i onal SeanPhaseLi st ener
</ phase- i st ener>
</lifecycle>

Seam transaction management is useful even if you're using EJB 3.0 container-managed
persistence contexts. But it is especially useful if you use Seam outside a Java EE 5
environment, or in any other case where you would use a Seam-managed persistence context.

3. Seam-managed persistence contexts

If you're using Seam outside of a Java EE 5 environment, you can't rely upon the container to
manage the persistence context lifecycle for you. Even if you are in an EE 5 environment, you
might have a complex application with many loosly coupled components that collaborate
together in the scope of a single conversation, and in this case you might find that propagation
of the persistence context between component is tricky and error-prone.

In either case, you'll need to use a managed persistence context (for JPA) or a managed
session (for Hibernate) in your components. A Seam-managed persistence context is just a
built-in Seam component that manages an instance of Ent i t yManager or Sessi on in the
conversation context. You can inject it with @ n.

Seam-managed persistence contexts are extremely efficient in a clustered environment. Seam
is able to perform an optimization that EJB 3.0 specification does not allow containers to use for
container-managed extended persistence contexts. Seam supports transparent failover of
extended persisence contexts, without the need to replicate any persistence context state
between nodes. (We hope to fix this oversight in the next revision of the EJB spec.)

3.1. Using a Seam-managed persistence context with JPA
Configuring a managed persistence context is easy. In conponent s. xnl , we can write:

<cor e: managed- per si st ence- cont ext name="booki ngDat abase"
aut o-create="true"
persi stence-unit-jndi-nane="j ava: / Ent i t yManager Fact or i es/ booki ngDat a"/ >

135

Chapter 8. Seam and Object/Relational Mapping

This configuration creates a conversation-scoped Seam component named booki ngDat abase
that manages the lifecycle of Ent i t yManager instances for the persistence unit

(Enti t yManager Fact ory instance) with JINDI name

java:/ EntityManager Fact ori es/ booki ngDat a.

Of course, you need to make sure that you have bound the Ent i t yManager Fact ory into JNDI.
In JBoss, you can do this by adding the following property setting to per si st ence. xmi .

<property nane="j boss.entity. manager.factory.jndi.nane"
val ue="j ava: / Enti t yManager Fact or i es/ booki ngDat a"/ >

Now we can have our Ent i t yManager injected using:

@n EntityManager booki ngDat abase;

3.2. Using a Seam-managed Hibernate session
Seam-managed Hibernate sessions are similar. In conponent s. xni :

<cor e: hi ber nat e- sessi on-fact ory nane="hi ber nat eSessi onFactory"/>

<cor e: managed- hi ber nat e- sessi on nane="booki ngDat abase"
aut o-create="true"
sessi on-factory-jndi - nane="j ava: / booki ngSessi onFact ory"/ >

Where j ava: / booki ngSessi onFact ory is the name of the session factory specified in
hi bernate. cfg. xm .

<sessi on-factory nanme="j ava: / booki ngSessi onFact ory" >
<property nane="transaction. fl ush_before_conpl eti on">true</property>
<property nane="connection.rel ease_node" >aft er st at enent </ property>
<property nane="transacti on. manager _| ookup_cl ass">
org. hi bernate. transacti on. JBossTr ansact i onManager Lookup
</ property>
<property nane="transaction.factory_cl ass">
org. hi bernate. transacti on. JTATransacti onFactory
</ property>
<property
nanme="connecti on. dat asour ce" >j ava: / booki ngDat asour ce</ pr operty>

</ sessi on- f act ory>

Note that Seam does not flush the session, so you should always enable
hi ber nat e. transacti on. fl ush_bef ore_conpl eti on to ensure that the session is
automatically flushed before the JTA transaction commits.

We can now have a managed Hibernate Sessi on injected into our JavaBean components using

136

Seam-managed persistence contexts and

the following code:

@n Sessi on booki ngDat abase;

3.3. Seam-managed persistence contexts and atomic
conversations

Persistence contexts scoped to the conversation allows you to program optimistic transactions
that span multiple requests to the server without the need to use the ner ge() operation ,
without the need to re-load data at the beginning of each request, and without the need to
wrestle with the Lazyl ni ti al i zati onExcepti on or NonUni queQObj ect Except i on.

As with any optimistic transaction management, transaction isolation and consistency can be
achieved via use of optimistic locking. Fortunately, both Hibernate and EJB 3.0 make it very
easy to use optimistic locking, by providing the @/er si on annotation.

By default, the persistence context is flushed (synchronized with the database) at the end of
each transaction. This is sometimes the desired behavior. But very often, we would prefer that
all changes are held in memory and only written to the database when the conversation ends
successfully. This allows for truly atomic conversations. As the result of a truly stupid and
shortsighted decision by certain non-JBoss, non-Sun and non-Sybase members of the EJB 3.0
expert group, there is currently no simple, usable and portable way to implement atomic
conversations using EJB 3.0 persistence. However, Hibernate provides this feature as a vendor
extension to the FI ushMbdeTypes defined by the specification, and it is our expectation that
other vendors will soon provide a similar extension.

Seam lets you specify FI ushMbdeType. MANUAL when beginning a conversation. Currently, this
works only when Hibernate is the underlying persistence provider, but we plan to support other
equivalent vendor extensions.

@n EntityManager em //a Seam nanaged persi stence context

@egi n(fl ushMode=MANUAL)
public void begi nC ai MN zard() {
claim= emfind(daimclass, claimd);

}

Now, the cl ai mobject remains managed by the persistence context for the rest ot the
conversation. We can make changes to the claim:

public void addPartyToC ai m() {
Party party =;
cl ai m addParty(party);

But these changes will not be flushed to the database until we explicitly force the flush to occur:

137

Chapter 8. Seam and Object/Relational Mapping

@nd

public void commitd ain() {
em flush();

}

4. Using the JPA "delegate”

The Enti t yManager interface lets you access a vendor-specific API via the get Del egat e()
method. Naturally, the most interesting vendor is Hibernate, and the most powerful delegate
interface is or g. hi ber nat e. Sessi on. You'd be nuts to use anything else. Trust me, I'm not
biased at all.

But regardless of whether you're using Hibernate (genius!) or something else (masochist, or just
not very bright), you'll almost certainly want to use the delegate in your Seam components from
time to time. One approach would be the following:

@n EntityManager entityManager;

@r eat e
public void init() {

((Session) entityManager. get Del egate()
) . enabl eFi |l ter("currentVersions");

}

But typecasts are unquestionably the ugliest syntax in the Java language, so most people avoid
them whenever possible. Here's a different way to get at the delegate. First, add the following
line to conponent s. xm :

<factory name="sessi on"
scope=" STATELESS"
aut o-create="true"
val ue="#{enti t yManager . del egate}"/ >

Now we can inject the session directly:

@n Session session;

@Cr eat e
public void init() {
sessi on. enabl eFi | ter (" current Versions");

}

5. Using EL in EJB-QL/HQL

Seam proxies the Ent i t yManager or Sessi on object whenever you use a Seam-managed
persistence context or inject a container managed persistence context using

138

atomic conversations

@er si st enceCont ext . This lets you use EL expressions in your query strings, safely and
efficiently. For example, this:

User user = emcreateQuery("from User where usernanme=#{user.usernane}")
.get Si ngl eResul t () ;

is equivalent to:

User user = emcreateQery("from User where usernanme=: user nane")
. set Par anet er ("user nane", user.getUsernane())
.get Si ngl eResul t () ;

Of course, you should never, ever write it like this:

User user = emcreateQery("from User where usernane=
/| BAD!

+ user. get User nane())

.get Si ngl eResul t () ;

(It is inefficient and vulnerable to SQL injection attacks.)

6. Using Hibernate filters

The coolest, and most unique, feature of Hibernate is filters. Filters let you provide a restricted
view of the data in the database. You can find out more about filters in the Hibernate
documentation. But we thought we'd mention an easy way to incorporate filters into a Seam
application, one that works especially well with the Seam Application Framework.

Seam-managed persistence contexts may have a list of filters defined, which will be enabled
whenever an Ent i t yManager or Hibernate Sessi on is first created. (Of course, they may only
be used when Hibernate is the underlying persistence provider.)

<core:filter name="regionFilter">
<cor e: nane>r egi on</ cor e: nane>
<cor e: par anet er s>
<key>r egi onCode</ key>
<val ue>#{regi on. code} </ val ue>
</ cor e: par anet er s>
</core:filter>

<core:filter name="currentFilter">
<cor e: name>cur r ent </ cor e: nane>
<cor e: par anet er s>
<key>dat e</ key>
<val ue>#{ current Dat e} </ val ue>
</ cor e: par anet er s>
</core:filter>

<cor e: managed- per si st ence- cont ext nanme="per sonDat abase"
persi stence-unit-jndi -nane="j ava:/ Entit yManager Fact ori es/ per sonDat abase" >
<core:filters>

139

Chapter 8. Seam and Object/Relational Mapping

<val ue>#{regi onFi |l ter}</val ue>
<val ue>#{currentFil ter}</val ue>
</core:filters>
</ cor e: managed- per si st ence- cont ext >

140

Chapter 9.

JSF form validation in Seam

In plain JSF, validation is defined in the view:

<h: f or n»
<h: messages/ >

<di v>
Country:
<h:i nput Text val ue="#{l ocation.country}" required="true">
<my: val i dat eCount ry/ >
</ h:i nput Text >

</ di v>
<di v>
Zi p code:

<h:i nput Text val ue="#{l ocation.zi p}" required="true">
<ny: val i dat eZi p/ >
</ h: i nput Text >
</ di v>

<h: commandBut t on/ >
</ h: forn>

In practice, this approach usually violates DRY, since most "validation" actually enforces
constraints that are part of the data model, and exist all the way down to the database schema
definition. Seam provides support for model-based constraints defined using Hibernate
Validator.

Let's start by defining our constraints, on our Locat i on class:

public class Location {
private String country;
private String zip;

@\ot Nul |

@-engt h(max=30)

public String getCountry() { return country; }
public void setCountry(String c) { country = c; }

@\ot Nul |

@engt h(max=6)

@attern(" "\ d*$")

public String getzip() { return zip; }
public void setZip(String z) { zip = z; }

Well, that's a decent first cut, but in practice it might be more elegant to use custom constraints
instead of the ones built into Hibernate Validator:

public class Location {

141

Chapter 9. JSF form validation in Seam

private String country
private String zip

@\ot Nul |

@ountry

public String getCountry() { return country; }
public void setCountry(String c¢) { country = c¢; }

@\ot Nul |

@i pCode

public String getZip() { return zip; }
public void setZ p(String z) { zip = z; }

Whichever route we take, we no longer need to specify the type of validation to be used in the
JSF page. Instead, we can use <s: val i dat e> to validate against the constraint defined on the
model object.

<h: f or >
<h: messages/ >

<di v>
Country:
<h:i nput Text val ue="#{l ocation.country}" required="true">
<s:val i date/>
</ h: i nput Text >

</ di v>
<di v>
Zi p code

<h:i nput Text val ue="#{l ocation. zi p}" required="true">
<s:validate/>
</ h:i nput Text >
</ di v>
<h: commandBut t on/ >

</ h: fornpr

Note: specifying @ot Nul | on the model does not eliminate the requirement for
requi red="true" to appear on the control! This is due to a limitation of the JSF validation
architecture.

This approach defines constraints on the model, and presents constraint violations in the
view—a significantly better design.

However, it is not much less verbose than what we started with, so let's try <s: val i dat eAl | >:

<h: f or n>

<h: messages/ >

142

<s:validateAl |l >

<di v>
Country:
<h:i nput Text val ue="#{l ocation.country}" required="true"/>
</ di v>
<di v>
Zi p code:
<h:i nput Text val ue="#{l ocation. zi p}" required="true"/>
</ di v>

<h: commandBut t on/ >
</s:validateAll>

</ h: fornr

This tag simply adds an <s: val i dat e> to every input in the form. For a large form, it can save a
lot of typing!

Now we need to do something about displaying feedback to the user when validation fails.
Currently we are displaying all messages at the top of the form. What we would really like to do
is display the message next to the field with the error (this is possible in plain JSF), highlight the
field and label (this is not possible) and, for good measure, display some image next the the
field (also not possible). We also want to display a little colored asterisk next to the label for
each required form field.

That's quite a lot of functionality we need for each field of our form. We wouldn't want to have to
specify higlighting and the layout of the image, message and input field for every field on the
form. So, instead, we'll specify the common layout in a facelets template:

<ui : conposi tion xm ns="http://ww. w3. org/ 1999/ xht m "
xm ns:ui ="http://java. sun.con j sf/facel ets"
xm ns: h="http://java. sun. comljsf/htm "
xm ns: f="http://java. sun. conl j sf/core"
xm ns:s="http://jboss. con products/seanitaglib">

<di v>

<s: |l abel styleC ass="#{invalid? error':"'"}">

<ui :insert nanme="|abel "/>

<s:span styl eC ass="requi red" rendered="#{required}">*</s: span>
</ s: | abel >

<h: graphi cl nage src="inmg/error.gif" rendered="#{invalid}"/>
<s:validateAl | >
<ui :insert/>
</s:validateAl |l >
</ span>

<s: nessage styled ass="error"/>

143

Chapter 9. JSF form validation in Seam

</ di v>

</ ui : conposi ti on>

We can include this template for each of our form fields using <s: decor at e>.

<h: f or n»
<h: nessages gl obal Onl y="true"/>

<s:decorate tenplate="edit.xhtm ">

<ui : defi ne nane="| abel ">Count ry: </ ui : defi ne>

<h:i nput Text val ue="#{l ocation.country}" required="true"/>
</ s: decor at e>

<s:decorate tenplate="edit.xhtm ">

<ui : defi ne nane="I| abel ">Zi p code: </ ui : defi ne>

<h:i nput Text val ue="#{l ocation. zi p}" required="true"/>
</ s: decor at e>

<h: commandBut t on/ >

</ h: fornr

Finally, we can use Ajax4JSF to display validation messages as the user is navigating around
the form:

<h: f or m>
<h: nessages gl obal Onl y="true"/>

<s:decorate id="countryDecoration" tenplate="edit.xhtm ">
<ui : defi ne nane="I| abel ">Country: </ ui : defi ne>
<h:i nput Text val ue="#{| ocation.country}" required="true">
<a: support event="onbl ur" reRender="countryDecoration"/>
</ h:i nput Text >
</ s: decor at e>

<s:decorate id="zi pDecoration" tenplate="edit.xhtm ">
<ui : defi ne nane="| abel ">Zi p code: </ ui : defi ne>
<h:i nput Text val ue="#{| ocation.zi p}" required="true">
<a: support event="onblur" reRender="zi pDecoration"/>
</ h:i nput Text >
</ s: decor at e>

<h: commandBut t on/ >

</ h: fornr

As a final note, it's better style to define explicit ids for important controls on the page, especially

144

if you want to do automated testing for the Ul, using some toolkit like Selenium. If you don't
provide explicit ids, JSF will generate them, but the generated values will change if you change
anything on the page.

<h: formid="fornm'>
<h: messages gl obal Onl y="true"/>

<s:decorate id="countryDecoration" tenplate="edit.xhtm ">
<ui : defi ne nane="| abel ">Count ry: </ ui : def i ne>
<h:i nput Text id="country" val ue="#{l ocati on. country}"
requi red="true">
<a: support event="onbl ur" reRender="countryDecoration"/>
</ h: i nput Text >
</ s: decor at e>

<s:decorate id="zi pDecoration" tenplate="edit.xhtm ">
<ui : defi ne nane="| abel ">Zi p code: </ ui : def i ne>
<h:i nput Text id="zip" value="#{location.zip}" required="true">
<a: support event="onblur" reRender="zi pDecoration"/>
</ h: i nput Text >
</ s: decor at e>

<h: commandBut t on/ >

</ h: fornp

145

146

Chapter 10.

The Seam Application Framework

Seam makes it really easy to create applications by writing plain Java classes with annotations,
which don't need to extend any special interfaces or superclasses. But we can simplify some
common programming tasks even further, by providing a set of pre-built components which can
be re-used either by configuration in conponent s. xm (for very simple cases) or extension.

The Seam Application Framework can reduce the amount of code you need to write when doing
basic database access in a web application, using either Hibernate or JPA.

We should emphasize that the framework is extremely simple, just a handful of simple classes
that are easy to understand and extend. The "magic" is in Seam itself—the same magic you use
when creating any Seam application even without using this framework.

1. Introduction

The components provided by the Seam application framework may be used in one of two
different approaches. The first way is to install and configure an instance of the component in
component s. xni , just like we have done with other kinds of built-in Seam components. For
example, the following fragment from conponent s. xn installs a component which can perform
basic CRUD operations for a Cont act entity:

<framewor k: enti ty- hone nane="per sonHone"
entity-cl ass="eg. Per son"
entity- manager =" #{ per sonDat abase} " >
<f ramewor k: i d>#{ par am per sonl d} </ f ramewor k: i d>
</franmework: entity-home>

If that looks a bit too much like "programming in XML" for your taste, you can use extension
instead:

@5t at ef ul
@Nane(" per sonHome")
public class PersonHone extends EntityHome<Person> inpl ements
Local Per sonHone {
@Request Par aneter String personl d;
@n EntityManager personDat abase;

public Object getld() { return personld; }
public EntityManager getEntityManager() { return personDatabase; }

The second approach has one huge advantage: you can easily add extra functionality, and
override the built-in functionality (the framework classes were carefully designed for extension
and customization).

A second advantage is that your classes may be EJB stateful sessin beans, if you like. (They do

147

Chapter 10. The Seam Application Framework

not have to be, they can be plain JavaBean components if you prefer.)

At this time, the Seam Application Framework provides just four built-in components:
Enti t yHorme and Hi ber nat eEnt i t yHorre for CRUD, along with Enti t yQuery and
Hi ber nat eEnt i t yQuery for queries.

The Home and Query components are written so that they can function with a scope of session,
event or conversation. Which scope you use depends upon the state model you wish to use in
your application.

The Seam Application Framework only works with Seam-managed persistence contexts. By
default, the components will look for a persistence context named ent i t yManager .

2. Home objects

A Home object provides persistence operations for a particular entity class. Suppose we have
our trusty Per son class:

@ntity

public class Person {
@d private Long id;
private String firstName;
private String |astNane;
private Country nationality;

//getters and setters. ..

We can define a per sonHone component either via configuration:

<framewor k: enti ty- hone nane="personHone" entity-class="eg. Person" />

Or via extension:

@Nane(" per sonHone")
public class PersonHone extends EntityHome<Person> {}

A Home object provides the following operations: persi st (), renove(), updat e() and
get | nst ance() . Before you can call the r enove(), or updat e() operations, you must first set
the identifier of the object you are interested in, using the set 1 d() method.

We can use a Home directly from a JSF page, for example:

<h1>Create Person</hl>

<h: f or n»
<di v>Fi rst nane: <h:i nput Text

val ue="#{ per sonHone. i nst ance. first Name}"/></di v>
<di v>Last nane: <h:input Text

148

Home objects

val ue="#{per sonHone. i nst ance. | ast Nane}"/ ></ di v>
<di v>
<h: commandBut t on val ue="Creat e Person"
acti on="#{per sonHone. persist}"/>
</ di v>
</ h: fornm>

Usually, it is much nicer to be able to refer to the Per son merely as per son, so let's make that
possible by adding a line to conponent s. xni :

<factory name="person"
val ue="#{ per sonHone. i nst ance}"/ >

<franewor k: enti ty- hone nanme="per sonHone"
entity-cl ass="eg. Person" />

(If we are using configuration.) Or by adding a @act or y method to Per sonHore:

@Nane(" per sonHome")
public class PersonHone extends EntityHonme<Person> {

@actory("person")
public Person initPerson() { return getlnstance(); }

(If we are using extension.) This change simplifies our JSF page to the following:

<h1>Creat e Person</hl>
<h: f or >
<di v>Fi rst nane: <h:inputText val ue="#{person.firstNanme}"/></div>
<di v>Last nane: <h:inputText val ue="#{person.| ast Nane}"/></di v>
<di v>
<h: commandBut t on val ue="Create Person"
acti on="#{per sonHone. persist}"/>
</ di v>
</ h: for >

Well, that lets us create new Per son entries. Yes, that is all the code that is required! Now, if we
want to be able to display, update and delete pre-existing Per son entries in the database, we
need to be able to pass the entry identifier to the Per sonHone. Page parameters are a great way
to do that:

<pages>
<page vi ewid="/editPerson.jsp">
<par am nane="personl d" val ue="#{personHone.id}"/>
</ page>
</ pages>

149

Chapter 10. The Seam Application Framework

Now we can add the extra operations to our JSF page:

<hl>
<h: out put Text rendered="#{! per sonHone. nanaged}" val ue="Create Person"/>
<h: out put Text rendered="#{per sonHone. managed}" val ue="Edit Person"/>
</ h1l>
<h: f or n»
<di v>Fi rst nane: <h:inputText val ue="#{person.firstNanme}"/></div>
<di v>Last nane: <h:inputText val ue="#{person.|ast Nane}"/></di v>
<di v>
<h: conmandBut t on val ue="Create Person"
acti on="#{ per sonHone. persi st}"
r ender ed="#{! per sonHone. nanaged}"/ >
<h: conmandBut t on val ue="Updat e Person" acti on="#{personHone. updat e}"
r ender ed="#{ per sonHone. managed}"/ >
<h: commandBut t on val ue="Del et e Person" acti on="#{personHone. renove}"
r ender ed="#{ per sonHon®e. nanaged}"/ >
</ di v>
</ h: form

When we link to the page with no request parameters, the page will be displayed as a "Create
Person" page. When we provide a value for the per sonl d request parameter, it will be an "Edit
Person" page.

Suppose we need to create Per son entries with their nationality initialized. We can do that
easily, via configuration:

<factory name="person"
val ue="#{ per sonHone. i nst ance}"/ >

<framewor k: enti ty- hone name="per sonHonme"
entity-cl ass="eg. Person"
new- i nst ance="#{ newPer son}"/ >

<conponent nane="newPer son"
cl ass="eg. Per son" >
<property nane="nationality">#{country}</property>
</ conponent >

Or by extension:

@\Nane(" per sonHone")
public class PersonHone extends EntityHome<Person> {

@n Country country;

@actory("person")
public Person initPerson() { return getlnstance(); }

prot ect ed Person createlnstance() {
return new Person(country);

}

150

Home objects

Of course, the Count ry could be an object managed by another Home object, for example,
Count r yHorre.

To add more sophisticated operations (association management, etc), we can just add methods
to Per sonHone.

@Nanme(" per sonHome")
public class PersonHone extends EntityHome<Person> {

@n Country country;

@-actory("person")
public Person initPerson() { return getlnstance(); }

prot ected Person createlnstance() {
return new Person(country);

}

public void migrate()

{
get I nstance() . set Country(country);
updat e() ;

}

The Home object automatically displays faces messages when an operation is successful. To
customize these messages we can, again, use configuration:

<factory name="person"
val ue="#{ per sonHone. i nst ance}"/ >

<framewor k: enti ty- hone name="per sonHonme"
entity-cl ass="eg. Person”
new i nst ance="#{ newPer son}" >
<f ramewor k: cr eat ed- nessage>New per son #{person. first Nane}
#{ person. | ast Nane} creat ed</framework: cr eat ed- nessage>
<framewor k: del et ed- message>Per son #{person.firstNanme} #{person.| ast Nane}
del et ed</ f r anewor k: del et ed- nessage>
<f ramewor k: updat ed- nessage>Per son #{person. firstNane} #{person.| ast Nane}
updat ed</ f r amewor k: updat ed- message>
</franmework: entity-home>

<conponent nane="newPer son"
cl ass="eg. Person" >
<property nane="nationality">#{country}</property>
</ conponent >

151

Chapter 10. The Seam Application Framework

Or extension:

@Nane(" per sonHome")
public class PersonHone extends EntityHome<Person> {

@n Country country;

@actory("person")
public Person initPerson() { return getlnstance(); }

prot ect ed Person createl nstance() {
return new Person(country);

}

protected String getCreatedMessage() { return "New person
#{person. first Nane}
#{ person. | ast Nane} created"; }
protected String get Updat edMessage() { return "Person
#{ person. first Nane}
#{ person. | ast Nane} updated"; }
protected String getDel etedMessage() { return "Person
#{ person. fir st Nane}
#{ person. | ast Nane} del eted"; }

But the best way to specify the messages is to put them in a resource bundle known to Seam
(the bundle named nmessages, by default).

Per son_cr eat ed=New person #{person. firstNane} #{person.|astNane} created
Per son_del et ed=Per son #{person. first Nane} #{person.|astNane} del eted
Per son_updat ed=Per son #{person. first Nane} #{person.|astNane} updated

This enables internationalization, and keeps your code and configuration clean of presentation
concerns.

The final step is to add validation functionality to the page, using <s: val i dat eAl | > and
<s: decor at e>, but I'll leave that for you to figure out.

3. Query objects

If we need a list of all Per son instance in the database, we can use a Query object. For
example:

<framewor k: enti ty-query nanme="peopl e"
ej bgl ="sel ect p from Person p"/>

We can use it from a JSF page:

152

Query objects

<h1>Li st of people</hl>
<h: dat aTabl e val ue="#{people.resultList}" var="person">
<h: col um>
<s:link view="/editPerson.jsp" val ue="#{person.firstNane}
#{person. | ast Nane}" >
<f: param nane="personl d" val ue="#{person.id}"/>
</s:link>
</ h: col um>
</ h: dat aTabl e>

We probably need to support pagination:

<franewor k: entity-query nane="peopl e"
ej bgl ="sel ect p from Person p"
or der ="1| ast Nane"
max-resul t s="20"/>

We'll use a page parameter to determine the page to display:

<pages>
<page vi ew i d="/searchPerson.jsp">
<param nanme="firstResult" val ue="#{people.firstResult}"/>
</ page>
</ pages>

The JSF code for a pagination control is a bit verbose, but manageable:

<hl>Search for peopl e</hl>
<h: dat aTabl e val ue="#{people.resultList}" var="person">
<h: col um>
<s:link view="/editPerson.jsp" val ue="#{person.firstNane}
#{ per son. | ast Nanme}" >
<f: param nane="personl d" val ue="#{person.id}"/>
</s:link>
</ h: col um>
</ h: dat aTabl e>

<s:link view="/search. xhtm " rendered="#{peopl e. previ ousExi sts}"
val ue="First Page">

<f:param nane="firstResult" val ue="0"/>
</s:link>

<s:link view="/search. xhtm " rendered="#{peopl e. previ ousExi st s}"
val ue="Previ ous Page" >

<f:param name="firstResult" val ue="#{peopl e. previ ousFi rst Resul t}"/>
</s:link>

<s:link view="/search. xhtm " rendered="#{peopl e. next Exi sts}" val ue="Next
Page" >

<f:param nanme="firstResult" val ue="#{peopl e. next Fi rst Resul t}"/>
</s:link>

153

Chapter 10. The Seam Application Framework

<s:link view="/search. xhtm " rendered="#{peopl e. next Exi sts}" val ue="Last
Page" >

<f:param nane="firstResul t" val ue="#{people.lastFirstResult}"/>
</s:link>

Real search screens let the user enter a bunch of optional search criteria to narrow the list of
results returned. The Query object lets you specify optional "restrictions” to support this
important usecase:

<component nanme="exanpl ePer son" cl ass="Person"/>

<franewor k: entity-query nane="peopl e"
ej bgl ="sel ect p from Person p"
or der ="1| ast Nane"
max-resul t s="20">
<franmework:restrictions>
<val ue>l ower (firstNane) |ike |ower(#{exanpl ePerson.firstNane} + '%
) </ val ue>
<val ue>l ower (|l ast Nane) |i ke | ower(#{exanpl ePerson.|astName} + '%
) </ val ue>
</framework:restrictions>
</ franmework: entity-query>

Notice the use of an "example" object.

<hl>Search for peopl e</hl>
<h: f or >

<di v>Fi rst nanme: <h:inputText val ue="#{exanpl ePerson. firstNanme}"/></div>

<di v>Last nane: <h:inputText val ue="#{exanpl ePerson. | ast Nane}"/></di v>
<di v><h: commandBut t on val ue="Search" acti on="/search.jsp"/></div>
</ h: fornm

<h: dat aTabl e val ue="#{people.resultList}" var="person">
<h: col um>
<s:link view="/editPerson.jsp" val ue="#{person.firstNane}
#{ per son. | ast Nanme}" >
<f: param nane="personl d" val ue="#{person.id}"/>
</s:link>
</ h: col um>
</ h: dat aTabl e>

The examples in this section have all shown reuse by configuration. However, reuse by
extension is equally possible for Query objects.

4. Controller objects

A totally optional part of the Seam Application Framework is the class Cont rol | er and its
subclasses Enti t yControl | er Hi ber nat eEnti tyControl | er and
Busi nessProcessControl | er. These classes provide nothing more than some convenience

154

Controller objects

methods for access to commonly used built-in components and methods of built-in components.
They help save a few keystrokes (characters can add up!) and provide a great launchpad for
new users to explore the rich functionality built in to Seam.

For example, here is what Regi st er Act i on from the Seam registration example would look like:

@@t at el ess
@Nane("register")
public class RegisterAction extends EntityController inplements Register

{

@n private User user;

public String register()
{
Li st existing = createQuery("sel ect u.usernane from User u where
u. user nane=: user nane")
. set Paramet er ("user nane", user. get Usernane())
.getResul tList();

if (existing.size()==0)

{
persi st (user);
i nfo("Regi stered new user #{user.usernanme}");
return "/registered.jspx";
}
el se
{
addFacesMessage(" User #{user.usernanme} already exists");
return null;
}

As you can see, its not an earthshattering improvement...

155

156

Chapter 11.

Seam and JBoss Rules

Seam makes it easy to call JBoss Rules (Drools) rulebases from Seam components or jBPM
process definitions.

1. Installing rules

The first step is to make an instance of or g. dr ool s. Rul eBase available in a Seam context
variable. In most rules-driven applications, rules need to be dynamically deployable, so you will
need to implement some solution that allows you to deploy rules and make them available to
Seam (a future release of Drools will provide a Rule Server that solves this problem). For testing
purposes, Seam provides a built-in component that compiles a static set of rules from the
classpath. You can install this component via conponent s. xmi :

<dr ool s: rul e-base nane="pol i cyPrici ngRul es" >
<drool s:rule-fil es>
<val ue>pol i cyPri ci ngRul es</ val ue>
</drool s:rule-files>
</ dr ool s: rul e- base>

This component compiles rules from a set of . dr| files and caches an instance of
or g. drool s. Rul eBase in the Seam APPLI CATI ON context. Note that it is quite likely that you will
need to install multiple rule bases in a rule-driven application.

If you want to use a Drools DSL, you alse need to specify the DSL definition:

<dr ool s: rul e-base nane="policyPricingRul es" dsl-file="policyPricing.dsl">
<drool s:rule-fil es>
<val ue>pol i cyPri ci ngRul es</ val ue>
</drools:rule-files>
</ dr ool s: rul e- base>

Next, we need to make an instance of or g. dr ool s. Wr ki ngMenor y available to each
conversation. (Each Wor ki ngMenor y accumulates facts relating to the current conversation.)

<dr ool s: managed- wor ki ng- menory nane="pol i cyPri ci ngWor ki ngMenor y"
aut o-create="true" rul e-base="#{policyPricingRul es}"/>

Notice that we gave the pol i cyPri ci ngWor ki ngMenory a reference back to our rule base via
the r ul eBase configuration property.

2. Using rules from a Seam component
We can now inject our Wor ki ngMenor y into any Seam component, assert facts, and fire rules:

@n Wor ki ngMenory pol i cyPrici ngWr ki ngMenor y;

157

Chapter 11. Seam and JBoss Rules

@n Policy policy;
@n Custoner custoner;

public void pricePolicy() throws Fact Exception

{
pol i cyPri ci ngWor ki ngMenory. assert Qbj ect (policy);
pol i cyPri ci ngWor ki ngMenory. assert Obj ect (cust omer) ;
pol i cyPri ci ngWor ki ngMenory. fireA | Rul es();

}

3. Using rules from a jBPM process definition

You can even allow a rule base to act as a jBPM action handler, decision handler, or
assignment handler—in either a pageflow or business process definition.

<deci si on nane="approval ">

<handl er cl ass="org. | boss. seam dr ool s. Dr ool sDeci si onHandl er" >
<wor ki ngMenor yName>or der Appr oval Rul esWor ki ngMenor y</ wor ki ngMenor y Nanme>
<assert Qbj ect s>
<el ement >#{ cust oner } </ el ement >
<el enent >#{ or der } </ el enent >
<el enent >#{order. | i nel t ens} </ el ement >
</ assert Cbj ect s>
</ handl er >

<transition name="approved" to="ship">
<action class="org.jboss. seam dr ool s. Drool sActi onHandl er " >
<wor ki ngMenor yNanme>shi ppi ngRul esWor ki ngMenor y</ wor ki ngMenor yNanme>
<assert Obj ect s>
<el enent >#{ cust oner } </ el enent >
<el erent >#{ or der } </ el enent >
<el enent >#{order. | i neltens}</el enent >
</ assert Obj ect s>
</ acti on>
</transition>

<transition name="rejected" to="cancelled"/>

</ deci si on>

The <assert bj ect s> element specifies EL expressions that return an object or collection of
objects to be asserted as facts into the Wor ki ngMenory.

There is also support for using Drools for jBPM task assignments:

<t ask- node nane="revi ew'>
<task name="revi ew' description="Revi ew Order">
<assi gnment handl er ="org.j boss. seam dr ool s. Dr ool sAssi gnnment Handl er ">
<wor ki ngMenor yNane>or der Appr oval Rul esWor ki ngMenor y</ wor ki ngMenor y Nanme>
<assert Obj ect s>

158

Using rules from a jBPM process definition

<el ement >#{ act or } </ el enent >
<el enent >#{ cust oner } </ el enent >
<el ement >#{ or der } </ el ement >
<el enent >#{ order. | i nel t ens} </ el ement >
</ assert Cbj ect s>
</ assi gnnent >

</ task>

<transition name="rejected" to="cancelled"/>

<transition name="approved" to="approved"/>

</ t ask- node>

Certain objects are available to the rules as Drools globals, namely the jBPM Assi gnabl e, as
assi gnabl e and a Seam Deci si on object, as deci si on. Rules which handle decisions should
call deci si on. set Qut come("resul t") to determine the result of the decision. Rules which
perform assignments should set the actor id using the Assi gnabl e.

package org.j boss. seam exanpl es. shop
i mport org.jboss. seam drool s. Deci si on
gl obal Deci si on deci sion

rule "Approve Order For Loyal Custoner”

when
Custoner(|loyaltyStatus == "GOLD')
Order (total Amount <= 10000)

t hen

deci si on. set Qut cone(" approved") ;
end

package org.j boss. seam exanpl es. shop
i mport org.jbpmtaskngnt. exe. Assi gnabl e
gl obal Assi gnabl e assi gnabl e

rule "Assign Review For Small Order”
when
Order(total Anbunt <= 100)
t hen
assi gnabl e. set Pool edActors(new String[] {"reviewers"});
end

159

160

Chapter 12.

Security

The Seam Security APl is an optional Seam feature that provides authentication and
authorization features for securing both domain and page resources within your Seam project.

1. Overview

Seam Security provides two different modes of operation:
« simplified mode - this mode supports authentication services and simple role-based security
checks.

« advanced mode - this mode supports all the same features as the simplified mode, plus it
offers rule-based security checks using JBoss Rules.

1.1. Which mode is right for my application?

That all depends on the requirements of your application. If you have minimal security
requirements, for example if you only wish to restrict certain pages and actions to users who are
logged in, or who belong to a certain role, then the simplified mode will probably be sufficient.
The advantages of this is a more simplified configuration, significantly less libraries to include,
and a smaller memory footprint.

If on the other hand, your application requires security checks based on contextual state or
complex business rules, then you will require the features provided by the advanced mode.

2. Requirements

If using the advanced mode features of Seam Security, the following jar files are required to be
configured as modules in appl i cati on. xn . If you are using Seam Security in simplified mode,
these are not required:

« drools-compiler-3.0.5.jar

« drools-core-3.0.5.jar

e commons-jci-core-1.0-406301.jar

e commons-jci-janino-2.4.3.jar

e commons-lang-2.1.jar

* janino-2.4.3.jar

« stringtemplate-2.3b6.jar

e antlr-2.7.6.jar

161

Chapter 12. Security

e antlr-3.0ea8.jar

For web-based security, j boss-seam ui . j ar must also be included in the application's war file.
Also, to make use of the security EL functions, Seanfacel et Vi ewHandl er must be used.
Configure itin f aces- confi g. xnl like this:

<appl i cati on>
<vi ew- handl| er >or g. j boss. seam ui . f acel et. Seantacel et Vi ewHandl er </ vi ew handl er >
</ appli cati on>

3. Authentication

The authentication features provided by Seam Security are built upon JAAS (Java
Authentication and Authorization Service), and as such provide a robust and highly configurable
API for handling user authentication. However, for less complex authentication requirements
Seam offers a much more simplified method of authentication that hides the complexity of
JAAS.

3.1. Configuration

The simplified authentication method uses a built-in JAAS login module, Seaniogi nMbdul e,
which delegates authentication to one of your own Seam components. This login module is
already configured inside Seam as part of a default application policy and as such does not
require any additional configuration files. It allows you to write an authentication method using
the entity classes that are provided by your own application. Configuring this simplified form of
authentication requires the i dent i t y component to be configured in conponent s. xn :

<conmponents xm ns="http://jboss. com product s/ sean conponent s"
xm ns: core="http://jboss. conf product s/ seani cor e"
xm ns: security="http://jboss. con products/seani security"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
Xsi : schemalLocat i on=
"http://jboss. conl product s/ seani core
http://jboss. conl product s/ seanif core-1. 2. xsd
http://jboss. com product s/ seanf conponent s
http://jboss. conl product s/ seam conponent s- 1. 2. xsd
http://jboss. conf product s/ seani drool s
http://jboss. conl product s/ seani drool s-1. 2. xsd"
http://jboss. con products/seanf security
http://jboss. conl product s/ sean security-1.2. xsd">

<security:identity authenticate-nethod="#{authenticator.authenticate}"/>

</ conponent s>

If you wish to use the advanced security features such as rule-based permission checks, all you
need to do is include the Drools (JBoss Rules) jars in your classpath, and add some additional
configuration, described later.

162

Writing an authentication method

The EL expression #{ aut hent i cat or. aut henti cat e} is a method binding indicating that the
aut hent i cat e method of the aut hent i cat or component will be used to authenticate the user.

3.2. Writing an authentication method

The aut hent i cat e- met hod property specified for i denti ty in component s. xnl specifies which
method will be used by Seaniogi nModul e to authenticate users. This method takes no
parameters, and is expected to return a boolean indicating whether authentication is successful
or not. The user's username and password can be obtained from
Identity.instance().getUsername() and ldentity.instance().getPassword(),
respectively. Any roles that the user is a member of should be assigned using
Identity.instance().addRol e(). Here's a complete example of an authentication method
inside a JavaBean component:

@Nane(" aut henti cator")
public class Authenticator {
@n EntityManager entityManager;

publ i ¢ bool ean authenticate() {

try
{
User user = (User) entityManager. createQuery(
"from User where usernane = :usernanme and password = :password")
. set Paranet er ("usernane", ldentity.instance().getUsernanme())
. set Paranet er ("password”, ldentity.instance().getPassword())

. get Si ngl eResul t ();

if (user.getRoles() != null)
{

for (UserRole nr : user.getRoles())
Identity.instance().addRol e(nr.get Nane());

}
return true;
}
catch (NoResul t Excepti on ex)
{
FacesMessages. i nstance().add("I nvalid username/ password");
return fal se;
}

In the above example, both User and User Rol e are application-specific entity beans. The rol es
parameter is populated with the roles that the user is a member of, which should be added to
the Set as literal string values, e.g. "admin”, "user". In this case, if the user record is not found
and a NoResul t Except i on thrown, the authentication method returns f al se to indicate the

authentication failed.

163

Chapter 12. Security

3.3. Writing a login form

The I denti ty component provides both user nane and passwor d properties, catering for the
most common authentication scenario. These properties can be bound directly to the username
and password fields on a login form. Once these properties are set, calling the

i dentity. | ogin() method will authenticate the user using the provided credentials. Here's an
example of a simple login form:

<di v>

<h: out put Label for="nanme" val ue="User nanme"/>

<h:i nput Text id="nane" val ue="#{i dentity.usernane}"/>
</ di v>

<di v>

<h: out put Label for="password" val ue="Password"/>

<h:i nput Secret id="password" val ue="#{identity. password}"/>
</ di v>
<di v>

<h: commandBut t on val ue="Logi n" action="#{identity.|ogin}"/>
</ di v>

Similarly, logging out the user is done by calling #{i denti ty. | ogout }. Calling this action will
clear the security state of the currently authenticated user.

3.4. Simplified Configuration - Summary

So to sum up, there are the three easy steps to configure authentication:

« Configure an authentication method in conponent s. xm .
« Write an authentication method.

» Write a login form so that the user can authenticate.

3.5. Handling Security Exceptions

To prevent users from receiving the default error page in response to a security error, it's
recommended that pages. xm is configured to redirect security errors to a more "pretty" page.
The two main types of exceptions thrown by the security API are:

* Not Logged! nExcept i on - This exception is thrown if the user attempts to access a restricted
action or page when they are not logged in.

e Aut hori zati onExcepti on - This exception is only thrown if the user is already logged in, and
they have attempted to access a restricted action or page for which they do not have the
necessary privileges.

164

Login Redirection

In the case of a Not Logged| nExcept i on, it is recommended that the user is redirected to either
a login or registration page so that they can log in. For an Aut hori zat i onExcepti on, it may be
useful to redirect the user to an error page. Here's an example of a pages. xni file that redirects
both of these security exceptions:

<pages>

<exception class="org.jboss. seam security. Not Loggedl nExcepti on">
<redirect viewid="/login. xhtm">
<message>You nust be logged in to performthis action</nessage>
</redirect>
</ excepti on>

<exception class="org.jboss.seam security. Aut hori zati onExcepti on">
<end- conver sati on/ >
<redirect viewid="/security_error.xhtm ">
<message>
You do not have the necessary security
privileges to performthis action.
</ nessage>
</redirect>
</ excepti on>

</ pages>

Most web applications require even more sophisticated handling of login redirection, so Seam
includes some special functionality for handling this problem.

3.6. Login Redirection

You can ask Seam to redirect the user to a login screen when an unauthenticated user tries to
access a particular view (or wildcarded view id) as follows:

<pages | ogi n-viewid="/1ogin.xhtm ">

<page vi ewid="/nenbers/*" |ogin-required="true"/>

</ pages>

(This is less of a blunt instrument than the exception handler shown above, but should probably
be used in conjunction with it.)

After the user logs in, we want to automatically send them back where they came from, so they
can retry the action that required logging in. If you add the following event listeners to
conmponent s. xnl , attempts to access a restricted view while not logged in will be remembered,
so that upon the user successfully logging in they will be redirected to the originally requested

165

Chapter 12. Security

view, with any page parameters that existed in the original request.

<event type="org.|boss.seam not Logged| n">
<action expression="#{redirect.captureCurrentView"/>
</ event >

<event type="org.jboss.seam post Aut henti cate">
<action expression="#{redirect.returnToCapturedVi ew}"/>
</ event >

Note that login redirection is implemented as a conversation-scoped mechanism, so don't end
the conversation in your aut hent i cat e() method.

3.7. Advanced Authentication Features

This section explores some of the advanced features provided by the security API for
addressing more complex security requirements.

3.7.1. Using your container's JAAS configuration

If you would rather not use the simplified JAAS configuration provided by the Seam Security
API, you may instead delegate to the default system JAAS configuration by providing a

j aasConf i gName property in conponent s. xm . For example, if you are using JBoss AS and
wish to use the ot her policy (which uses the User sRol esLogi nMbdul e login module provided
by JBoss AS), then the entry in component s. xmi would look like this:

<security:identity authenticate-method="#{aut henticator.authenticate}"
j aas- confi g- name="ot her"/ >

4. Error Messages

The security API produces a number of default faces messages for various security-related
events. The following table lists the message keys that can be used to override these messages
by specifying them in a nessage. pr operti es resource file.

org. j boss. seam | ogi nBuiscreeskalge is produced when a user successfully logs in via the
security API.

org. j boss. seam | ogi nFhisl meéssage is produced when the login process fails, either
because the user provided an incorrect username or password, or
because authentication failed in some other way.

org. j boss. seam Not Lofhisdnessage is produced when a user attempts to perform an action
or access a page that requires a security check, and the user is not
currently authenticated.

166

Authorization

Table 12.1. Security Message Keys

5. Authorization

There are a number of authorization features provided by the Seam Security API for securing
access to components, component methods, and pages. This section describes each of these.
An important thing to note is that if you wish to use any of the advanced features (such as
rule-based permissions) then your conponent s. xm must be configured to support this - see the
Configuration section above.

5.1. Core concepts

Each of the authorization mechanisms provided by the Seam Security API are built upon the
concept of a user being granted roles and/or permissions. A role is a group, or type, of user that
may have been granted certain privileges for performing one or more specific actions within an
application. A permission on the other hand is a privilege (sometimes once-off) for performing a
single, specific action. It is entirely possible to build an application using nothing but
permissions, however roles offer a higher level of convenience when granting privileges to
groups of users.

Roles are simple, consisting of only a name such as "admin”, "user", "customer", etc.
Permissions consist of both a name and an action, and are represented within this
documentation in the form name: act i on, for example cust oner : del et e, or cust omer : i nsert.

5.2. Securing components

Let's start by examining the simplest form of authorization, component security, starting with the
@Restri ct annotation.

5.2.1. The @Restrict annotation

Seam components may be secured either at the method or the class level, using the @rest ri ct
annotation. If both a method and it's declaring class are annotated with @estri ct, the method
restriction will take precedence (and the class restriction will not apply). If a method invocation
fails a security check, then an exception will be thrown as per the contract for
Identity.checkRestriction() (see Inline Restrictions). A @Restri ct on just the component
class itself is equivalent to adding @rest ri ct to each of its methods.

An empty @Rest ri ct implies a permission check of conponent Nanme: net hodNane. Take for
example the following component method:

@\ane("account ")
public class AccountAction {
@Restrict public void delete() {

}

167

Chapter 12. Security

In this example, the implied permission required to call the del et e() method is
account : del et e. The equivalent of this would be to write

@restrict("#{s: hasPerm ssion('account','delete',null)}").Now let's look at another
example:

@Restrict @Nane("account")
public class AccountAction {
public void insert() {

}
@Restrict("#{s: hasRol e(' adm n')}")
public void delete() {

}

This time, the component class itself is annotated with @Rest ri ct . This means that any
methods without an overriding @Rest ri ct annotation require an implicit permission check. In
the case of this example, the i nsert () method requires a permission of account : i nsert,
while the del et e() method requires that the user is a member of the adni n role.

Before we go any further, let's address the #{s: hasRol e()} expression seen in the above
example. Both s: hasRol e and s: hasPer i ssi on are EL functions, which delegate to the
correspondingly named methods of the | dent i t y class. These functions can be used within any
EL expression throughout the entirety of the security API.

Being an EL expression, the value of the @est ri ct annotation may reference any objects that
exist within a Seam context. This is extremely useful when performing permission checks for a
specific object instance. Look at this example:

@\ane("account ")
public class AccountAction {
@n Account sel ect edAccount;

@Restrict("#{s: hasPerni ssion('account','nodify', sel ectedAccount)}")
public void nodify() {
sel ect edAccount . modi fy();

}

The interesting thing to note from this example is the reference to sel ect edAccount seen within
the hasPer nmi ssi on() function call. The value of this variable will be looked up from within the
Seam context, and passed to the hasPer mi ssi on() method in | dent i ty, which in this case
can then determine if the user has the required permission for modifying the specified Account
object.

5.2.2. Inline restrictions

168

Security in the user interface

Sometimes it might be desirable to perform a security check in code, without using the
@Rest ri ct annotation. In this situation, simply use I denti ty. checkRestricti on() to evaluate
a security expression, like this:

public void del et eCustomer () {
Identity.instance().checkRestriction("#{s: hasPerni ssion('custoner',"'delete',
sel ect edCustoner)}");

}

If the expression specified doesn't evaluate to t r ue, either

« if the user is not logged in, a Not Logged| nExcept i on exception is thrown or

« if the user is logged in, an Aut hori zat i onExcept i on exception is thrown.

It is also possible to call the hasRol e() and hasPer ni ssi on() methods directly from Java
code:

if (!ldentity.instance().hasRol e("adn n"))
t hrow new Aut hori zati onException("Mist be adnmin to performthis
action");

if (!ldentity.instance().hasPerm ssion("custonmer", "create", null))
t hrow new Aut hori zat i onExcepti on("You may not create new custoners");

5.3. Security in the user interface

One indication of a well designed user interface is that the user is not presented with options for
which they don't have the necessary privileges to use. Seam Security allows conditional
rendering of either 1) sections of a page or 2) individual controls, based upon the privileges of
the user, using the very same EL expressions that are used for component security.

Let's take a look at some examples of interface security. First of all, let's pretend that we have a
login form that should only be rendered if the user is not already logged in. Using the
i dentity.isLoggedl n() property, we can write this:

<h: form cl ass="1 ogi nFormi' rendered="#{not identity.| oggedln}">

If the user isn't logged in, then the login form will be rendered - very straight forward so far. Now
let's pretend there is a menu on the page that contains some actions which should only be
accessible to users in the manager role. Here's one way that these could be written:

<h: out put Li nk acti on="#{reports.|istManager Reports}"
render ed="#{s: hasRol e(' manager')}">

Manager Reports
</ h: out put Li nk>

169

Chapter 12. Security

This is also quite straight forward. If the user is not a member of the manager role, then the
outputLink will not be rendered. The r ender ed attribute can generally be used on the control
itself, or on a surrounding <s: di v> or <s: span> control.

Now for something more complex. Let's say you have a h: dat aTabl e control on a page listing
records for which you may or may not wish to render action links depending on the user's
privileges. The s: hasPer mi ssi on EL function allows us to pass in an object parameter which
can be used to determine whether the user has the requested permission for that object or not.
Here's how a dataTable with secured links might look:

<h: dat aTabl e val ue="#{clients}" var="cl">
<h: col utm>
<f:facet name="header">Nane</f:facet>
#{cl . nane}
</ h: col uim>
<h: col um>
<f:facet name="header">City</f:facet>
#{cl.city}
</ h: col uim>
<h: col um>
<f:facet name="header">Action</f:facet>
<s:link value="Mdify Cient" action="#{clientAction.nodify}"
render ed="#{s: hasPernmission('client',' modify',cl)"/>
<s:link value="Delete Cient" action="#{clientAction.delete}"
render ed="#{s: hasPermi ssion('client',"'delete',cl)"/>
</ h: col um>
</ h: dat aTabl e>

5.4. Securing pages

Page security requires that the application is using a pages. xnmi file, however is extremely
simple to configure. Simply include a <rest ri ct / > element within the page elements that you
wish to secure. By default, if a value is not provided for the rest ri ct element, an implied
permission of { vi ewl d} : r ender will be checked for whenever accessing that page. Otherwise
the value will be evaluated as a standard security expression. Here's a couple of examples:

<page viewid="/settings.xhtm ">
<restrict/>
</ page>

<page viewid="/reports.xhtm ">
<restrict>#{s: hasRol e('admin')}</restrict>
</ page>

In the above example, the first page has an implied permission restriction of

/ settings. xhtni : render, while the second one checks that the user is a member of the
admi n role.

170

Securing Entities

5.5. Securing Entities

Seam security also makes it possible to apply security restrictions to read, insert, update and
delete actions for entities.

To secure all actions for an entity class, add a @restri ct annotation on the class itself:

@ntity

@\Nane(" cust ormer ")
@Restrict

public class Customer {

}

If no expression is specified in the @Rest ri ct annotation, the default security check that is
performed is a permission check of enti t yName: act i on, where enti t yNane is the Seam
component name of the entity (or the fully-qualified class name if no @Name is specified), and
the acti on is eitherread, i nsert, updat e or del et e.

It is also possible to only restrict certain actions, by placing a @Rest ri ct annotation on the
relevent entity lifecycle method (annotated as follows):

e @ost Load - Called after an entity instance is loaded from the database. Use this method to
configure a r ead permission.

e @rePersi st - Called before a new instance of the entity is inserted. Use this method to
configure an i nsert permission.

e @'reUpdat e - Called before an entity is updated. Use this method to configure an updat e
permission.

* @reRenpve - Called before an entity is deleted. Use this method to configure a del et e
permission.

Here's an example of how an entity would be configured to perform a security check for any
i nsert operations. Please note that the method is not required to do anything, the only
important thing in regard to security is how it is annotated:

@°rePersi st @estrict
public void prePersist() {}

And here's an example of an entity permission rule that checks if the authenticated user is
allowed to insert a new Menber Bl og record (from the seamspace example). The entity for which
the security check is being made is automatically asserted into the working memory (in this case
Menber Bl og):

171

Chapter 12. Security

rul e | nsert Menber Bl og

no- | oop

acti vation-group "perm ssions"
when

check: Permi ssionCheck(name == "nmenberBl og", action == "insert", granted
== fal se)

Pri nci pal (princi pal Name : nane)
Menber Bl og(menber : nmenber ->
(menber . get User nane() . equal s(pri nci pal Nanme)))
t hen
check. grant () ;
end;

This rule will grant the permission nenber Bl og: i nsert if the currently authenticated user
(indicated by the Pri nci pal fact) has the same name as the member for which the blog entry is
being created. The "name : nane" structure that can be seen in the Pri nci pal fact (and other
places) is a variable binding - it binds the name property of the Pri nci pal to a variable called
nane. Variable bindings allow the value to be referred to in other places, such as the following
line which compares the member's username to the Pri nci pal name. For more details, please
refer to the JBoss Rules documentation.

Finally, we need to install a listener class that integrates Seam security with your JPA provider.
5.5.1. Entity security with JPA

Security checks for EJB3 entity beans are performed with an Enti t yLi st ener. You can install
this listener by using the following META- | NF/ or m xni file:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<entity-mappi ngs xm ns="http://java. sun. conl xm / ns/ per si st ence/ or nt'
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http://java. sun. con xm / ns/ per si st ence/ orm
http://java. sun. coni xm / ns/ persi stence/orm 1 0. xsd"
versi on="1.0">

<per si st ence- uni t - met adat a>

<per si st ence-uni t - def aul t s>

<entity-listeners>
<entity-listener
cl ass="org.j boss. seam security. EntitySecurityListener"/>

</entity-listeners>

</ persi stence-unit-defaul ts>
</ persi stence-uni t - met adat a>

</ entity-mappi ngs>

5.5.2. Entity security with Hibernate

If you are using a Hibernate Sessi onFact ory configured via Seam, you don't need to do
anything special to use entity security.

172

Permissions Overview

6. Writing Security Rules

Up to this point there has been a lot of mention of permissions, but no information about how
permissions are actually defined or granted. This section completes the picture, by explaining
how permission checks are processed, and how to implement permission checks for a Seam
application.

6.1. Permissions Overview

So how does the security APl know whether a user has the cust omer : nodi f y permission for a
specific customer? Seam Security provides quite a novel method for determining user
permissions, based on JBoss Rules. A couple of the advantages of using a rule engine are 1) a
centralized location for the business logic that is behind each user permission, and 2) speed -
JBoss Rules uses very efficient algorithms for evaluating large numbers of complex rules
involving multiple conditions.

6.2. Configuring a rules file

Seam Security expects to find a Rul eBase component called securi t yRul es which it uses to
evaluate permission checks. This is configured in conponent s. xnl as follows:

<conmponents xm ns="http://jboss. com product s/ sean conponent s"
xm ns: core="http://jboss. conl product s/ seani cor e"
xm ns: security="http://jboss. conf products/seani security"
xm ns: drool s="http://jboss. com product s/ seam dr ool s"
xm ns: xsi ="http://ww. wW3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemalLocat i on=
"http://jboss. con product s/ seani core
http://jboss. conf product s/ seani core-1. 2. xsd
http://jboss. conl product s/ seani component s
http://jboss. conf product s/ seam conponent s- 1. 2. xsd
http://jboss. conf product s/ seani drool s
http://jboss. con products/seani drool s-1. 2. xsd"
http://jboss. con product s/ seanf security
http://jboss. conl product s/ seanl security-1.2.xsd">

<dr ool s: rul e-base nane="securityRul es">
<drool s:rule-fil es>
<val ue>/ META- | NF/ security. drl </ val ue>
</drools:rule-fil es>
</ drool s: rul e-base>

</ conponent s>

Once the Rul eBase component is configured, it's time to write the security rules.

6.3. Creating a security rules file

For this step you need to create a file called security. drl inthe/ META- I NF directory of your
application's jar file. In actual fact this file can be called anything you want, and exist in any

173

Chapter 12. Security

location as long as it is configured appropriately in conponent s. xm .

So what should the security rules file contain? At this stage it might be a good idea to at least
skim through the JBoss Rules documentation, however to get started here's an extremely
simple example:

package MyAppli cati onPerm ssi ons;

i mport org.jboss.seam security. Perm ssi onCheck
i mport org.jboss.seam security. Rol e;

rul e CanUser Del et eCust oner s

when
c: PernissionCheck(name == "custoner", action == "delete")
Rol e(nane == "admi n")

t hen
c.grant();

end;

Let's break this down. The first thing we see is the package declaration. A package in JBoss
Rules is essentially a collection of rules. The package name can be anything you want - it
doesn't relate to anything else outside the scope of the rule base.

The next thing we can notice is a couple of import statements for the Per nmi ssi onCheck and
Rol e classes. These imports inform the rules engine that we'll be referencing these classes
within our rules.

Finally we have the code for the rule. Each rule within a package should be given a unique
name (usually describing the purpose of the rule). In this case our rule is called

CanUser Del et eCust omer s and will be used to check whether a user is allowed to delete a
customer record.

Looking at the body of the rule definition we can notice two distinct sections. Rules have what is
known as a left hand side (LHS) and a right hand side (RHS). The LHS consists of the
conditional part of the rule, i.e. a list of conditions which must be satisfied for the rule to fire. The
LHS is represented by the when section. The RHS is the consequence, or action section of the
rule that will only be fired if all of the conditions in the LHS are met. The RHS is represented by
the t hen section. The end of the rule is denoted by the end; line.

If we look at the LHS of the rule, we see two conditions listed there. Let's examine the first
condition:

c: Perni ssionCheck(nanme == "custoner", action == "delete")

In plain english, this condition is stating that there must exist a Per mi ssi onCheck object with a
nane property equal to "customer"”, and an act i on property equal to "delete" within the working
memory. What is the working memory? It is a session-scoped object that contains the
contextual information that is required by the rules engine to make a decision about a
permission check. Each time the hasPer i ssi on() method is called, a temporary

174

Creating a security rules file

Per mi ssi onCheck object, or Fact, is asserted into the working memory. This Per i ssi onCheck
corresponds exactly to the permission that is being checked, so for example if you call
hasPerm ssion("account", "create", null) then a Perni ssi onCheck object with a nane
equal to "account" and act i on equal to "create" will be asserted into the working memory for
the duration of the permission check.

So what else is in the working memory? Besides the short-lived temporary facts asserted during
a permission check, there are some longer-lived objects in the working memory that stay there
for the entire duration of a user being authenticated. These include any

java. security. Princi pal objects that are created as part of the authentication process, plus
aorg.jboss. seam security. Rol e object for each of the roles that the user is a member of. It
is also possible to assert additional long-lived facts into the working memory by calling

Rul eBasedl dentity.instance().get SecurityContext().assertject(), passingthe
object as a parameter.

Getting back to our simple example, we can also notice that the first line of our LHS is prefixed
with c: . This is a variable binding, and is used to refer back to the object that is matched by the
condition. Moving onto the second line of our LHS, we see this:

Rol e(nane == "adm n")

This condition simply states that there must be a Rol e object with a name of "admin” within the
working memory. As mentioned, user roles are asserted into the working memory as long-lived
facts. So, putting both conditions together, this rule is essentially saying "I will fire if you are
checking for the cust oner : del et e permission and the user is a member of the adni n role".

So what is the consequence of the rule firing? Let's take a look at the RHS of the rule:

c.grant ()

The RHS consists of Java code, and in this case is invoking the gr ant () method of the ¢
object, which as already mentioned is a variable binding for the Per mi ssi onCheck object.
Besides the name and act i on properties of the Per ni ssi onCheck object, there is also a

gr ant ed property which is initially set to f al se. Calling grant () on a Per ni ssi onCheck sets
the gr ant ed property to t r ue, which means that the permission check was successful, allowing
the user to carry out whatever action the permission check was intended for.

6.3.1. Wildcard permission checks

It is possible to implement a wildcard permission check (which allows all actions for a given
permission name), by omitting the act i on constraint for the Per ni ssi onCheck in your rule, like
this:

rul e CanDoAnyt hi ngToCust oner sl f YouAr eAnAdmi n

when
c: Permi ssi onCheck(name == "custoner")
Rol e(nane == "adm n")

t hen

175

Chapter 12. Security

c.grant();
end;

This rule allows users with the admni n role to perform any action for any cust omer permission
check.

7. SSL Security

Seam includes basic support for serving sensitive pages via the HTTPS protocol. This is easily
configured by specifying a schene for the page in pages. xm . The following example shows
how the view / | ogi n. xht m is configured to use HTTPS:

<page viewid="/login. xhtm" scheme="https">

This configuration is automatically extended to both s: | i nk and s: but t on JSF controls, which
(when specifying the vi ew) will also render the link using the correct protocol. Based on the
previous example, the following link will use the HTTPS protocol because / | ogi n. xht nl is
configured to use it:

<s:link view="/1ogin.xhtm" val ue="Login"/>

Browsing directly to a view when using the incorrect protocol will cause a redirect to the same
view using the correct protocol. For example, browsing to a page that has scheme="ht t ps"
using HTTP will cause a redirect to the same page using HTTPS.

It is also possible to configure a default schene for all pages. This is actually quite important, as
you might only wish to use HTTPS for a few pages, and if no default scheme is specified then
the default behavior is to continue using the current scheme. What this means is that once you
enter a page with HTTPS, then HTTPS will continue to be used even if you navigate away to
other non-HTTPS pages (a bad thing!). So it is strongly recommended to include a default
schene, by configuring it on the default ("*") view:

<page viewid="*" scheme="http">

Of course, if none of the pages in your application use HTTPS then it is not required to specify a
default scheme.

8. Implementing a Captcha Test

Though strictly not part of the security API, it might be useful in certain circumstances (such as
new user registrations, posting to a public blog or forum) to implement a Captcha (Completely
Automated Public Turing test to tell Computers and Humans Apart) to prevent automated bots
from interacting with your application. Seam provides seamless integration with JCaptcha, an

176

Configuring the Captcha Servlet

excellent library for generating Captcha challenges. If you wish to use the captcha feature in
your application you need to include the jcaptcha-* jar file from the Seam lib directory in your
project, and register it in appl i cati on. xnl as a java module.

8.1. Configuring the Captcha Servlet

To get up and running, it is necessary to configure the Seam Resource Servlet, which will
provide the Captcha challenge images to your pages. This requires the following entry in
web. xm :

<servl et >

<servl et - name>Seam Resour ce Servl et </ servl et - name>

<servl et-cl ass>org. j boss. seam servl et. ResourceServl et </ servl et -cl ass>
</servl et>

<servl et - mappi ng>
<servl et - name>Seam Resour ce Servl et </ servl et - name>
<url - pattern>/seam resource/ *</url -pattern>

</ servl et - mappi ng>

8.2. Adding a Captchato a page

Adding a captcha challenge to a page is extremely easy. Seam provides a page-scoped
component, capt cha, which provides everything that is required, including built-in captcha
validation. Here's an example:

<di v>
<h: gr aphi cl mage val ue="/seanl r esour ce/ capt cha?#{captcha.id}"/>
</ div>

<di v>
<h: out put Label for="verifyCaptcha">Enter the above
| etters</h:out put Label >
<h:i nput Text id="verifyCaptcha" val ue="#{captcha.response}"
requi red="true"/>
<di v class="validationError"><h: nessage for="verifyCaptcha"/></div>
</ di v>

That's all there is to it. The gr aphi cl mage control displays the Captcha challenge, and the
i nput Text receives the user's response. The response is automatically validated against the
Captcha when the form is submitted.

177

178

Chapter 13.

Internationalization and themes

Seam makes it easy to build internationalized applications by providing several built-in
components for handling multi-language Ul messages.

1. Locales

Each user login session has an associated instance of j ava. uti | . Local e (available to the
application as a session-scoped component named | ocal e). Under normal circumstances, you
won't need to do any special configuration to set the locale. Seam just delegates to JSF to
determine the active locale:

« If there is a locale associated with the HTTP request (the browser locale), and that locale is in
the list of supported locales from f aces- confi g. xnl , use that locale for the rest of the
session.

» Otherwise, if a default locale was specified in the f aces- confi g. xnl , use that locale for the
rest of the session.

« Otherwise, use the default locale of the server.

It is possible to set the locale manually via the Seam configuration properties

org.j boss. seam core. | ocal eSel ector. | anguage,

org.j boss.seam core. | ocal eSel ector. country and

org.j boss. seam core. | ocal eSel ector. vari ant, but we can't think of any good reason to
ever do this.

It is, however, useful to allow the user to set the locale manually via the application user
interface. Seam provides built-in functionality for overriding the locale determined by the
algorithm above. All you have to do is add the following fragment to a form in your JSP or
Facelets page:

<h: sel ect OneMenu val ue="#{| ocal eSel ect or. | anguage}" >
<f:selectltemitenliabel ="English" itenval ue="en"/>
<f:selectltemiteniabel =" Deutsch" itenval ue="de"/>
<f:selectltemitenlLabel ="Francai s" itenVal ue="fr"/>

</ h: sel ect OneMenu>

<h: commandBut t on acti on="#{l ocal eSel ector. sel ect}"

val ue="#{ messages[' ChangelLanguage']}"/>

Or, if you want a list of all supported locales from f aces- confi g. xni , just use:

<h: sel ect OneMenu val ue="#{| ocal eSel ector. | ocal eStri ng}">
<f:sel ectltens val ue="#{l ocal eSel ect or. support edLocal es}"/ >
</ h: sel ect OneMenu>
<h: commandBut t on acti on="#{l ocal eSel ector. sel ect}"
val ue="#{messages[' ChangelLanguage']}"/>

179

Chapter 13. Internationalization and themes

When this use selects an item from the drop-down, and clicks the button, the Seam and JSF
locales will be overridden for the rest of the session.

2. Labels

JSF supports internationalization of user interface labels and descriptive text via the use of
<f: 1 oadBundl e />. You can use this approach in Seam applications. Alternatively, you can
take advantage of the Seam nmessages component to display templated labels with embedded
EL expressions.

2.1. Defining labels

Each login session has an associated instance of j ava. uti | . Resour ceBundl e (available to the
application as a session-scoped component named or g. j boss. seam cor e. r esour ceBundl e).
You'll need to make your internationalized labels available via this special resource bundle. By
default, the resource bundle used by Seam is named nessages and so you'll need to define
your labels in files named nessages. properti es, nessages_en. properti es,
messages_en_AU. properti es, etc. These files usually belong in the WEB- | NF/ cl asses
directory.

So, in nessages_en. properti es:

Hel | o=Hel | o

And in nessages_en_AU. properti es:

Hel | 0=G day

You can select a different name for the resource bundle by setting the Seam configuration
property named or g. j boss. seam cor e. r esour ceBundl e. bundl eNanes. You can even specify
a list of resource bundle names to be searched (depth first) for messages.

<cor e: resour ce- bundl e>
<cor e: bundl e- nanes>
<val ue>myconpany_nessages</ val ue>
<val ue>st andar d_nessages</ val ue>
</ cor e: bundl e- nanes>
</ core: resource- bundl e>

If you want to define a message just for a particular page, you can specify it in a resource
bundle with the same name as the JSF view id, with the leading / and trailing file extension
removed. So we could put our message in wel cone/ hel | o_en. properti es if we only needed
to display the message on / wel cone/ hel | 0. j sp.

180

Displaying labels

You can even specify an explicit bundle name in pages. xm :

<page vi ewid="/wel cone/ hel |l 0.jsp" bundl e="Hel | oMessages"/ >

Then we could use messages defined in Hel | oMessages. properties on
/ wel cone/ hel | 0. j sp.

2.2. Displaying labels

If you define your labels using the Seam resource bundle, you'll be able to use them without
having to type <f : | oadBundl e ... /> on every page. Instead, you can simply type:

<h: out put Text val ue="#{messages['Hello']}"/>

or:

<h: out put Text val ue="#{nessages. Hel | 0}"/ >

Even better, the messages themselves may contain EL expressions:

Hel | o=Hel | o, #{user.firstNane} #{user.| astNane}

Hel | 0=G day, #{user.firstNanme}

You can even use the messages in your code:

@n private Map<String, String> nmessages;

@n("#{nmessages['Hello']}") private String hel | oMessage;

2.3. Faces messages

The f acesMessages component is a super-convenient way to display success or failure
messages to the user. The functionality we just described also works for faces messages:

@\anme("hel | 0")

@>t at el ess

public class HelloBean inplenents Hello {
@n FacesMessages facesMessages;

public String saylt() {
f acesMessages. addFr onResour ceBundl e(" Hel | 0") ;

}

181

Chapter 13. Internationalization and themes

This will display Hel | o, Gavin King or G day, Gavi n, depending upon the user's locale.

3. Timezones

There is also a session-scoped instance of j ava. uti | . Ti mrezone, named

org. j boss. seam core. ti mezone, and a Seam component for changing the timezone named
org.j boss. seam core. ti mezoneSel ect or. By default, the timezone is the default timezone of
the server. Unfortunately, the JSF specification says that all dates and times should be
assumed to be UTC, and displayed as UTC, unless a timezone is explicitly specified using

<f: convert Dat eTi me>. This is an extremely inconvenient default behavior.

Seam overrides this behavior, and defaults all dates and times to the Seam timezone. In
addition, Seam provides the <s: conver t Dat eTi me> tag which always performs conversions in
the Seam timezone.

4. Themes

Seam applications are also very easily skinnable. The theme API is very similar to the
localization API, but of course these two concerns are orthogonal, and some applications
support both localization and themes.

First, configure the set of supported themes:

<t hene: t heme- sel ect or cooki e- enabl ed="true" >
<t hene: avai | abl e-t henes>
<val ue>def aul t </ val ue>
<val ue>accessi bl e</ val ue>
<val ue>pri nt abl e</ val ue>
</t hene: avai | abl e-t henes>
</t hene: t henme- sel ect or >

Note that the first theme listed is the default theme.

Themes are defined in a properties file with the same name as the theme. For example, the
def aul t theme is defined as a set of entries in def aul t. properti es. For example,
def aul t. properti es might define:

css ../screen.css
tenmpl ate tenpl ate. xhtm

Usually the entries in a theme resource bundle will be paths to CSS styles or images and
names of facelets templates (unlike localization resource bundles which are usually text).

Now we can use these entries in our JSP or facelets pages. For example, to theme the

182

Persisting locale and theme preferences via

stylesheet in a facelets page:

<link href="#{theme.css}" rel ="styl esheet" type="text/css" />

Most powerfully, facelets lets us theme the template used by a <ui : conposi ti on>:

<ui : conposi tion xm ns="http://ww. w3. org/ 1999/ xht m "
xm ns: ui ="http://java. sun. con j sf/facel et s"
xm ns: h="http://java. sun. com j sf/htm "
xm ns: f="http://java. sun. conm j sf/core"
tenpl at e="#{t hene. tenpl ate}" >

Just like the locale selector, there is a built-in theme selector to allow the user to freely switch
themes:

<h: sel ect OneMenu val ue="#{t hemeSel ect or. t hene}" >
<f:selectltens val ue="#{t heneSel ector.thenes}"/>
</ h: sel ect OneMenu>
<h: conmandButt on acti on="#{t heneSel ector.sel ect}" val ue="Sel ect Theme"/>

5. Persisting locale and theme preferences via cookies

The locale selector, theme selector and timezone selector all support persistence of locale and
theme preference to a cookie. Simply set the cooki e- enabl ed configuration property:

<t here: t henme- sel ect or cooki e- enabl ed="tr ue" >
<t hene: avai | abl e-t henes>
<val ue>def aul t </ val ue>
<val ue>accessi bl e</ val ue>
<val ue>pri nt abl e</ val ue>
</t hene: avai | abl e-t henes>
</t hene: t hene-sel ect or >

<core: |l ocal e-sel ect or cooki e-enabl ed="true"/>

183

184

Chapter 14.

Seam Text

Collaboration-oriented websites require a human-friendly markup language for easy entry of
formatted text in forum posts, wiki pages, blogs, comments, etc. Seam provides the

<s: f or mat t edText / > control for display of formatted text that conforms to the Seam Text
language. Seam Text is implemented using an ANTLR-based parser. You don't need to know
anything about ANTLR to use it, however.

1. Basic fomatting
Here is a simple example:

It's easy to make *bold text*, /italic text/, |nopbnospace|
~del eted text~, super”scripts”® or _underlines._.

If we display this using <s: f or mat t edText / >, we will get the following HTML produced:

<p>

It's easy to make bold text <i>italic text</i> <tt>nonospace</tt>
del et ed t ext </ del >, super^{scripts} or <u>underlines</u>

</ p>

We can use a blank line to indicate a new paragraph, and + to indicate a heading:

+This is a big heading
You /nust/ have sone text follow ng a headi ng!

++This is a smaller heading
This is the first paragraph. W can split it across nultiple
lines, but we nust end it with a blank Iine.

This is the second paragraph.

(Note that a simple newline is ignored, you need an additional blank line to wrap text into a new
paragraph.) This is the HTML that results:

<h1>This is a bi g headi ng</hl>

<p>

You <i>nust</i> have sone text follow ng a headi ng!
</ p>

<h2>This is a smal | er headi ng</h2>

<p>

This is the first paragraph. W can split it across nultiple
lines, but we nust end it with a blank Iine.

</ p>

<p>

185

Chapter 14. Seam Text

This is the second paragraph
</ p>

Ordered lists are created using the # character. Unordered lists use the = character:

An ordered |ist:

#first item
#second item
#and even the /third/ item

An unordered list:

=an item
=anot her item

<p>
An ordered |ist:
</ p>

first itenc/li>

second itenx/li>

and even the <i>third</i> itenx/li>
</ ol >

<p>
An unordered |ist:
</ p>

an itenx/li>

<l i>another itenx/|i>
</ ul >

Quoted sections should be surrounded in double quotes:

The ot her guy sai d:

"Nyeah nyeah- nee
[nyeah/ nyeah!"

But what do you think he neans by "nyeah-nee"?

<p>
The ot her guy sai d:
</ p>

<g>Nyeah nyeah- nee
<i >nyeah</i > nyeah! </ g>

186

Entering code and text with special

<p>
But what do you think he neans by <g>nyeah-nee</qg>?
</ p>

2. Entering code and text with special characters

Special characters such as *, | and #, along with HTML characters such as <, > and & may be
escaped using \ :

You can wite down equations |ike 2*3\=6 and HTM. t ags
| i ke \<body\> using the escape character: \\.

<p>
You can wite down equations |ike 2*3=6 and HTM. tags
|'i ke <body> using the escape character: \.

</ p>

And we can quote code blocks using backticks:

My code doesn't work:

“for (int i=0; i<100; i--)
{

doSonet hi ng() ;
}

Any i deas?

<p>
My code doesn't work:
</ p>

<pre>for (int i=0; i<100; i--)
{
doSonet hi ng() ;

} </ pre>
<p>

Any i deas?
</ p>

3. Links

A link may be created using the following syntax:

187

Chapter 14. Seam Text

Go to the Seam website at [=>http://jboss. com products/sean .

Or, if you want to specify the text of the link:

Go to [the Seam website=>http://jboss. com products/sean .

For advanced users, it is even possible to customize the Seam Text parser to understand
wikiword links written using this syntax.

4. Entering HTML

Text may even include a certain limited subset of HTML (don't worry, the subset is chosen to be
safe from cross-site scripting attacks). This is useful for creating links:

You might want to link to sonet hi ng
cool , or even include an image: <ing src="/|ogo.jpg"/>

And for creating tables:

<t abl e>
<tr><td>First nane: </td><td>Gvi n</td></tr>
<tr><td>Last nane: </td><td>Ki ng</td></tr>
</t abl e>

But you can do much more if you want!

188

Chapter 15.

IText PDF generation

Seam now includes an component set for generating documents using iText. The primary focus
of Seam's iText document support is for the generation of PDF doucuments, but Seam also
offers basic support for RTF document generation.

1. Using PDF Support

iText support is provided by j boss- seam pdf . j ar. This JAR contains the iText JSF controls,
which are used to construct views that can render to PDF, and the DocumentStore component,
which serves the rendered documents to the user. To include PDF support in your application,
included j boss- seam pdf . j ar in your WEB- | NF/ | i b directory along with the iText JAR file.
There is no further configuration needed to use Seam's iText support.

The Seam iText module requires the use of Facelets as the view technology. Future versions of
the library may also support the use of JSP. Additionally, it requires the use of the seam-ui
package.

The exanpl es/ i t ext project contains an example of the PDF support in action. It demonstrates
proper deployment packaging, and it contains a number examples that demonstrate the key
PDF generation features current supported.

2. Creating a document

Documents are generated by facelets documents using tags in the

http://jboss. conl product s/ seanf pdf namespace. Documents should always have the
docunent tag at the root of the document. The docunent tag prepares Seam to generate a
document into the DocumentStore and renders an HTML redirect to that stored content. The
following is a a small PDF document consisting only a single line of text:

<p: document xm ns: p="http://jboss. con products/seant pdf ">
The docunent goes here
</ p: docunent >

2.1. p:document

The p: docunent tag supports the following attributes:

type
The type of the document to be produced. Valid values are PDF, RTF and HTM. modes.
Seam defaults to PDF generation, and many of the features only work correctly when
generating PDF documents.

pageSi ze

189

Chapter 15. iText PDF generation

The size of the page to be generate. The most commonly used values would be LETTER and
A4, A full list of supported pages sizes can be found in com | owagi e. t ext . PageSi ze class.
Alternatively, pageSize can provide the width and height of the page directly. The value
"612 792", for example, is equizalent to the LETTER page size.

orientation
The orientation of the page. Valid values are portrait and | andscape. In landscape mode,
the height and width page size values are reversed.

mar gi ns
The left, right, top and bottom margin values.

margi nM rroring
Indicates that margin settings should be reversed an alternating pages.

Document metadata is also set as attributes of the document tag. The following metadata fields
are supported:

title
subj ect
keywor ds
aut hor

creator

3. Basic Text Elements

Useful documents will need to contain more than just text; however, the standard Ul
components are geared towards HTML generation and are not useful for generating PDF
content. Instead, Seam provides a special Ul components for generating suitable PDF content.
Tags like <p: i mage> and <p: par agr aph> are the basic foundations of simple documents. Tags
like <p: f ont > provide style information to all the content surrounging them.

<p: docunent xm ns: p="http://jboss. cont products/seani pdf">
<p:inmage alignment="right" wap="true" resource="/10go.jpg" />
<p:font size="24">
<p: par agr aph spaci ngAfter="50">M/ First Docunent</p: paragraph>
</ p: font>

<p: par agr aph al i gnnent ="j ustify">
This is a sinple document. It isn't very fancy.
</ p: par agr aph>
</ p: docunent >

190

p:text

3.1. p:paragraph

Most uses of text should be sectioned into paragraphs so that text fragments can be flowed,
formatted and styled in logical groups.

firstLinel ndent

ext r aPar agr aphSpace

| eadi ng

mul ti pliedLeadi ng

spaci ngBef ore
The blank space to be inserted before the element.

spaci ngAfter
The blank space to be inserted after the element.

i ndent ati onLeft
i ndent ati onRi ght

keepToget her

3.2. p:text

The t ext tag allows text fragments to be produced from application data using normal JSF
converter mechanisms. It is very similar to the out put Text tag used when rendering HTML
documents. Here is an example:

<p: par agr aph>
The item costs <p:text val ue="#{product.price}">
<f:convert Nunmber type="currency" currencySynbol ="$"/>
</ p: text>
</ p: par agr aph>

val ue
The value to be displayed. This will typically be a value binding expression.

3.3. p:font

Font declarations have no direct

fami | yName

191

Chapter 15. iText PDF generation

The font family. One of: COURI ER, HELVETI CA, TI MES- ROVAN, SYMBOL or ZAPFDI NGBATS.

si ze
The point size of the font.

style
The font styles. Any combination of : NORVAL, BOLD, | TALI C, OBLI QUE, UNDERLI NE,
LI NE- THROUGH

3.4. p:newPage

p: newPage inserts a page break.
3.5. p:image

p: i mage inserts an image into the document. Images can be be loaded from the classpath or
from the web application context using the r esour ce attribute.

<p:i mage resource="/jboss.jpg" />

Resources can also be dynamically generated by application code. The i nageDat a attribute can
specify a value binding expression whose value is a j ava. awt . | mage object.

<p: i nage i mageDat a="#{i mages. chart}" />

resource
The location of the image resource to be included. Resources should be relative to the
document root of the web application.

i mageDat a
A method expression binding to an application-generated image.

rotation
The rotation of the image in degrees.

hei ght
The height of the image.

wi dt h
The width of the image.

al i gnnent
The alignment of the image. (see Section 8.2, “Alignment Values” for possible values)

alt
Alternative text representation for the image.

192

p:anchor

i ndent ati onLeft
i ndent at i onRi ght

spaci ngBef ore
The blank space to be inserted before the element.

spaci ngAfter
The blank space to be inserted after the element.

wi dt hPer cent age
initial Rotation
dpi

scal ePer cent
The scaling factor (as a percentage) to use for the image. This can be expressed as a
single percentage value or as two percentage values representing separate x and y scaling
percentages.

wr ap

under | yi ng

3.6. p:anchor

p: anchor defines clickable links from a document. It supports the following attributes:

nane
The name of an in-document anchor destination.

reference
The destination the link refers to. Links to other points in the document should begin with a
"#". For example, "#link1" to refer to an anchor postion with a narme of | i nk1. Links may also
be a full URL to point to a resource outside of the document.

4. Headers and Footers

4.1. p:header and p:footer

The p: header and p: f oot er components provide the ability to place header and footer text on
each page of a generated document, with the exception of the first page. Header and footer
declarations should appear near the top of a document.

al i gnnent
The alignment of the header/footer box section. (see Section 8.2, “Alignment Values” for

193

Chapter 15. iText PDF generation

alignment values)

backgr oundCol or
The background color of the header/footer box. (see Section 8.1, “Color Values” for color
values)

bor der Col or
The border color of the header/footer box. Individual border sides can be set using
bor der Col or Lef t, bor der Col or Ri ght, bor der Col or Top and bor der Col or Bot t om(see
Section 8.1, “Color Values” for color values)

bor der W dt h
The width of the border. Inidvidual border sides can be specified using bor der W dt hLef t,
bor der W dt hRi ght , bor der W dt hTop and bor der W dt hBot t om

4.2. p:pageNumber

The current page number can be placed inside of a header or footer using the p: pageNunber
tag. The page number tag can only be used in the context of a header or footer and can only be
used once.

5. Chapters and Sections

If the generated document follows a book/article structure, the p: chapt er and p: secti on tags
can be used to provide the necessary structure. Sections can only be used inside of chapters,
but they may be nested arbitrarily deep. Most PDF viewers provide easy navigation between
chapters and sections in a document.

<p: docunment xm ns: p="http://jboss. conl product s/ seant pdf "
title="Hell o">

<p: chapt er nunber="1">
<p: title><p: paragraph>Hel | o</ p: par agraph></p:titl e>
<p: par agr aph>Hel | o #{user. name}! </ p: par agr aph>

</ p: chapt er >

<p: chapt er nunber="2">
<p:title><p: paragraph>Goodbye</ p: paragraph></p:title>
<p: par agr aph>Goodbye #{user. nane}. </ p: par agr aph>

</ p: chapt er >

</ p: docunent >

5.1. p:chapter and p:section

nunber

194

p:title

The chapter number. Every chapter should be assigned a chapter number.

nunber Dept h
The depth of numbering for section. All sections are numbered relative to their surrounding
chapter/sections. The fourth section of of the first section of chapter three would be section
3.1.4, if displayed at the default number depth of three. To omit the chapter number, a
number depth of 2 should be used. In that case, the section number would be displayed as
1.4.

5.2. p:title

Any chapter or section can contain a p: ti t1 e. The title will be displayed next to the
chapter/section number. The body of the title may contain raw text or may be a p: par agr aph.

6. Lists

List structures can be displayed using the p: 1'i st and p: | i st 1t emtags. Lists may contain
arbitrarily-nested sublists. List items may not be used outside of a list. he following document
uses the ui : r epeat tag to to display a list of values retrieved from a Seam component.

<p: docunment xm ns: p="http://jboss.com product s/ sean pdf"
xm ns: ui ="http://java. sun.con j sf/facel ets"
title="Hello">
<p:list style="nunbered">
<ui : repeat val ue="#{docunments}" var="doc">
<p:listltenmr#{doc. nane}</p:listltenr
</ ui : repeat >
</p:list>
</ p: docunent >

6.1. p:list
p: | i st supports the following attributes:
style

The ordering/bulleting style of list. One of: NUMBERED, LETTERED, GREEK, ROVAN,
ZAPFDI NGBATS, ZAPFDI NGBATS_NUMBER. If no style is given, the list items are bulleted.

l'i st Synbol
For bulleted lists, specifies the bullet symbol.

i ndent
The indentation level of the list.

| ower Case
For list styles using letters, indicates whether the letters should be lower case.

195

Chapter 15. iText PDF generation

char Nunber
For ZAPFDINGBATS, indicates the character code of the bullet character.

nunber Type
For ZAPFDINGBATS NUMBER, indicates the numbering style.

6.2. p:listlitem

p: I'i st1temsupports the following attributes:
al i gnnent
The alignment of the list item. (See Section 8.2, “Alignment Values” for possible values)

i ndent ati onLeft
The left indentation amount.

i ndent ati onRi ght
The right indentation amount.

I'i st Synbol
Overrides the default list symbol for this list item.

7. Tables

Table structures can be created using the p: t abl e and p: cel | tags. Unlike many table
structures, there is no explicit row declaration. If a table has 3 columns, then every 3 cells will

automatically form a row. Header and footer rows can be declared, and the headers and footers

will be repeated in the event a table structure spans multiple pages.

<p: docunent xm ns: p="http://jboss.com products/sean pdf"
xm ns: ui ="http://java. sun. con j sf/facel et s"
title="Hello">
<p:tabl e col ums="3" header Rows="1">
<p: cel | >nanme</ p: cel | >
<p: cel | >owner </ p: cel | >
<p: cel | >si ze</ p: cel | >
<ui : repeat val ue="#{docunments}" var="doc">
<p: cel | >#{doc. nane} </ p: cel | >
<p: cel | >#{doc. user. nane} </ p: cel | >
<p: cel | >#{ doc. si ze} </ p: cel | >
</ ui : repeat >
</ p:tabl e>
</ p: docunent >

7.1. p:table

196

p:cell

p: t abl e supports the following attributes.
col ums
The number of columns (cells) that make up a table row.

wi dt hs
The relative widths of each column. There should be one value for each column. For
example: widths="2 1 1" would indicate that there are 3 columns and the first column should
be twice the size of the second and third column.

header Rows
The initial number of rows which are considered to be headers or footer rows and should be
repeated if the table spans multiple pages.

f oot er Rows
The number of rows that are considered to be footer rows. This value is subtracted from the
header Rows value. If document has 2 rows which make up the header and one row that
makes up the footer, header Rows should be set to 3 and f oot er Rows should be set to 1

wi dt hPer cent age
The percentage of the page width that the table spans.

hori zont al Al i gnment
The horizontal alignment of the table. (See Section 8.2, “Alignment Values” for possible
values)

ski pFi r st Header
runDirection

| ockedW dt h
split Rows

spaci ngBef ore
The blank space to be inserted before the element.

spaci ngAfter
The blank space to be inserted after the element.

ext endLast Row
header sl nEvent
splitLate

keepToget her

7.2. p:cell

197

Chapter 15. iText PDF generation

p: cel | supports the following attributes.

col span
Cells can span more than one column by declaring a col span greater than 1. Tables do not
have the ability to span across multiple rows.

hori zont al Al i gnment
The horizontal alignment of the cell. (see Section 8.2, “Alignment Values” for possible
values)

vertical Al i gnment
The vertical alignment of the cell. (see Section 8.2, “Alignment Values” for possible values)

paddi ng
Padding on a given side can also be specified using paddi ngLef t , paddi ngRi ght,
paddi ngTop and paddi ngBot t om

useBor der Paddi ng
| eadi ng

mul ti pliedLeadi ng
i ndent
vertical Al i gnment
ext raPar agr aphSpace
fi xedHei ght

noWw ap

nmi ni munHei ght

fol | owi ngl ndent

ri ghtl ndent
spaceChar Rati o
runbDirection

ar abi cOpti ons
useAscender
grayFill

rotation

198

Color Values

8. Document Constants

This section documents some of the constants shared by attributes on multiple tags.
8.1. Color Values

Seam documents do not yet support a full color specification. Currently, only named colors are
supported. They are: whi t e, gray, | i ght gray, dar kgr ay, bl ack, r ed, pi nk, yel | ow, gr een,
magent a, cyan and bl ue.

8.2. Alighment Values

Where alignment values are used, the Seam PDF supports the following horizontal alignment
values: | eft, right,center,justifyandjustifyall. The vertical alignment values are t op,
nm ddl e, bott om and basel i ne.

9. Configuring iText

Document generation works out of the box with no additional configuration needed. However,
there are a few points of configuration that are needed for more serious applications.

The default implementation serves PDF documents from a generic URL, / seam doc. seam
Many browsers (and users) would prefer to see URLSs that contain the actual PDF name like
/ myDocunent . pdf . This capability requires some configuration. To serve PDF files, all *.pdf
resources should be mapped to the Seam Servlet Filter and to the DocumentStoreServlet:

<filter>
<filter-name>Seam Servlet Filter</filter-name>
<filter-class>org.jboss. seam servl et. SeanBervl etFilter</filter-class>
</[filter>

<filter-mpping>
<filter-name>Seam Servlet Filter</filter-nanme>
<url -pattern>*. pdf </url -pattern>
</filter-mappi ng>

<servl et >

<servl et - nane>Docunent Store Servl et</servl et-nane>

<servl et -cl ass>org. j boss. seam pdf . Docunent St or eSer vl et </ ser vl et - cl ass>
</servl et>

<servl et - mappi ng>
<servl et - name>Docunent Store Servl et</servl et-nanme>
<url -pattern>*. pdf </url -pattern>

</ servl et - mappi ng>

The useExt ensi ons option on the document store component completes the functionality by
instructing the document store to generate URLSs with the correct filename extension for the
document type being generated.

199

Chapter 15. iText PDF generation

<conmponents xm ns="http://jboss. com product s/ sean’ conponent s"
xm ns: pdf ="http://jboss. conl product s/ seant pdf ">
<pdf: docunent St or e useExt ensi ons="true" />
</ conponent s>

Generated documents are stored in conversation scope and will expire when the conversation
ends. At that point, references to the document will be invalid. To You can specify a default view
to be shown when a document does not exist using the err or Page property of the
documentStore.

<pdf: docunent St or e useExt ensi ons="true" errorPage="/pdf M ssi ng. sean’ />

10. iText links

For further information on iText, see:

¢ iText Home Page1

« iText in Action®

1 http:/mvww.lowagie.com/iText/
2 http://www.manning.com/lowagie/

200

http://www.lowagie.com/iText/
http://www.lowagie.com/iText/
http://www.manning.com/lowagie/
http://www.manning.com/lowagie/

Chapter 16.

Email

Seam now includes an optional components for templating and sending emails.

Email support is provided by j boss- seam nai | . j ar. This JAR contains the mail JSF controls,
which are used to construct emails, and the nai | Sessi on manager component.

The examples/mail project contains an example of the email support in action. It demonstrates
proper packaging, and it contains a number of example that demonstrate the key features
currently supported.

1. Creating a message

You don't need to learn a whole new templating language to use Seam Mail—an email is just
facelet!

<m nmessage xm ns="http://ww W3. or g/ 1999/ xht m "
xm ns: me"http://jboss. con product s/ seanf nai | "
xm ns: h="http://java. sun. com jsf/htm ">

<m from name="Pet er" address="pet er @xanpl e. cont' />
<m to name="#{person. firstnanme}

#{ person. | ast name}" >#{ per son. addr ess} </ mt o>
<m subj ect >Try out Seanl </ m subj ect >

<m body>
<p><h: out put Text val ue="Dear #{person.firstnane}" />, </p>
<p>You can try out Seam by visiting
http://| abs. j boss. com j bossseanx/ a>. </ p>

<p>Regards, </ p>
<p>Pet er </ p>

</ m body>

</ m message>

The <m nessage> tag wraps the whole message, and tells Seam to start rendering an email.
Inside the <m nmessage> tag we use an <m f r onr tag to set who the message is from, a <mt o>
tag to specify a sender (notice how we use EL as we would in a normal facelet), and a

<m subj ect > tag.

The <m body> tag wraps the body of the email. You can use regular HTML tags inside the body
as well as JSF components.

So, now you have your email template, how do you go about sending it? Well, at the end of
rendering the m nessage the mai | Sessi on is called to send the email, so all you have to do is
ask Seam to render the view:

@ n(create=true)
private Renderer renderer;

201

Chapter 16. Email

public void send() {
try {
renderer.render ("/sinple.xhtm");
f acesMessages. add("Emai | sent successfully");

}
catch (Exception e) {

f acesMessages. add("Emai | sending failed: " + e.getMessage());
}

If, for example, you entered an invalid email address, then an exception would be thrown, which
is caught and then displayed to the user.

1.1. Attachments

Seam makes it easy to attach files to an email. It supports most of the standard java types used
when working with files.

If you wanted to email the j boss- seam nai | . j ar:

<m attachnent val ue="/WEB-INF/|i b/jboss-seamnuil.jar"/>

Seam will load the file from the classpath, and attach it to the email. By default it would be
attached as j boss-seam nwi | . j ar; if you wanted it to have another name you would just add
the fi | eNane attribute:

<m attachment val ue="/WEB-INF/|ib/jboss-seamnail .jar"
fil eName="t hi s-i s-so-cool .jar"/>

You could also attach aj ava.io. File,ajava. net. URL:

<m att achment val ue="#{nunbers}"/>

Orabyte[] orajava.io.lnputStream

<m at t achnent val ue="#{person. photo}" content Type="i nage/ png"/ >

You'll notice that for a byt e[] and aj ava. i o. I nput St r eamyou need to specify the MIME type
of the attachment (as that information is not carried as part of the file).

And it gets even better, you can attach a Seam generated PDF, or any standard JSF view, just
by wrapping a <m at t achment > around the normal tags you would use:

<m attachment fileNane="tiny. pdf">
<p: document >

202

HTML/Text alternative part

A very tiny PDF
</ p: docunent >
</ m at t achnent >

If you had a set of files you wanted to attach (for example a set of pictures loaded from a
database) you can just use a <ui : r epeat >:

<ui : repeat val ue="#{peopl e}" var="person">
<m at t achnent val ue="#{person. photo}" content Type="i nage/j peg"
fil eName="#{person. firstnane}_ #{person.|astnane}.jpg"/>

</ ui : repeat >

1.2. HTML/Text alternative part

Whilst most mail readers nowadays support HTML, some don't, so you can add a plain text
alternative to your email body:

<m body>

<f:facet nane="alternative">Sorry, your enmnil reader can't show our
fancy email,
pl ease go to http://| abs.jboss. conljbossseamto expl ore Seam </f: facet>
</ m body>

1.3. Multiple recipients

Often you'll want to send an email to a group of recipients (for example your users). All of the
recipient mail tags can be placed inside a <ui : r epeat >:

<ui : repeat val ue="#{all Users} var="user">

<mto name="#{user.firstnane} #{user.!|astnanme}"
addr ess="#{user . emai | Address}" />
</ ui : repeat >

1.4. Multiple messages

Sometimes, however, you need to send a slightly different message to each recipient (e.g. a
password reset). The best way to do this is to place the whole message inside a <ui : r epeat >:

<ui : repeat val ue="#{peopl e}" var="p">
<m message>
<m from nanme="#{ per son. first nane}
#{ per son. | ast name}" >#{ per son. addr ess} </ m fron®
<mto name="#{p.firstnane}">#{p. address} </ mto>

</ m message>
</ ui : repeat >

203

Chapter 16. Email

1.5. Templating

The mail templating example shows that facelets templating Just Works with the Seam mail
tags.

Our t enpl at e. xht nl contains:

<m nessage>
<m f rom nane="Seani address="do-not-repl y@ boss. com' />
<m to name="#{person. firstnane}
#{ person. | ast name}" >#{ per son. addr ess} </ mt o>
<m subj ect >#{ subj ect } </ m subj ect >
<m body>
<htm >
<body>
<ui :insert nanme="body">This is the default body, specified by
the tenpl ate.
</ui:insert>
</ body>
</htm >
</ m body>
</ m message>

Ourtenpl ati ng. xht nl contains:

<ui : par am nane="subj ect" val ue="Tenpl ating with Seam Mail"/>
<ui : defi ne nane="body" >
<p>Thi s exanpl e denpbnstrates that you can easily use <i>facelets
tenplating</i> in emil!</p>
</ ui : defi ne>

1.6. Internationalisation

Seam supports sending internationalised messages. By default, the encoding provided by JSF
is used, but this can be overridden on the template:

<m nmessage charset =" UTF-8">

</ m message>

The body, subject and recipient (and from) name will be encoded. You'll need to make sure
facelets uses the correct charset for parsing your pages by setting encoding of the template:

<?xm version="1.0" encodi ng="UTF-8"?>

1.7. Other Headers

Sometimes you'll want to add other headers to your email. Seam provides support for some

204

Receiving emails

(see Section 4, “Tags”). For example, we can set the importance of the email, and ask for a
read receipt:

<m nessage xm ns: me"http://jboss. conl product s/ seani nai | "
i mpor t ance="1 ow'
request ReadRecei pt ="true"/>

Otherise you can add any header to the message using the <m header > tag:

<m header nane="X-Sent - Fron{ val ue="JBoss Seani/ >

2. Receiving emails

If you are using EJB then you can use a MDB (Message Driven Bean) to receive email. Seam

comes with an improved version of mai | -ra. rar as distributed in JBoss AS; until the

improvements make there way into a released version of JBoss AS, replacing the default r ar

with the one distributed with Seam is recommended.

You can configure it like this:

@kssageDri ven(acti vati onConfi g={

@Act i vat i onConfi gProperty(propertyNane="mail Server",
pr opertyVal ue="1 ocal host"),

@Act i vati onConf i gProperty(propertyNane="nai | Fol der",
pr opertyVal ue="1NBOX"),

@Act i vati onConf i gProperty(propertyNane="st or eProt ocol ",
pr opertyVal ue="pop3"),

@\ct i vat i onConf i gProperty(propertyName="user Nane",
propertyVal ue="seanl'),

@Act i vati onConf i gProperty(propertyNanme="password",
pr oper t yVal ue="seant')
}
@resour ceAdapter("mail-ra.rar")
@Nanme(" mai | Li stener")
public class MilListener VDB i npl enments Mail Li stener {

@n(create=true)
private O derProcessor orderProcessor;

public void onMessage(Message nmessage) {
/'l Process the nmessage
or der Processor. process(nessage. get Subj ect());

Each message received will cause onMessage(Message nmessage) to be called. Most seam

annotations will work inside a MDB but you musn't access the persistence context.

205

Chapter 16. Email

You can find more information on the default mai | -ra. rar at
http://wiki.jboss.org/wiki/Wiki.jsp?page=InboundJavaMail. The version distributed with Seam
also includes a debug property to enable JavaMail debugging, a f | ush property (by default true)
to disable flushing a POP3 mailbox after successfullying delivering a message to your MDB and
a port property to override the default TCP port. Beware that the api for this may be altered as
changes make there way into JBoss AS.

If you aren't using JBoss AS you can still use mai | -ra. rar (included with Seam in the mail
directory), or you may find your application server includes a similar adapter.

3. Configuration

To include Email support in your application, include j boss-seam nai | . j ar in your
WEB-INF/lib directory. If you are using JBoss AS there is no further configuration needed to use
Seam's email support. Otherwise you need to make sure you have the JavaMail API, an
implementation of the JavaMail API present (the API and impl used in JBoss AS are distributed
with seam as |i b/ mai | . j ar), and a copy of the Java Activation Framework (distributed with
seamaslib/activation.jar.

The Seam Email module requires the use of Facelets as the view technology. Future versions of
the library may also support the use of JSP. Additionally, it requires the use of the seam-ui
package.

The mai | Sessi on component uses JavaMalil to talk to a 'real' SMTP server.

3.1. mai | Sessi on

A JavaMail Session may be available via a JNDI lookup if you are working in an JEE
environment or you can use a Seam configured Session.

The mailSession component's properties are described in more detail in Section 8, “Mail-related
components”.

3.1.1. INDI lookup in JBoss AS

The JB0sSSAS depl oy/ mai | - servi ce. xm configures a JavaMail session binding into JNDI.
The default service configuration will need altering for your network.
http://wiki.jboss.org/wiki/Wiki.jsp?page=JavaMail describes the service in more detail.

<conmponents xm ns="http://jboss. com product s/ sean conponent s"
xm ns: core="http://jboss. conf product s/ seani cor e"
xm ns: mai | ="http://jboss. con product s/ seant mai | ">

<mai | : mai | - sessi on session-j ndi - nane="j ava:/Mail"/>

</ conponent s>

Here we tell Seam to get the mail session bound to j ava: / Mai | from JNDI.

206

http://wiki.jboss.org/wiki/Wiki.jsp?page=InboundJavaMail
http://wiki.jboss.org/wiki/Wiki.jsp?page=JavaMail

Tags

3.1.2. Seam configured Session

A malil session can be configured via conponent s. xni . Here we tell Seam to use
snt p. exanpl e. comas the smtp server,

<conmponents xm ns="http://jboss. com product s/ sean’ conponent s"
xm ns: core="http://jboss. conf product s/ seani cor e"
xm ns: mai |l ="http://jboss. con product s/ sean mai | ">

<mai | : mai | - sessi on host ="snt p. exanpl e. cont'/ >

</ conponent s>

4. Tags

Emails are generated using tags in the htt p: // j boss. conl pr oduct s/ seam nai | hamespace.
Documents should always have the nessage tag at the root of the message. The message tag
prepares Seam to generate an email.

The standard templating tags of facelets can be used as normal. Inside the body you can use
any JSF tag which doesn't require access to external resources (stylesheets, javascript).
<m:message>

Root tag of a mail message

i mport ance — low, normal or high. By default normal, this sets the importance of the
mail message.

» precedence — sets the precedence of the message (e.g. bulk).

* request ReadRecei pt — by default false, if set, a read receipt will be request will be
added, with the read receipt being sent to the Fr om address.

« url Base — If set, the value is prepended to the r equest Cont ext Pat h allowing you to
use components such as <h: gr aphi cl mage> in your emails.

<m:from>
Set's the From: address for the email. You can only have one of these per email.

* nane — the name the email should come from.
* addr ess — the email address the email should come from.

<m:replyTo>
Set's the Reply-to: address for the email. You can only have one of these per email.

¢ addr ess — the email address the email should come from.

<m:to>

207

Chapter 16. Email

Add a recipient to the email. Use multiple <m:to> tags for multiple recipients. This tag can
be safely placed inside a repeat tag such as <ui:repeat>.

e nane — the name of the recipient.
e address — the email address of the recipient.

<m:cc>
Add a cc recipient to the email. Use multiple <m:cc> tags for multiple ccs. This tag can be
safely placed inside a repeat tag such as <ui:repeat>.

* name — the name of the recipient.
« address — the email address of the recipient.

<m:bcc>
Add a bcc recipient to the email. Use multiple <m:bcc> tags for multiple beces. This tag can
be safely placed inside a repeat tag such as <ui:repeat>.

* name — the name of the recipient.
* addr ess — the email address of the recipient.

<m:header>
Add a header to the email (e.g. X- Sent - From JBoss Seam

* name — The name of the header to add (e.g. X- Sent - Fr om).
* val ue — The value of the header to add (e.g. JBoss Seam).

<m:attachment>
Add an attachment to the email.

* val ue — The file to attach:
* String — A Stringis interpreted as a path to file within the classpath
* java.io. Fil e — An EL expression can reference a Fi | e object
» java. net. URL — An EL expression can reference a URL object

e java.io. I nput Stream— An EL expression can reference an I nput St r eam In this
case both afil eName and a cont ent Type must be specified.

* byte[] — An EL expression can reference an byt e[] . In this case both a fi | eNane
and a cont ent Type must be specified.

If the value attribute is ommitted:

« If this tag contains a <p: docunent > tag, the document described will be generated and
attached to the email. A fi | eName should be specfied.

« If this tag contains other JSF tags a HTML document will be generated from them and

208

Tags

attached to the email. A fi | eName should be specfied.
« fil eNane — Specify the file name to use for the attached file.
e cont ent Type — Specify the MIME type of the attached file

<m:subject>
Set's the subject for the email.

<m:body>
Set's the body for the email. Supports an al t er nat i ve facet which, if an HTML email is
generated can contain alternative text for a mail reader which doesn't support html.

* type — If set to pl ai n then a plain text email will be generated otherwise an HTML email
is generated.

209

210

Chapter 17.

Asynchronicity and messaging

Seam makes it very easy to perform work asynchronously from a web request. When most
people think of asynchronicity in Java EE, they think of using JMS. This is certainly one way to
approach the problem in Seam, and is the right way when you have strict and well-defined
quality of service requirements. Seam makes it easy to send and recieve JMS messages using
Seam components.

But for many usecases, JMS is overkill. Seam layers a simple asynchronous method and event
facility over the EJB 3.0 timer service.

1. Asynchronicity

Asynchronous events and method calls have the same quality of service expectations as the
container's EJB timer service. If you're not familiar with the Timer service, don't worry, you don't
need to interact with it directly if you want to use asynchronous methods in Seam.

To use asynchronous methods and events, you need to add the following line to
conponents. xm :

<cor e: di spat cher/>

Note that this functionality is not available in environments which do not support EJB 3.0.

1.1. Asynchronous methods

In simplest form, an asynchronous call just lets a method call be processed asynchronously (in
a different thread) from the caller. We usually use an asynchronous call when we want to return
an immediate response to the client, and let some expensive work be processed in the
background. This pattern works very well in applications which use AJAX, where the client can
automatically poll the server for the result of the work.

For EJB components, we annotate the local interface to specify that a method is processed
asynchronously.

@.ocal
public interface Payment Handl er
{

@\synchronous

public void processPaynent (Paynent paynent);

(For JavaBean components we can annotate the component implementation class if we like.)

The use of asynchronicity is transparent to the bean class:

@>t at el ess

211

Chapter 17. Asynchronicity and messaging

@\ane(" paynent Handl er ")
publi ¢ cl ass Paynment Handl er Bean i npl enents Paynent Handl er

{
public void processPaynment (Payment paynent)
{
//do some wor k!
}
}

And also transparent to the client:

@t at ef ul
@\ane(" paynent Acti on")
public class CreatePaynent Action

{
@n(create=true) PaynentHandl er paynent Handl er;
@n Bill bill;
public String pay()
{
payment Handl er . processPaynent (new Payment (bill));
return "success";
}
}

The asynchronous method is processed in a completely new event context and does not have
access to the session or conversation context state of the caller. However, the business process
context is propagated.

Asynchronous method calls may be scheduled for later execution using the @ur at i on,
@xpirationand @ nterval Dur ati on annotations.

@ocal
public interface PaynmentHandl er
{

@\synchr onous

public void processSchedul edPaynent (Paynent paynent, @Expiration Date
date);

@\synchr onous
public void processRecurri ngPaynent (Paynent paynment, @Expiration Date
dat e,
@nterval Duration Long interval)'

}

@5t at ef ul

@Name(" paynment Acti on")

public class CreatePaynent Action

{
@n(create=true) PaynentHandl er paynent Handl er;
@n Bill bill;

212

Asynchronous methods

public String schedul ePaynent ()

{
paynent Handl er . pr ocessSchedul edPayment (new Payment (bill),
bill.getDueDate());
return "success";

}

public String schedul eRecurringPaynent ()
{

paynent Handl er . processRecurri ngPaynment (new Payment (bill),
bill.getDueDate(), ONE_MONTH);
return "success";

}

Both client and server may access the Ti mer object associated with the invocation.

@.ocal
public interface Payment Handl er
{
@\synchr onous
public Timer processSchedul edPaynent (Payment paynent, @Expiration Date
date);
}
@t at el ess

@Nane(" paynent Handl er ")
public class Paynment Handl er Bean i npl enent s Paynent Handl er

{
@n Timer tinmner;
public Timer processSchedul edPaynent (Payment paynent, @Expiration Date
dat e)
{
//do sonme wor k!
return timer; //note that return value is conpletely ignored
}
}
@t at ef ul

@\ane(" paynent Acti on")
public class CreatePaynment Action

{

@n(create=true) PaynentHandl er paynent Handl er;
@n Bill bill;

public String schedul ePaynent ()
{

Ti mer tinmer = paynent Handl er. pr ocessSchedul edPaynent (new

213

Chapter 17. Asynchronicity and messaging

Paynent (bill), bill.getDuebDate());
return "success";

}

Asynchronous methods cannot return any other value to the caller.

1.2. Asynchronous events

Component-driven events may also be asynchronous. To raise an event for asynchronous
processing, simply call the r ai seAsynchr onousEvent () methods of the Event s class. To
schedule a timed event, call one of the r ai seTi nedEvent () methods. Components may
observe asynchronous events in the usual way, but remember that only the business process
context is propagated to the asynchronous thread.

2. Messaging in Seam
Seam makes it easy to send and receive JMS messages to and from Seam components.

2.1. Configuration

To configure Seam's infrastructure for sending JMS messages, you need to tell Seam about any
topics and queues you want to send messages to, and also tell Seam where to find the
QueueConnect i onFact or y and/or Topi cConnecti onFact ory.

Seam defaults to using Ul L2Connect i onFact or y which is the usual connection factory for use
with JBossMQ. If you are using some other JMS provider, you need to set one or both of
qgueueConnect i on. queueConnect i onFact or yJndi Name and

t opi cConnect i on. t opi cConnect i onFact or yJndi Name in seam properties, web. xm or
conponent s. xmi .

You also need to list topics and queues in conponent s. xn to install Seam managed
Topi cPubl i sher s and QueueSender s:

<j ms: managed- t opi c- publ i sher name="st ockTi cker Publ i sher"
aut o-create="true
t opi c-j ndi - name="t opi ¢/ st ockTi cker Topi c"/>

<j ms: managed- queue- sender nanme="paynment QueueSender" aut o-create="true"
gueue- j ndi - nane="queue/ paynment Queue"/ >

Using JBoss Messaging.

For using JBoss Messaging which comes with JBoss Enterprise Application Platform 4.3, you
should first set the value of the properties

'‘queueConnect i on. queueConnect i onFact or yJndi Name' and

214

Sending messages

t opi cConnect i on. t opi cConnect i onFact or yJndi Nane' to 'Connect i onFact or y' which is the
default connection factory for JBoss Messaging. Then set the value of the

‘connect i onProvi der' property to

'org. j boss. seam renot i ng. messagi ng. JBossMessagi ngConnect i onProvi der ' on the class
component 'or g. j boss. seam renot i ng. messagi ng. Subscri pti onRegi stry', which creates
topic connections for jposs messaging.

<conponent nanme="org.j boss. seam j ns.t opi cConnection">
<property nane="t opi cConnecti onFact or yJndi Nane" >
Connect i onFact ory
</ property>
</ conponent >
<component cl ass="org.j boss. seam renoti ng. nessagi ng. Subscri pti onRegi stry"
install ed="true">
<property nane="al | ownedTopi cs" >
chat r oonilopi ¢
</ pr operty>
<property nanme="connecti onProvi der">
org.j boss. seam renot i ng. nessagi ng. JBossMessagi ngConnect i onProvi der
</ property>
</ conponent >

You also need to update the topics to use JBoss Messaging as shown in the code fragment
below.

<server>
<mbean code="org.jboss.|ns.server.destination. Topi cService"
name="j boss. messagi ng. desti nati on: servi ce=Topi ¢, nane=chat r ooniropi c"
xmbean- dd=" xndesc/ Topi c- xnmbean. xm " >
<depends optional -attri but e-nane="Server Peer">
j boss. nessagi ng: servi ce=Ser ver Peer
</ depends>
<depends>
j boss. nessagi ng: servi ce=Post O fi ce
</ depends>
<attribute nane="SecurityConfig">
<security>
<rol e nane="guest" read="true" wite="true"/>
<rol e name="publisher"” read="true" wite="true"
create="fal se"/>
<rol e name="dur publ i sher" read="true" wite="true"
create="true"/>
</security>
</attribute>
</ mbean>
</ server>

2.2. Sending messages

Now, you can inject a JMS Topi cPubl i sher and Topi cSessi on into any component:

215

Chapter 17. Asynchronicity and messaging

@n
private Topi cPubli sher stockTi ckerPublisher;
@n

private Topi cSessi on topi cSessi on;

public void publish(StockPrice price) {

try
{

t opi cPubl i sher. publ i sh(topicSession. creat eCbj ect Message(price));
}
catch (Exception ex)
{

t hr ow new Runti neExcepti on(ex);
}

Or, for working with a queue:

@n

private QueueSender payment QueueSender ;
@n

private QueueSessi on queueSessi on;

public void publish(Payment paynent) {

try
{
paynent QueueSender . send(queueSessi on. cr eat eCbj ect Message(paynent)

)

}

catch (Exception ex)

{ t hrow new Runti neExcepti on(ex);

}
}

2.3. Receiving messages using a message-driven bean

You can process messages using any EJB3 message driven bean. Message-driven beans may
even be Seam components, in which case it is possible to inject other event and application
scoped Seam components.

2.4. Receiving messages in the client

Seam Remoting lets you subscribe to a JMS topic from client-side JavaScript. This is described
in the next chapter.

216

Chapter 18.

Caching

In almost all enterprise applications, the database is the primary bottleneck, and the least
scalable tier of the runtime environment. People from a PHP/Ruby environment will try to tell
you that so-called "shared nothing" architectures scale well. While that may be literally true, |
don't know of many interesting multi-user applications which can be implemented with no
sharing of resources between different nodes of the cluster. What these silly people are really
thinking of is a "share nothing except for the database" architecture. Of course, sharing the
database is the primary problem with scaling a multi-user application—so the claim that this
architecture is highly scalable is absurd, and tells you a lot about the kind of applications that
these folks spend most of their time working on.

Almost anything we can possibly do to share the database less often is worth doing.

This calls for a cache. Well, not just one cache. A well designed Seam application will feature a
rich, multi-layered caching strategy that impacts every layer of the application:

« The database, of course, has its own cache. This is super-important, but can't scale like a
cache in the application tier.

* Your ORM solution (Hibernate, or some other JPA implementation) has a second-level cache
of data from the database. This is a very powerful capability, but is often misused. In a
clustered environment, keeping the data in the cache transactionally consistent across the
whole cluster, and with the database, is quite expensive. It makes most sense for data which
is shared between many users, and is updated rarely. In traditional stateless architectures,
people often try to use the second-level cache for conversational state. This is always bad,
and is especially wrong in Seam.

» The Seam conversation context is a cache of conversational state. Components you put into
the conversation context can hold and cache state relating to the current user interaction.

« In particular, the Seam-managed persistence context (or an extended EJB
container-managed persistence context associated with a conversation-scoped stateful
session bean) acts as a cache of data that has been read in the current conversation. This
cache tends to have a pretty high hitrate! Seam optimizes the replication of Seam-managed
persistence contexts in a clustered environment, and there is no requirement for transactional
consistency with the database (optimistic locking is sufficient) so you don't need to worry too
much about the performance implications of this cache, unless you read thousands of objects
into a single persistence context.

» The application can cache non-transactional state in the Seam application context. State kept
in the application context is of course not visible to other nodes in the cluster.

« The application can cache transactional state using the Seam poj oCache component, which
integrates JBossCache into the Seam environment. This state will be visible to other nodes if
you run JBoss cache in a clustered mode.

217

Chapter 18. Caching

« Finally, Seam lets you cache rendered fragments of a JSF page. Unlike the ORM
second-level cache, this cache is not automatically invalidated when data changes, so you
need to write application code to perform explicit invalidation, or set appropriate expiration
policies.

For more information about the second-level cache, you'll need to refer to the documentation of
your ORM solution, since this is an extremely complex topic. In this section we'll discuss the use
of JBossCache directly, via the poj oCache component, or as the page fragment cache, via the
<s: cache> control.

1. Using JBossCache in Seam

The built-in poj oCache component manages an instance of or g. j boss. cache. aop. Poj oCache.
You can safely put any immutable Java object in the cache, and it will be replicated across the
cluster (assuming that replication is enabled). If you want to keep mutable objects in the cache,
you'll need to run the JBossCache bytecode preprocessor to ensure that changes to the objects
will be automatically detected and replicated.

To use poj oCache, all you need to do is put the JBossCache jars in the classpath, and provide
a resource named t r eecache. xnml with an appropriate cache configuration. JBossCache has
many scary and confusing configuration settings, so we won't discuss them here. Please refer
to the JBossCache documentation for more information.

For an EAR depoyment of Seam, we recommend that the JBossCache jars and configuration
go directly into the EAR. Make sure you declare the jars in appl i cati on. xm .

Now you can inject the cache into any Seam component:

@Nane(" chat r oont)
public class Chatroom {
@n Poj oCache poj oCache;

public void join(String usernane) {
try

{
Set <String> userList = (Set<String>) pojoCache. get("chatrooni,

"userList");
i f (userlList==null)

{ userLi st = new HashSet<String>();
poj oCache. put ("chat roont, "userlList", userlList);
iser Li st. put (user nane) ;
E:atch (CacheExcepti on ce)
{ t hrow new Runti neExcepti on(ce);
}

}

218

Page fragment caching

If you want to have multiple JBossCache configurations in your application, use
conponent s. xm :

<cor e: poj o- cache nane="nmyCache" cf g-resource-nanme="nyown/cache. xm "/ >

2. Page fragment caching

The most interesting user of JBossCache is the <s: cache> tag, Seam's solution to the problem
of page fragment caching in JSF. <s: cache> uses poj oCache internally, so you need to follow
the steps listed above before you can use it. (Put the jars in the EAR, wade through the scary
configuration options, etc.)

<s: cache> is used for caching some rendered content which changes rarely. For example, the
welcome page of our blog displays the recent blog entries:

<s:cache key="recentEntries-#{bl og.id}" regi on="wel comePageFr agnent s" >
<h: dat aTabl e val ue="#{bl og.recentEntries}" var="bl ogEntry">
<h: col um>
<h3>#{ bl ogEntry.titl e} </ h3>
<di v>
<s:formattedText val ue="#{bl ogEntry. body}"/>
</ di v>
</ h: col um>
</ h: dat aTabl e>
</ s: cache>

The key let's you have multiple cached versions of each page fragment. In this case, there is
one cached version per blog. The r egi on determines the JBossCache node that all version will
be stored in. Different nodes may have different expiry policies. (That's the stuff you set up
using the aforementioned scary configuration options.)

Of course, the big problem with <s: cache> is that it is too stupid to know when the underlying
data changes (for example, when the blogger posts a new entry). So you need to evict the
cached fragment manually:

public void post() {

enti t yManager . persi st (bl ogEntry);

poj oCache. r enove(" wel comePageFr agnent s", "recentEntries-" + bl og.getld()
)
}

Alternatively, if it is not critical that changes are immediately visible to the user, you could set a
short expiry time on the JbossCache node.

219

220

Chapter 19.

Remoting

Seam provides a convenient method of remotely accessing components from a web page,
using AJAX (Asynchronous Javascript and XML). The framework for this functionality is
provided with almost no up-front development effort - your components only require simple
annotating to become accessible via AJAX. This chapter describes the steps required to build
an AJAX-enabled web page, then goes on to explain the features of the Seam Remoting
framework in more detail.

1. Configuration

To use remoting, the Seam Resource servlet must first be configured in your web. xnmi file:

<servl et >

<servl et - name>Seam Resource Servl et </ servl et - nane>

<servl et-cl ass>org. j boss. seam servl et. Resour ceSer vl et </ servl et - cl ass>
</servl et >

<servl et - mappi ng>
<ser vl et - nane>Seam Resour ce Servl et </servl et - nane>
<url - pattern>/seam resource/*</url -pattern>

</ servl et - mappi ng>

The next step is to import the necessary Javascript into your web page. There are a minimum of
two scripts that must be imported. The first one contains all the client-side framework code that
enables remoting functionality:

<script type="text/javascript"
src="seanl resource/ renoting/resource/ renote.js"></script>

The second script contains the stubs and type definitions for the components you wish to call. It
is generated dynamically based on the local interface of your components, and includes type
definitions for all of the classes that can be used to call the remotable methods of the interface.
The name of the script reflects the name of your component. For example, if you have a
stateless session bean annotated with @lane(" cust omer Act i on") , then your script tag should
look like this:

<script type="text/javascript"

221

Chapter 19. Remoting

src="seam resource/ renoti ng/interface.js?custonerAction">
</script>

If you wish to access more than one component from the same page, then include them all as
parameters of your script tag:

<script type="text/javascript"
src="seam resource/renoting/interface.js?custonerActi on&ccount Acti on">
</script>

2. The "Seam" object

Client-side interaction with your components is all performed via the SeamJavascript object.
This object is defined inrenot e. j s, and you'll be using it to make asynchronous calls against
your component. It is split into two areas of functionality; Seam Conponent contains methods for
working with components and Seam Renot i ng contains methods for executing remote requests.
The easiest way to become familiar with this object is to start with a simple example.

2.1. A Hello World example

Let's step through a simple example to see how the Seamobject works. First of all, let's create a
new Seam component called hel | oActi on.

@>t at el ess
@Nane(" hel | oAction")
public class Hell oAction inplenents HellolLocal {
public String sayHel |l o(String nanme) {
return "Hello, " + nane;

}
}

You also need to create a local interface for our new component - take special note of the
@\bRenot e annotation, as it's required to make our method accessible via remoting:

@ocal
public interface Hell oLocal {

222

A Hello World example

@\ébRenot e
public String sayHell o(String nane);
}

That's all the server-side code we need to write. Now for our web page - create a new page and
import the following scripts:

<script type="text/javascript"

src="seam resource/ renoti ng/ resource/ renote.js"></script>
<script type="text/javascript"

src="seani resource/renoting/interface.js?hell oAction"></script>

To make this a fully interactive user experience, let's add a button to our page:

<button onclick="javascript:sayHello()">Say Hel | o</ button>

We'll also need to add some more script to make our button actually do something when it's
clicked:

<script type="text/javascript">
/1 <! [CDATA[

function sayHel l o() {
var nanme = pronpt ("Wat is your name?")
Seam Conponent . get | nst ance(" hel | oActi on") . sayHel | o(name
sayHel | oCal | back) ;

}

function sayHel | oCal | back(result) ({
alert(result);

}
Il 11>
</scri pt>

223

Chapter 19. Remoting

We're done! Deploy your application and browse to your page. Click the button, and enter a
name when prompted. A message box will display the hello message confirming that the call
was successful. If you want to save some time, you'll find the full source code for this Hello
World example in Seam's / exanpl es/ r enot i ng/ hel | owor | d directory.

So what does the code of our script actually do? Let's break it down into smaller pieces. To start
with, you can see from the Javascript code listing that we have implemented two methods - the
first method is responsible for prompting the user for their name and then making a remote
request. Take a look at the following line:

Seam Component . get | nst ance(" hel | oActi on"). sayHel | o(nane,
sayHel | oCal | back) ;

The first section of this line, Seam Conponent . get | nst ance(" hel | oActi on") returns a proxy,
or "stub” for our hel | oAct i on component. We can invoke the methods of our component
against this stub, which is exactly what happens with the remainder of the line: sayHel | o(nane,
sayHel | oCal | back) ; .

What this line of code in its completeness does, is invoke the sayHel | o method of our
component, passing in nane as a parameter. The second parameter, sayHel | oCal | back isn't a
parameter of our component's sayHel | o method, instead it tells the Seam Remoting framework
that once it receives the response to our request, it should pass it to the sayHel | oCal | back
Javascript method. This callback parameter is entirely optional, so feel free to leave it out if
you're calling a method with a voi d return type or if you don't care about the result.

The sayHel | oCal | back method, once receiving the response to our remote request then pops
up an alert message displaying the result of our method call.

2.2. Seam.Component

The Seam Conponent Javascript object provides a number of client-side methods for working
with your Seam components. The two main methods, newl nst ance() and get | nstance() are
documented in the following sections however their main difference is that newl nst ance() will
always create a new instance of a component type, and get | nst ance() will return a singleton
instance.

2.2.1. Seam.Component.newlnstance()

Use this method to create a new instance of an entity or Javabean component. The object
returned by this method will have the same getter/setter methods as its server-side counterpart,
or alternatively if you wish you can access its fields directly. Take the following Seam entity
component for example:

@Nane(" cust onmer")
@ntity

224

Seam.Component

public class Customer inplenents Serializable

{

private |nteger custonerld;
private String firstName;
private String |astNane;

@Col um public I nteger getCustonerld() {
return custonerld;

}

public void setCustonerld(lnteger custonerld} {
this.custonerld = custonerld;

}

@Col utm public String getFirstName() {
return firstNang;

}

public void setFirstName(String firstName) {
this.firstName = firstNang;

}

@col um public String getlLast Name() ({
return | ast Nane;

}

public void setlLastNane(String | ast Nanme) {
this. |l ast Nane = | ast Nan®;

}
}

To create a client-side Customer you would write the following code:

var customer = Seam Conponent.new nst ance("custoner");

Then from here you can set the fields of the customer object:

cust oner. set Fi r st Nane("John");
/Il O you can set the fields directly
custoner.lastNane = "Smth";

2.2.2. Seam.Component.getinstance()

The get I nstance() method is used to get a reference to a Seam session bean component
stub, which can then be used to remotely execute methods against your component. This

225

Chapter 19. Remoting

method returns a singleton for the specified component, so calling it twice in a row with the
same component name will return the same instance of the component.

To continue our example from before, if we have created a new cust oner and we now wish to
save it, we would pass it to the saveCust oner () method of our cust oner Act i on component:

Seam Conponent . get | nst ance(" cust omer Acti on") . saveCust oner (cust oner) ;

2.2.3. Seam.Component.getComponentName()

Passing an object into this method will return its component name if it is a component, or nul | if
it is not.

i f (Seam Conponent . get Conponent Nane(i nst ance) == "custoner")
al ert (" Custoner");
el se i f (Seam Conponent. get Conponent Nane(i nstance) == "staff")

alert("Staff nenmber");

2.3. Seam.Remoting

Most of the client side functionality for Seam Remoting is contained within the Seam Renot i ng
object. While you shouldn't need to directly call most of its methods, there are a couple of
important ones worth mentioning.

2.3.1. Seam.Remoting.createType()

If your application contains or uses Javabean classes that aren't Seam components, you may
need to create these types on the client side to pass as parameters into your component
method. Use the creat eType() method to create an instance of your type. Pass in the fully
qualified Java class name as a parameter:

var wi dget = Seam Renpti ng. creat eType("com acne. wi dgets. MyW dget ") ;

2.3.2. Seam.Remoting.getTypeName()

This method is the equivalent of Seam Conponent . get Conponent Nane() but for
non-component types. It will return the name of the type for an object instance, or nul | if the
type is not known. The name is the fully qualified name of the type's Java class.

3. Client Interfaces

226

The Context

In the configuration section above, the interface, or "stub" for our component is imported into our
page via seam resour ce/ renoting/interface.js:

<script type="text/javascript"
src="seam resource/renmoting/interface.js?custonerAction">
</script>

By including this script in our page, the interface definitions for our component, plus any other
components or types that are required to execute the methods of our component are generated
and made available for the remoting framework to use.

There are two types of client stub that can be generated, "executable" stubs and "type" stubs.
Executable stubs are behavioural, and are used to execute methods against your session bean
components, while type stubs contain state and represent the types that can be passed in as
parameters or returned as a result.

The type of client stub that is generated depends on the type of your Seam component. If the
component is a session bean, then an executable stub will be generated, otherwise if it's an
entity or JavaBean, then a type stub will be generated. There is one exception to this rule; if
your component is a JavaBean (ie it is not a session bean nor an entity bean) and any of its
methods are annotated with @WebRemote, then an executable stub will be generated for it
instead of a type stub. This allows you to use remoting to call methods of your JavaBean
components in a non-EJB environment where you don't have access to session beans.

4. The Context

The Seam Remoting Context contains additional information which is sent and received as part
of a remoting request/response cycle. At this stage it only contains the conversation 1D but may
be expanded in the future.

4.1. Setting and reading the Conversation ID

If you intend on using remote calls within the scope of a conversation then you need to be able
to read or set the conversation ID in the Seam Remoting Context. To read the conversation 1D
after making a remote request call Seam Renot i ng. get Cont ext (). get Conversationld().To
set the conversation ID before making a request, call

Seam Renpt i ng. get Cont ext (). set Conversationld().

If the conversation ID hasn't been explicitly set with

Seam Renot i ng. get Cont ext (). set Conver sati onl d(), then it will be automatically assigned
the first valid conversation ID that is returned by any remoting call. If you are working with
multiple conversations within your page, then you may need to explicitly set the conversation 1D
before each call. If you are working with just a single conversation, then you don't need to do

227

Chapter 19. Remoting

anything special.
5. Batch Requests

Seam Remoting allows multiple component calls to be executed within a single request. It is
recommended that this feature is used wherever it is appropriate to reduce network traffic.

The method Seam Renoti ng. st art Bat ch() will start a new batch, and any component calls
executed after starting a batch are queued, rather than being sent immediately. When all the
desired component calls have been added to the batch, the Seam Renot i ng. execut eBat ch()
method will send a single request containing all of the queued calls to the server, where they will
be executed in order. After the calls have been executed, a single response containining all
return values will be returned to the client and the callback functions (if provided) triggered in the
same order as execution.

If you start a new batch via the st art Bat ch() method but then decide you don't want to send it,
the Seam Renot i ng. cancel Bat ch() method will discard any calls that were queued and exit
the batch mode.

To see an example of a batch being used, take a look at / exanpl es/ r enot i ng/ chat r oom

6. Working with Data types

6.1. Primitives / Basic Types

This section describes the support for basic data types. On the server side these values are
generally compatible with either their primitive type or their corresponding wrapper class.

6.1.1. String
Simply use Javascript String objects when setting String parameter values.
6.1.2. Number

There is support for all number types supported by Java. On the client side, number values are
always serialized as their String representation and then on the server side they are converted
to the correct destination type. Conversion into either a primitive or wrapper type is supported
for Byt e, Doubl e, Fl oat, I nt eger, Long and Short types.

6.1.3. Boolean

Booleans are represented client side by Javascript Boolean values, and server side by a Java
boolean.

6.2. JavaBeans

In general these will be either Seam entity or JavaBean components, or some other
non-component class. Use the appropriate method (either Seam Conponent . newl nst ance() for

228

Dates and Times

Seam components or Seam Renot i ng. cr eat eType() for everything else) to create a new
instance of the object.

It is important to note that only objects that are created by either of these two methods should
be used as parameter values, where the parameter is not one of the other valid types
mentioned anywhere else in this section. In some situations you may have a component
method where the exact parameter type cannot be determined, such as:

@Nanme(" myAction")
public class M/Action inplenments M/ActionLocal {
public void doSomet hi ngWt hCbj ect (Cbj ect obj) {
/'l code

}
}

In this case you might want to pass in an instance of your nyW dget component, however the
interface for nyAct i on won't include nyW dget as it is not directly referenced by any of its
methods. To get around this, MyW dget needs to be explicitly imported:

<script type="text/javascript"
src="seam resource/ renoting/interface.js?nyActi on&myW dget ">
</script>

This will then allow a myW dget object to be created with
Seam Conponent . newl nst ance(" nyW dget "), which can then be passed to
nyAct i on. doSonet hi ngWt hObj ect ().

6.3. Dates and Times

Date values are serialized into a String representation that is accurate to the millisecond. On the
client side, use a Javascript Date object to work with date values. On the server side, use any
java.util . Date (or descendent, such as j ava. sql . Dat e or j ava. sql . Ti nest anp class.

6.4. Enums

On the client side, enums are treated the same as Strings. When setting the value for an enum
parameter, simply use the String representation of the enum. Take the following component as
an example:

@Nanme(" pai nt Acti on")
public class paintAction inplenments paintLocal {
public enum Col or {red, green, blue, yellow, orange, purple};

229

Chapter 19. Remoting

public void paint(Color color) {
/] code

}
}

To call the pai nt () method with the color r ed, pass the parameter value as a String literal:

Seam Conponent . get | nst ance(" pai nt Acti on") . paint("red");

The inverse is also true - that is, if a component method returns an enum parameter (or contains
an enum field anywhere in the returned object graph) then on the client-side it will be
represented as a String.

6.5. Collections

6.5.1. Bags

Bags cover all collection types including arrays, collections, lists, sets, (but excluding Maps -
see the next section for those), and are implemented client-side as a Javascript array. When
calling a component method that accepts one of these types as a parameter, your parameter
should be a Javascript array. If a component method returns one of these types, then the return
value will also be a Javascript array. The remoting framework is clever enough on the server
side to convert the bag to an appropriate type for the component method call.

6.5.2. Maps

As there is no native support for Maps within Javascript, a simple Map implementation is
provided with the Seam Remoting framework. To create a Map which can be used as a
parameter to a remote call, create a new Seam Renot i ng. Map object:

var map = new Seam Renoti ng. Map() ;

This Javascript implementation provides basic methods for working with Maps: si ze(),

i SEnpty(), keySet (), val ues(), get (key), put (key, val ue), renmove(key) and

cont ai ns(key) . Each of these methods are equivalent to their Java counterpart. Where the
method returns a collection, such as keySet () and val ues(), a Javascript Array object will be
returned that contains the key or value objects (respectively).

7. Debugging

To aid in tracking down bugs, it is possible to enable a debug mode which will display the

230

The Loading Message

contents of all the packets send back and forth between the client and server in a popup
window. To enable debug mode, either execute the set Debug() method in Javascript:

Seam Renot i ng. set Debug(true);

Or configure it via components.xml:
<renoti ng: renoti ng debug="true"/>

To turn off debugging, call set Debug(f al se) . If you want to write your own messages to the
debug log, call Seam Renvot i ng. | og(message) .

8. The Loading Message

The default loading message that appears in the top right corner of the screen can be modified,
its rendering customised or even turned off completely.

8.1. Changing the message
To change the message from the default "Please Wait..." to something different, set the value of

Seam Renot i ng. | oadi ngMessage:

Seam Renoti ng. | oadi ngMessage = "Loading...";

8.2. Hiding the loading message

To completely suppress the display of the loading message, override the implementation of
di spl ayLoadi ngMessage() and hi deLoadi ngMessage() with functions that instead do nothing:

/1 don't display the |oading indicator
Seam Renot i ng. di spl ayLoadi ngMessage = function() {};
Seam Renot i ng. hi deLoadi ngMessage = function() {};

8.3. A Custom Loading Indicator

It is also possible to override the loading indicator to display an animated icon, or anything else
that you want. To do this override the di spl ayLoadi ngMessage() and hi deLoadi ngMessage()
messages with your own implementation:

231

Chapter 19. Remoting

Seam Renot i ng. di spl ayLoadi ngMessage = function() {
/!l Wite code here to display the indicator

b

Seam Renot i ng. hi deLoadi ngMessage = function() {
/!l Wite code here to hide the indicator

b

9. Controlling what data is returned

When a remote method is executed, the result is serialized into an XML response that is
returned to the client. This response is then unmarshaled by the client into a Javascript object.
For complex types (i.e. Javabeans) that include references to other objects, all of these
referenced objects are also serialized as part of the response. These objects may reference
other objects, which may reference other objects, and so forth. If left unchecked, this object
"graph” could potentially be enormous, depending on what relationships exist between your
objects. And as a side issue (besides the potential verbosity of the response), you might also
wish to prevent sensitive information from being exposed to the client.

Seam Remoting provides a simple means to "constrain” the object graph, by specifying the
excl ude field of the remote method's @ebRenot e annotation. This field accepts a String array
containing one or more paths specified using dot notation. When invoking a remote method, the
objects in the result's object graph that match these paths are excluded from the serialized
result packet.

For all our examples, we'll use the following W dget class:

@Nanme("w dget")
public class W dget
{

private String val ue;

private String secret;

private Wdget child;

private Map<String, Wdget> w dget Map;
private List<Wdget> wi dgetList;

/'l getters and setters for all fields

9.1. Constraining normal fields

If your remote method returns an instance of W dget , but you don't want to expose the secr et
field because it contains sensitive information, you would constrain it like this:

232

Constraining Maps and Collections

@¢bRenot e(exclude = {"secret"})
public Wdget get Wdget();

The value "secret" refers to the secr et field of the returned object. Now, suppose that we don't
care about exposing this particular field to the client. Instead, notice that the W dget value that
is returned has a field chi | d that is also a W dget . What if we want to hide the chi | d's secr et
value instead? We can do this by using dot notation to specify this field's path within the result's
object graph:

@\ébRenot e(exclude = {"child.secret"})
public Wdget getWdget();

9.2. Constraining Maps and Collections

The other place that objects can exist within an object graph are within a Map or some kind of
collection (Li st, Set, Array, etc). Collections are easy, and are treated like any other field. For
example, if our W dget contained a list of other W dget s in its wi dget Li st field, to constrain the
secr et field of the W dget s in this list the annotation would look like this:

@¢bRenot e(excl ude = {"wi dget Li st.secret"})
public W dget getWdget();

To constrain a Map's key or value, the notation is slightly different. Appending [key] after the
Map's field name will constrain the Map's key object values, while [val ue] will constrain the
value object values. The following example demonstrates how the values of the wi dget Map field
have their secr et field constrained:

@¢bRenot e(excl ude = {"wi dget Map[val ue] . secret"})
public Wdget getWdget();

9.3. Constraining objects of a specific type

There is one last notation that can be used to constrain the fields of a type of object no matter
where in the result's object graph it appears. This notation uses either the name of the
component (if the object is a Seam component) or the fully qualified class name (only if the
object is not a Seam component) and is expressed using square brackets:

@¢bRenot e(exclude = {"[wi dget].secret"})

233

Chapter 19. Remoting

public Wdget get Wdget();

9.4. Combining Constraints

Constraints can also be combined, to filter objects from multiple paths within the object graph:

@ebRenot e(excl ude = {"wi dgetList.secret”, "w dget Map[val ue].secret"})
public W dget getWdget();

10. JMS Messaging

Seam Remoting provides experimental support for IMS Messaging. This section describes the
JMS support that is currently implemented, but please note that this may change in the future. It
is currently not recommended that this feature is used within a production environment.

10.1. Configuration

Before you can subscribe to a JMS topic, you must first configure a list of the topics that can be
subscribed to by Seam Remoting. List the topics under

org.j boss. seam renoti ng. nessagi ng. subscri pti onRegi stry. al | owedTopi cs in

seam properties,web. xm or conponents. xni .

10.2. Subscribing to a JMS Topic

The following example demonstrates how to subscribe to a JMS Topic:

function subscriptionCal | back(message)

{

i f (message instanceof Seam Renoting. Text Message)
al ert (" Recei ved nessage: " + message.getText());

}

Seam Renot i ng. subscri be("t opi cName", subscri ptionCal | back);

The Seam Renvot i ng. subscri be() method accepts two parameters, the first being the name of
the JMS Topic to subscribe to, the second being the callback function to invoke when a
message is received.

234

Unsubscribing from a Topic

There are two types of messages supported, Text messages and Object messages. If you need
to test for the type of message that is passed to your callback function you can use the

i nst anceof operator to test whether the message is a Seam Renot i ng. Text Message or

Seam Renot i ng. Obj ect Message. A Text Message contains the text value in its t ext field (or
alternatively call get Text () on it), while an (bj ect Message contains its object value in its

obj ect field (or call its get Qbj ect () method).

10.3. Unsubscribing from a Topic

To unsubscribe from a topic, call Seam Renot i ng. unsubscri be() and pass in the topic name:

Seam Renpt i ng. unsubscri be("t opi cNane") ;

10.4. Tuning the Polling Process

There are two parameters which you can modify to control how polling occurs. The first one is
Seam Renot i ng. pol | I nt er val , which controls how long to wait between subsequent polls for
new messages. This parameter is expressed in seconds, and its default setting is 10.

The second parameter is Seam Renot i ng. pol | Ti meout, and is also expressed as seconds. It
controls how long a request to the server should wait for a new message before timing out and
sending an empty response. Its default is 0 seconds, which means that when the server is
polled, if there are no messages ready for delivery then an empty response will be immediately
returned.

Caution should be used when setting a high pol | Ti meout value; each request that has to wait
for a message means that a server thread is tied up until a message is received, or until the
request times out. If many such requests are being served simultaneously, it could mean a large
number of threads become tied up because of this reason.

It is recommended that you set these options via components.xml, however they can be
overridden via Javascript if desired. The following example demonstrates how to configure the
polling to occur much more aggressively. You should set these parameters to suitable values for
your application:

Via components.xmil:

<renoting: renoting poll-tinmeout="5" poll-interval ="1"/>
Via JavaScript:

// Only wait 1 second between receiving a poll response and sending the
next poll request.
Seam Renoti ng. pol | I nterval = 1;

235

Chapter 19. Remoting

/1l Wait up to 5 seconds on the server for new nessages
Seam Renot i ng. pol | Ti neout = 5;

236

Chapter 20.

Spring Framework integration

The Spring integration module allows easy migration of Spring-based projects to Seam and
allows Spring applications to take advantage of key Seam features like conversations and
Seam's more sophisticated persistence context management.

Seam's support for Spring provides the ability to:

* inject Seam component instances into Spring beans
* inject Spring beans into Seam components

* turn Spring beans into Seam components

« allow Spring beans to live in any Seam context

« start a spring WebApplicationContext with a Seam component

1. Injecting Seam components into Spring beans

Injecting Seam component instances into Spring beans is accomplished using the
<seam i nst ance/ > namespace handler. To enable the Seam namespace handler, the Seam
namespace must be added to the Spring beans definition file:

<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: seam="http://j boss. conl product s/ seani spri ng- seant'
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http://ww. spri ngf ranewor k. or g/ schenma/ beans
http://ww. springfranmewor k. or g/ schena/ beans/ spri ng- beans- 2. 0. xsd
http://jboss. conl product s/ seani spri ng- seam
http://jboss. con product s/ sean spri ng- seam 1. 2. xsd" >

Now any Seam component may be injected into any Spring bean:

<bean i d="soneSpri ngBean" cl ass="SonmeSpri ngBeanC ass" scope="pr ot otype">
<property nane="soneProperty">
<seam i nst ance name="soneConponent "/ >
</ pr operty>
</ bean>

An EL expression may be used instead of a component name:

<bean i d="soneSpri ngBean" cl ass="SonmeSpri ngBeanC ass" scope="pr ot otype">
<property nane="soneProperty">
<seam i nst ance name="#{someExpressi on}"/>
</ property>
</ bean>

237

Chapter 20. Spring Framework integration

Seam component instances may even be made available for injection into Spring beans by a
Spring bean id.

<seam i nst ance nanme="soneConponent" i d="soneSeanmConponent | nstance"/>

<bean i d="soneSpri ngBean" cl ass="SonmeSpri ngBeanCl ass" scope="pr ot otype">
<property nane="soneProperty" ref="soneSeanConponent| nstance">
</ bean>

Now for the caveat!

Seam was designed from the ground up to support a stateful component model with multiple
contexts. Spring was not. Unlike Seam bijection, Spring injection does not occur at method
invocation time. Instead, injection happens only when the Spring bean is instantiated. So the
instance available when the bean is instantiated will be the same instance that the bean uses
for the entire life of the bean. For example, if a Seam CONVERSATI ON-scoped component
instance is directly injected into a singleton Spring bean, that singleton will hold a reference to
the same instance long after the conversation is over! We call this problem scope impedance.
Seam bijection ensures that scope impedance is maintained naturally as an invocation flows
through the system. In Spring, we need to inject a proxy of the Seam component, and resolve
the reference when the proxy is invoked.

The <seam i nst ance/ > tag lets us automatically proxy the Seam component.

<seam i nst ance i d="seamvhnagedEM' nanme="soneManagedEMConponent "
proxy="true"/>

<bean i d="soneSpri ngBean" cl ass="SonmeSpri ngBeanCl ass" >

<property nane="entityManager" ref="seanmVanagedeEM >
</ bean>

This example shows one way to use a Seam-managed persistence context from a Spring bean.
(A more robust way to use Seam-managed persistence contexts as a replacement for the
Spring OpenEnt i t yManager | nVi ew filter will be provided in a future release)

2. Injecting Spring beans into Seam components

It is even easier to inject Spring beans into Seam component instances. Actually, there are two
possible approaches:

* inject a Spring bean using an EL expression

* make the Spring bean a Seam component

We'll discuss the second option in the next section. The easiest approach is to access the
Spring beans via EL.

238

Making a Spring bean into a Seam

The Spring Del egat i ngVari abl eResol ver is an integration point Spring provides for
integrating Spring with JSF. This Var i abl eResol ver makes all Spring beans available in EL by
their bean id. You'll need to add the Del egat i ngVari abl eResol ver to f aces-config. xnl :

<appl i cati on>
<vari abl e-resol ver >
org. spri ngfranewor k. web. j sf. Del egati ngVari abl eResol ver
</vari abl e-resol ver >
</ applicati on>

Then you can inject Spring beans using @ n:

@ n("#{booki ngService}")
private Booki ngServi ce booki ngServi ce;

The use of Spring beans in EL is not limited to injection. Spring beans may be used anywhere
that EL expressions are used in Seam: process and pageflow definitions, working memory
assertions, etc...

3. Making a Spring bean into a Seam component

The <seam conponent / > namespace handler can be used to make any Spring bean a Seam
component. Just place the <seam conponent / > tag within the declaration of the bean that you
wish to be a Seam component:

<bean i d="soneSpri ngBean" cl ass="SomeSpri ngBeanCl ass" scope="pr ot ot ype">
<seam conponent / >
</ bean>

By default, <seam conmponent / > will create a STATELESS Seam component with class and name
provided in the bean definition. Occasionally, such as when a Fact or yBean is used, the class of
the Spring bean may not be the class appearing in the bean definition. In such cases the cl ass
should be explicitly specified. A Seam component name may be explicitly specified in cases
where there is potential for a naming conflict.

The scope attribute of <seam conponent / > may be used if you wish the Spring bean to be
managed in a particular Seam scope. The Spring bean must be scoped to pr ot ot ype if the
Seam scope specified is anything other than STATELESS. Pre-existing Spring beans usually
have a fundamentally stateless character, so this attribute is not usually needed.

4. Seam-scoped Spring beans

The Seam integration package also lets you use Seam's contexts as Spring 2.0 style custom
scopes. This lets you declare any Spring bean in any of Seam's contexts. However, note once
again that Spring's component model was never architected to support statefulness, so please
use this feature with great care. In particular, clustering of session or conversation scoped

239

Chapter 20. Spring Framework integration

Spring beans is deeply problematic, and care must be taken when injecting a bean or
component from a wider scope into a bean of a narrower scope.

By specifying <seam conf i gur e- scopes/ > once in a Spring bean factory configuration, all of
the Seam scopes will be available to Spring beans as custom scopes. To associate a Spring
bean with a particular Seam scope, specify the Seam scope in the scope attribute of the bean
definition.

<I-- Only needs to be specified once per bean factory-->
<seam conf i gur e- scopes/ >

<bean i d="soneSpri ngBean" cl ass="SonmeSpri ngBeanCl ass"
scope="seam CONVERSATI ON'/ >

The prefix of the scope hame may be changed by specifying the pr ef i x attribute in the
conf i gur e- scopes definition. (The default prefix is seam)

Seam-scoped Spring beans defined this way can be injected into other Spring beans without
the use of <seam i nst ance/ >. However, care must be taken to ensure scope impedance is
maintained. The normal approach used in Spring is to specify <aop: scoped- pr oxy/ > in the
bean definition. However, Seam-scoped Spring beans are not compatible with

<aop: scoped- pr oxy/ >. So if you need to inject a Seam-scoped Spring bean into a singleton,
<seam i nst ance/ > must be used:

<bean i d="soneSpri ngBean" cl ass="SonmeSpri ngBeanCl ass"
scope="seam CONVERSATI ON'/ >

<bean i d="soneSi ngl et on" >
<property nane="sonmeSeanfScopedSpri ngBean">
<seam i nst ance nane="soneSpri ngBean" proxy="true"/>
</ pr operty>
</ bean>

5. Spring Application Context as a Seam Component

Although it is possible to use the Spring Cont ext Loader Li st ener to start your application's
Spring ApplicationContext there are a couple of limitations.

* the Spring ApplicationContext must be started after the SeantLi st ener

* it can be tricky starting a Spring ApplicationContext for use in Seam unit and integration tests

To overcome these two limitations the Spring integration includes a Seam component that will

240

component

start a Spring ApplicationContext. To use this Seam component place the

<spring: cont ext - | oader/ > definition in the conponent s. xm . Specify your Spring context file
location in the confi g- | ocat i ons attribute. If more than one config file is needed you can place
them in the nested <spri ng: confi g- 1 ocat i ons/ > element following standard

conponent s. xm multi value practices.

<components xm ns="http://jboss. com product s/ sean conponent s"
xm ns: spring="http://jboss. com product s/ seam spri ng"
xm ns: xsi ="http://ww. wW3. org/ 2001/ XM_Schema- i nst ance"
Xsi : schemalLocati on="http://jboss. con product s/ seanf conponent s
http://jboss. conl product s/ seam conponent s- 1. 2. xsd
http://jboss. con product s/ seani spring
http://jboss. conf product s/ seam spring-1. 2. xsd">

<spri ng: cont ext - | oader
cont ext - | ocati ons="/WEB- | NF/ appl i cati onCont ext . xm "/ >

</ conponent s>

241

242

Chapter 21.

Configuring Seam and packaging
Seam applications

Configuration is a very boring topic and an extremely tedious pastime. Unfortunately, several
lines of XML are required to integrate Seam into your JSF implementation and servlet container.
There's no need to be too put off by the following sections; you'll never need to type any of this
stuff yourself, since you can just copy and paste from the example applications!

1. Basic Seam configuration

First, let's look at the basic configuration that is needed whenever we use Seam with JSF.

1.1. Integrating Seam with JSF and your servlet container
Seam requires the following entry in your web. xn file:

<l i stener>
<listener-class>org.jboss. seam servl et. Seanli st ener</1|i stener-cl ass>
</listener>

This listener is responsible for bootstrapping Seam, and for destroying session and application
contexts.

To integrate with the JSF request lifecycle, we also need a JSF PhaseLi st ener registered in in
the f aces-confi g. xm file

<lifecycl e>
<phase-|i st ener>org. j boss. seam j sf. SeanPhaselLi st ener </ phase-| i st ener >
</lifecycle>

The actual listener class here varies depending upon how you want to manage transaction
demarcation (more on this below).

If you are using Sun's JSF 1.2 reference implementation, you should also add this to
faces-config. xm:

<appl i cati on>
<el -resol ver>org. j boss. seam j sf. SeanELResol ver </ el -resol ver >
</ appl i cati on>

(This line should not strictly speaking be necessary, but it works around a minor bug in the RI.)

Some JSF implementations have a broken implementation of server-side state saving that
interferes with Seam's conversation propagation. If you have problems with conversation

243

Chapter 21. Configuring Seam and packaging Seam applications

propagation during form submissions, try switching to client-side state saving. You'll need this in
web. xm :

<cont ext - par an>
<par am nanme>j avax. f aces. STATE_SAVI NG_METHOD</ par am nanme>
<par am val ue>cl i ent </ par am val ue>

</ cont ext - par an>

1.2. Seam Resource Servlet

The Seam Resource Servlet provides resources used by Seam Remoting, captchas (see the
security chapter) and some JSF Ul controls. Configuring the Seam Resource Servlet requires
the following entry in web. xni ;

<servl et >

<servl et - name>Seam Resour ce Servl et </ servl et - nane>

<servl et-cl ass>org. j boss. seam servl et. Resour ceSer vl et </ servl et - cl ass>
</servlet>

<servl et - mappi ng>
<ser vl et - nane>Seam Resour ce Servl et </servl et - nane>
<url - pattern>/seaniresource/*</url-pattern>

</ servl et - mappi ng>

1.3. Seam servlet filters

Seam doesn't need any servlet filters for basic operation. However, there are several features
which depend upon the use of filters. To make things easier for you guys, Seam lets you add

and configure servlet filters just like you would configure other built-in Seam components. To

take advantage of this feature, we must first install a master filter in web. xm :

<filter>
<filter-name>Seam Filter</filter-name>
<filter-class>org.jboss. seam web. SeanFilter</filter-class>
</filter>

<filter-mppi ng>
<filter-name>Seam Filter</filter-name>
<url-pattern>/*</url-pattern>
</filter-mappi ng>

Adding the master filter enables the following built-in filters.

1.3.1. Exception handling

This filter provides the exception mapping functionality in pages. xnl (almost all applications will
need this). It also takes care of rolling back uncommitted transactions when uncaught
exceptions occur. (According to the Java EE specification, the web container should do this

244

Seam servlet filters

automatically, but we've found that this behavior cannot be relied upon in all application servers.
And it is certainly not required of plain servlet engines like Tomcat.)

By default, the exception handling filter will process all requests, however this behavior may be
adjusted by adding a <web: excepti on-filter> entry to conponent s. xnl , as shown in this
example:

<components xm ns="http://jboss. com product s/ sean conponent s"
xm ns: core="http://jboss. conf product s/ seani cor e"
xm ns: web="http://jboss. conl product s/ seam web"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schermaLocat i on=
"http://jboss. conl product s/ seani core
http://jboss. conl product s/ seani core-1. 2. xsd
http://jboss. con product s/ seanf conponent s
http://jboss. conl product s/ seanl conponent s- 1. 2. xsd
http://jboss. con product s/ seam web
http://jboss. conf product s/ seam web- 1. 2. xsd" >

<web: exception-filter url-pattern="*.seant/>

</ conponent s>

e url-pattern— Used to specify which requests are filtered, the default is all requests.

1.3.2. Conversation propagation with redirects

This filter allows Seam to propagate the conversation context across browser redirects. It
intercepts any browser redirects and adds a request parameter that specifies the Seam
conversation identifier.

The redirect filter will process all requests by default, but this behavior can also be adjusted in
conponent s. xm :

<web:redirect-filter url-pattern="*.seant/>

e url-pattern— Used to specify which requests are filtered, the default is all requests.

1.3.3. Multipart form submissions

This feature is necessary when using the Seam file upload JSF control. It detects multipart form
requests and processes them according to the multipart/form-data specification (RFC-2388). To
override the default settings, add the following entry to conponent s. xni :

<web: nul tipart-filter create-tenp-files="true"
max- r equest - si ze="1000000"
url -pattern="*.seanl'/>

245

Chapter 21. Configuring Seam and packaging Seam applications

e create-tenmp-files — If settotrue, uploaded files are written to a temporary file (instead of
held in memory). This may be an important consideration if large file uploads are expected.
The default setting is f al se.

e max-request - si ze — If the size of a file upload request (determined by reading the
Cont ent - Lengt h header in the request) exceeds this value, the request will be aborted. The
default setting is O (no size limit).

e url-pattern— Used to specify which requests are filtered, the default is all requests.

1.3.4. Character encoding

Sets the character encoding of submitted form data.

This filter is not installed by default and requires an entry in conponent s. xn to enable it:

<web: char act er - encodi ng-filter encodi ng="UTF-16"
override-client="true"
url -pattern="*.seanl'/ >

» encodi ng — The encoding to use.

* override-client —Ifthisis settotrue, the request encoding will be set to whatever is
specified by encodi ng no matter whether the request already specifies an encoding or not. If
setto f al se, the request encoding will only be set if the request doesn't already specify an
encoding. The default setting is f al se.

e url-pattern— Used to specify which requests are filtered, the default is all requests.

1.3.5. Context management for custom servlets

Requests sent direct to some servlet other than the JSF servlet are not processed through the
JSF lifecycle, so Seam provides a servlet filter that can be applied to any other servlet that
needs access to Seam components.

This filter allows custom servlets to interact with the Seam contexts. It sets up the Seam
contexts at the beginning of each request, and tears them down at the end of the request. You
should make sure that this filter is never applied to the JSF FacesSer vl et . Seam uses the
phase listener for context management in a JSF request.

This filter is not installed by default and requires an entry in conponent s. xn to enable it:

<web: context-filter url-pattern="/nedia/*"/>

246

Integrating Seam with your EJB container

e url-pattern— Used to specify which requests are filtered, the default is all requests. If the
url-pattern is specified for the context filter, then the filter will be enabled (unless explicitly
disabled).

The context filter expects to find the conversation id of any conversation context in a request
parameter named conver sat i onl d. You are responsible for ensuring that it gets sent in the
request.

You are also responsible for ensuring propagation of any new conversation id back to the client.
Seam exposes the conversation id as a property of the built in component conver sati on.

1.4. Integrating Seam with your EJB container

We need to apply the Seam nt er cept or to our Seam components. The simplest way to do this
is to add the following interceptor binding to the <assenbl y-descri ptor>inejb-jar.xm :

<i nt er cept or - bi ndi ng>

<ej b- name>*</ ej b- nane>
<i nterceptor-class>org.jboss. seam ej b. Seam nt er ceptor</i nterceptor-cl ass>
</i nt er cept or - bi ndi ng>

Seam needs to know where to go to find session beans in JNDI. One way to do this is specify
the @ndi Nane annotation on every session bean Seam component. However, this is quite
tedious. A better approach is to specify a pattern that Seam can use to calculate the JNDI nhame
from the EJB name. Unfortunately, there is no standard mapping to global JNDI defined in the
EJB3 specification, so this mapping is vendor-specific. We usually specify this option in
conponents. xm .

For JBoss AS, the following pattern is correct:

<core:init jndi-name="myEar Name/ #{ej bNane}/| ocal " />

Where nyEar Nane is the name of the EAR in which the bean is deployed.

Outside the context of an EAR (when using the JBoss Embeddable EJB3 container), the
following pattern is the one to use:

<core:init jndi-nanme="#{ej bName}/| ocal" />
You'll have to experiment to find the right setting for other application servers. Note that some

servers (such as GlassFish) require you to specify JNDI names for all EJB components
explicitly (and tediously). In this case, you can pick your own pattern ;-)

1.5. Using facelets

247

Chapter 21. Configuring Seam and packaging Seam applications

If you want follow our advice and use facelets instead of JSP, add the following lines to
faces-config. xm :

<appl i cati on>
<vi ew handl er >com sun. f acel et s. Facel et Vi ewHand| er </ vi ew handl| er >
</ appli cati on>

And the following lines to web. xm :

<cont ext - par an>
<par am nanme>j avax. f aces. DEFAULT_SUFFI X</ par am nane>
<par am val ue>. xht m </ par am val ue>

</ cont ext - par an>

1.6. Don't forget!

There is one final item you need to know about. You must place a seam properti es,

META- | NF/ seam properti es of META- | NF/ conponent s. xni file in any archive in which your
Seam components are deployed (even an empty properties file will do). At startup, Seam will
scan any archives with seam properti es files for seam components.

In a web archive (WAR) file, you must place a seam properti es file in the VEB- | NF/ cl asses
directory if you have any Seam components included here.

That's why all the Seam examples have an empty seam properti es file. You can't just delete
this file and expect everything to still work!

You might think this is silly and what kind of idiot framework designers would make an empty file
affect the behavior of their software?? Well, this is a workaround for a limitation of the JVM—if
we didn't use this mechanism, our next best option would be to force you to list every
component explicitly in conponent s. xni , just like some other competing frameworks do! | think
you'll like our way better.

2. Configuring Seam in Java EE 5

248

Packaging

JSP / Facelets

JSF

Seam

EJB 3

Java EE 5

If you're running in a Java EE 5 environment, this is all the configuration required to start using
Seam!

2.1. Packaging

Once you've packaged all this stuff together into an EAR, the archive structure will look
something like this:

ny- appl i cati on. ear/
j boss-seam j ar

el -api.jar
el-ri.jar
META- | NF/

MANI FEST. M-

appl i cation. xm
ny- appl i cati on. war/
META- | NF/
MANI FEST. MF
VEEB- | NF/
web. xm
conmponent s. xml
faces-config. xm
l'i b/
jsf-facelets.jar
j boss-seam ui . j ar
|l ogin.jsp
register.jsp

ny-application.jar/
META- | NF/
MANI FEST. M-
persi st ence. xm
seam properties
org/
j boss/
nmyappl i cati on/
User. cl ass

249

Chapter 21. Configuring Seam and packaging Seam applications

Logi n. cl ass

Logi nBean. cl ass
Regi ster. cl ass

Regi st er Bean. cl ass

You must include j boss-seam jar, el -api.jar andel -ri.jar inthe EAR classpath. Make
sure you reference all of these jars from appl i cati on. xni .

If you want to use jBPM or Drools, you must include the needed jars in the EAR classpath.
Make sure you reference all of the jars from appl i cati on. xm .

If you want to use facelets (our recommendation), you must include j sf - f acel et s. j ar in the
VEB- | NF/ | i b directory of the WAR.

If you want to use the Seam tag library (most Seam applications do), you must include

j boss-seam ui . j ar inthe WEB- I NF/ | i b directory of the WAR. If you want to use the PDF or
email tag libraries, you need to put j boss- seam pdf . j ar or j boss-seammail .jar in

VEB- | NF/ |'i b.

If you want to use the Seam debug page (only works for applications using facelets), you must
include j boss- seam debug. j ar in the VEB- | NF/ | i b directory of the WAR.

Seam ships with several example applications that are deployable in any Java EE container that
supports EJB 3.0.

| really wish that was all there was to say on the topic of configuration but unfortunately we're
only about a third of the way there. If you're too overwhelmed by all this tedious configuration
stuff, feel free to skip over the rest of this section and come back to it later.

3. Configuring Seam in Java SE, with the JBoss
Embeddable EJB3 container

The JBoss Embeddable EJB3 container lets you run EJB3 components outside the context of
the Java EE 5 application server. This is especially, but not only, useful for testing.

The Seam booking example application includes a TestNG integration test suite that runs on the
Embeddable EJB3 container.

Seam

JBoss Embeddable EJB 3

TestNG

250

Installing the Embeddable EJB3 container

The booking example application may even be deployed to Tomcat.

ISP / Facelets

JSF

Seam

JBoss Embeddable EJB 3

Tomcat

3.1. Installing the Embeddable EJB3 container

Seam ships with a build of the Embeddable EJB3 container in the enbedded- ej b directory. To
use the Embeddable EJB3 container with Seam, add the enbedded- ej b/ conf directory, and all
jarsinthe li b and enbedded- ej b/ | i b directories to your classpath. Then, add the following
line to conponent s. xn :

<core:ejb />

This setting installs the built-in component named or g. j boss. seam cor e. ej b. This component
is responsible for bootstrapping the EJB container when Seam is started, and shutting it down
when the web application is undeployed.

3.2. Configuring a datasource with the Embeddable EJB3
container

You should refer to the Embeddable EJB3 container documentation for more information about
configuring the container. You'll probably at least need to set up your own datasource.
Embeddable EJB3 is implemented using the JBoss Microcontainer, so it's very easy to add new
services to the minimal set of services provided by default. For example, | can add a new
datasource by putting this j boss- beans. xni file in my classpath:

<?xm version="1.0" encodi ng="UTF- 8" ?>

<depl oynent xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocat i on="urn: j boss: bean- depl oyer

bean- depl oyer _1 0. xsd"
xm ns="urn: j boss: bean- depl oyer ">

<bean nane="booki ngDat asour ceBoot st rap"

251

Chapter 21. Configuring Seam and packaging Seam applications

cl ass="org. j boss. resource. adapter. jdbc. | ocal . Local TxDat aSour ce" >
<property nane="driver d ass">org. hsql db. j dbcDri ver </ property>
<property nane="connecti onURL" >j dbc: hsql db: . </ property>
<property nane="user Name" >sa</ property>
<property nane="j ndi Name" >j ava: / booki ngDat asour ce</ pr operty>
<property nane="mni nSi ze" >0</ property>
<property nane="nmaxSi ze" >10</ pr operty>
<property nane="bl ocki ngTi neout " >1000</ pr operty>
<property nane="idl eTi meout " >100000</ pr operty>
<property nane="transacti onManager">
<i nj ect bean="Transacti onManager"/>
</ property>
<property nane="cachedConnecti onManager" >
<i nj ect bean="CachedConnecti onManager"/>
</ property>
<property nane="initial ContextProperties">
<i nj ect bean="Initial Cont extProperties"/>
</ property>
</ bean>

<bean nane="booki ngDat asour ce" cl ass="j ava. | ang. Cbj ect ">
<constructor factoryMethod="get Datasource">
<factory bean="booki ngDat asour ceBoot strap"/>
</ construct or >
</ bean>

</ depl oynent >

3.3. Packaging

The archive structure of a WAR-based deployment on an servlet engine like Tomcat will look
something like this:

ny-appl i cati on. war/
META- | NF/
MANI FEST. MF
VEEB- | NF/
web. xm
conmponent s. xni
faces-config. xm
l'i b/
j boss-seam j ar
j boss-seamui . jar
el -api.jar
el-ri.jar
jsf-facelets.jar
nyf aces-api.jar
nyfaces-inpl.jar
j boss-ej b3.j ar
j boss-jca.jar
j boss-j 2ee. j ar

nc-conf . jar/
ej b3-i nt ercept or s-aop. xm

252

Configuring Seam in J2EE

enbedded- j boss- beans. xmi

def aul t . persi st ence. properties
jndi.properties

| ogi n-config. xm
security-beans. xm

| 0g4j . xm
ny-application.jar/

META- | NF/
MANI FEST. MF

persi st ence. xm
j boss- beans. xm
| 0g4j . xm
seam properties
org/
j boss/
nmyappl i cati on/
User. cl ass
Logi n. cl ass
Logi nBean. cl ass
Regi ster. cl ass
Regi st er Bean. cl ass

| ogin.jsp
register.jsp

The nt- conf. j ar just contains the standard JBoss Microcontainer configuration files for
Embeddable EJB3. You won't usually need to edit these files yourself.

Most of the Seam example applications may be deployed to Tomcat by running ant
depl oy. t ontat .

4. Configuring Seam in J2EE

Seam is useful even if you're not yet ready to take the plunge into EJB 3.0. In this case you
would use Hibernate3 or JPA instead of EJB 3.0 persistence, and plain JavaBeans instead of
session beans. You'll miss out on some of the nice features of session beans but it will be very
easy to migrate to EJB 3.0 when you're ready and, in the meantime, you'll be able to take
advantage of Seam's unique declarative state management architecture.

253

Chapter 21. Configuring Seam and packaging Seam applications

ISP / Facelets

JSF

Seam

Hibernate

Java EE 5/ J2EE

Seam JavaBean components do not provide declarative transaction demarcation like session
beans do. You could manage your transactions manually using the JTA User Tr ansact i on (you
could even implement your own declarative transaction management in a Seam interceptor).
But most applications will use Seam managed transactions when using Hibernate with
JavaBeans. Follow the instructions in the persistence chapter to install

Transact i onal SeanPhaselLi st ener.

The Seam distribution includes a version of the booking example application that uses
Hibernate3 and JavaBeans instead of EJB3, and another version that uses JPA and
JavaBeans. These example applications are ready to deploy into any J2EE application server.

4.1. Boostrapping Hibernate in Seam

Seam will bootstrap a Hibernate Sessi onFact ory from your hi ber nat e. cf g. xnl file if you
install a built-in component:

<cor e: hi ber nat e- sessi on-factory nane="hi ber nat eSessi onFactory"/>

You will also need to configure a managed session if you want a Seam managed Hibernate
Sessi on to be available via injection.

4.2. Boostrapping JPA in Seam

Seam will bootstrap a JPA Enti t yManager Fact ory from your per si st ence. xmi file if you
install this built-in component:

<core:entity-nmanager-factory nane="entityManager Factory"/>

You will also need to configure a managed persistencece context if you want a Seam managed
JPA Enti t yManager to be available via injection.

254

Configuring Seam in Java SE, with the

4.3. Packaging

We can package our application as a WAR, in the following structure:

ny-appl i cati on. war/
MVETA- | NF/
MANI FEST. MF
\EB- | NF/
web. xm
conponent s. xmi
faces-config. xm
l'i b/
j boss-seam j ar
j boss-seamui . jar
el -api.jar
el-ri.jar
jsf-facelets.jar
hi ber nat e3.j ar
hi ber nat e- annot ati ons. j ar

nmy-application.jar/
META- | NF/
VANI FEST. MF
seam properties
hi ber nat e. cf g. xmi
org/
j boss/
nyappl i cati on/
User. cl ass
Logi n. cl ass
Regi ster. cl ass

| ogin.jsp
register.jsp

If we want to deploy Hibernate in a non-J2EE environment like Tomcat or TestNG, we need to

do a little bit more work.

5. Configuring Seam in Java SE, with the JBoss

Microcontainer

The Seam support for Hibernate and JPA requires JTA and a JCA datasource. If you are
running in a non-EE environment like Tomcat or TestNG you can run these services, and

Hibernate itself, in the JBoss Microcontainer.

You can even deploy the Hibernate and JPA versions of the booking example in Tomcat.

255

Chapter 21. Configuring Seam and packaging Seam applications

JSP [/ Facelets

J5F

Seam

Hibernate

JBoss JTA JBoss JCA

JBoss Microcontainer

Tomcat

Seam ships with an example Microcontainer configuration in

mi crocont ai ner/ conf/j boss- beans. xn that provides all the things you need to run Seam
with Hibernate in any non-EE environment. Just add the ni cr ocont ai ner/ conf directory, and
all jars in the I'i b and mi cr ocont ai ner/ | i b directories to your classpath. Refer to the
documentation for the JBoss Microcontainer for more information.

5.1. Using Hibernate and the JBoss Microcontainer

The built-in Seam component named or g. j boss. seam cor e. i cr ocont ai ner bootstraps the
microcontainer. As before, we probably want to use a Seam managed session.

<cor e: nm crocont ai ner/ >

<cor e: managed- hi ber nat e- sessi on nane="booki ngDat abase" auto-create="true"
sessi on-factory-jndi - nane="j ava: / booki ngSessi onFact ory"/ >

Where j ava: / booki ngSessi onFact ory is the name of the Hibernate session factory specified
in hi bernate.cfg. xm .

You'll need to provide a j boss- beans. xm file that installs INDI, JTA, your JCA datasource and
Hibernate into the microcontainer:

<?xm version="1.0" encodi ng="UTF- 8" ?>

<depl oyment xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi : schemalLocat i on="ur n: j boss: bean- depl oyer
bean- depl oyer _1 0. xsd"

256

JBoss Microcontainer

xm ns="urn: j boss: bean- depl oyer ">
<bean name="Nam ng" cl ass="org.jnp.server. Singl et onNam ngServer"/>

<bean name="Transacti onManager Fact or y"
cl ass="org.j boss. seam ni crocont ai ner. Transact i onManager Fact ory"/ >
<bean nane="Transacti onManager" cl ass="java. | ang. Obj ect">
<constructor factoryMethod="get Transacti onManager" >
<factory bean="Transacti onManager Factory"/>
</ construct or >
</ bean>

<bean name="booki ngDat asour ceFact ory"
cl ass="org. j boss. seam ni cr ocont ai ner. Dat aSour ceFact ory" >
<property nane="dri verC ass">org. hsql db. j dbcDri ver </ property>
<property nane="connectionUrl|">jdbc: hsql db:. </ property>
<property nane="user Name" >sa</ property>
<property nane="j ndi Name" >j ava: / hi ber nat eDat asour ce</ pr operty>
<property nane="ni nSi ze" >0</ property>
<property nane="nmaxSi ze" >10</ pr operty>
<property nanme="bl ocki ngTi neout " >1000</ pr operty>
<property nane="idl eTi meout " >100000</ pr operty>
<property nane="transacti onManager"><i nj ect
bean="Tr ansact i onManager "/ ></ pr operty>
</ bean>
<bean name="booki ngDat asour ce" cl ass="j ava. | ang. Obj ect ">
<constructor factoryMethod="get Dat aSource">
<factory bean="booki ngDat asour ceFactory"/>
</ construct or >
</ bean>

<bean name="booki ngSessi onFact or yFact ory"

cl ass="org.j boss. seam mi cr ocont ai ner. Hi ber nat eFact ory"/ >
<bean nanme="booki ngSessi onFactory" cl ass="j ava. | ang. Obj ect ">

<constructor factoryMethod="get Sessi onFactory">

<factory bean="booki ngSessi onFact or yFact ory"/>

</ construct or >

<depends>booki ngDat asour ce</ depends>
</ bean>

</ depl oynent >

5.2. Packaging
The WAR could have the following structure:

nmy-appl i cati on. war/
META- | NF/
MANI FEST. MF
VAEB- | NF/
web. xm
conponent s. xni
faces-config. xm
l'i b/

257

Chapter 21. Configuring Seam and packaging Seam applications

j boss-seam j ar

j boss-seamui . j ar
el -api.jar
el-ri.jar
jsf-facelets.jar
hi ber nat e3.j ar

j boss-m crocont ai ner. jar
j boss-jca.jar

nyf aces-api.j ar
nyfaces-inpl.jar
nc-conf . jar/
jndi.properties
| 0g4j . xm
ny-application.jar/
META- | NF/
MANI FEST. MF
j boss- beans. xm
seam properties
hi ber nat e. cf g. xm
| og4j . xmi
org/
j boss/
nyappl i cati on/
User. cl ass
Logi n. cl ass
Regi ster. cl ass

| ogin.jsp
register.jsp

6. Configuring jBPM in Seam

Seam's jBPM integration is not installed by default, so you'll need to enable jBPM by installing a
built-in component. You'll also need to explicitly list your process and pageflow definitions. In
conponents. xm :

<core:j bpner
<cor e: pagef | ow definiti ons>
<val ue>cr eat eDocunent . j pdl . xm </ val ue>
<val ue>edi t Docunent . j pdl . xm </ val ue>
<val ue>appr oveDocunent . j pdl . xm </ val ue>
</ cor e: pagef | ow defi ni ti ons>
<cor e: process-definiti ons>
<val ue>docunent Li fecycl e. j pdl . xm </ val ue>
</ core: process-definitions>
</ core:jbpnr

No further special configuration is needed if you only have pageflows. If you do have business
process definitions, you need to provide a jBPM configuration, and a Hibernate configuration for

258

Packaging

jBPM. The Seam DVD Store demo includes example j bpm cf g. xml and hi ber nat e. cf g. xni
files that will work with Seam:

<j bpm confi guration>

<j bpm cont ext >
<servi ce name="persi stence">
<factory>
<bean cl ass="org.j bpm per si st ence. db. DbPer si st enceSer vi ceFact ory" >
<field nane="i sTransacti onEnabl ed" ><f al se/ ></fi el d>
</ bean>
</factory>
</ servi ce>
<servi ce name="message"
factory="org.j bpm nsg. db. DbMessageSer vi ceFactory" />
<servi ce nane="schedul er"
factory="org.j bpm schedul er. db. DbSchedul er Servi ceFactory" />
<servi ce name="| oggi ng"
factory="org.j bpm | oggi ng. db. DbLoggi ngSer vi ceFact ory" />
<servi ce nane="aut henti cation"
factory="org.j bpm security. aut henti cati on. Def aul t Aut henti cati onServi ceFact ory"
/>
</ j bpm cont ext >

</j bpm confi gurati on>

The most important thing to notice here is that jBPM transaction control is disabled. Seam or
EJB3 should control the JTA transactions.

6.1. Packaging

There is not yet any well-defined packaging format for jBPM configuration and process/pageflow
definition files. In the Seam examples we've decided to simply package all these files into the
root of the EAR. In future, we will probably design some other standard packaging format. So
the EAR looks something like this:

nmy- appl i cati on. ear/
j boss-seam j ar
el -api.jar
el-ri.jar
jbpm 3. 1.jar
META- | NF/
MANI FEST. M-
appl i cati on. xn
ny- appl i cati on. war/
META- | NF/
MANI FEST. M-
VEB- | NF/
web. xm
conponent s. xni
faces-config. xm
l'i b/
jsf-facelets.jar

259

Chapter 21. Configuring Seam and packaging Seam applications

j boss-seam ui . j ar
| ogin.jsp
register.jsp

nmy-application.jar/
META- | NF/
MANI FEST. MF
persi st ence. xm
seam properties

org/
j boss/

nyappl i cati on/
User. cl ass
Logi n. cl ass
Logi nBean. cl ass
Regi ster. cl ass
Regi st er Bean. cl ass

j bpm cf g. xm

hi ber nat e. cf g. xm

creat eDocunent . j pdl . xm

edi t Docunent . j pdl . xm

appr oveDocunent . j pdl . xm
docunent Li f ecycl e. j pdl . xm

Remember to add j bpm 3. 1. j ar to the manifest of your EJB-JAR and WAR.

7. Configuring Seam in a Portal

To run a Seam application as a portlet, you'll need to provide certain portlet metadata
(portlet.xnl, etc) in addition to the usual Java EE metadata. See the exanpl es/ port al
directory for an example of the booking demo preconfigured to run on JBoss Portal.

In addition, you'll need to use a portlet-specific phase listener instead of SeanPhaselLi st ener or
Transact i onal SeanPhaseli st ener. The SeanPort | et PhaseLi st ener and

Transact i onal SeanPort| et Phaseli st ener are adapted to the portlet lifecycle. | would like to
offer my sincerest apologies for the name of that last class. | really couldn't think of anything
better. Sorry.

8. Configuring SFSB and Session Timeouts in JBoss
AS

It is very important that the timeout for Stateful Session Beans is set higher than the timeout for
HTTP Sessions, otherwise SFSB's may time out before the user's HTTP session has ended.
JBoss Application Server has a default session bean timeout of 30 minutes, which is configured
in server/ def aul t/ conf/ st andar dj boss. xn (replace default with your own configuration).

The default SFSB timeout can be adjusted by modifying the value of nex- bean-1i f e in the
LRUSt at ef ul Cont ext CachePol i cy cache configuration:

260

Configuring SFSB and Session Timeouts in

<cont ai ner - cache- conf >
<cache- pol i cy>org. j boss. ej b. pl ugi ns. LRUSt at ef ul Cont ext CachePol i cy</ cache- pol i cy>
<cache- pol i cy- conf >
<m n- capaci t y>50</ mi n- capaci ty>
<max- capaci t y>1000000</ max- capaci t y>
<r enover - per i 0d>1800</ r enover - per i od>

<l-- SFSB tineout in seconds; 1800 seconds == 30 m nutes -->
<max- bean-|i f e>1800</ max- bean-1ife>

<over ager - per i 0d>300</ over ager - peri od>
<max- bean- age>600</ nax- bean- age>
<resi zer - peri 0d>400</r esi zer - peri od>
<max- cache- m ss- peri 0d>60</ max- cache- m ss- peri od>
<nmi n- cache- m ss- peri od>1</ m n- cache- ni ss- peri od>
<cache- | oad- f act or >0. 75</ cache- | oad-f act or >
</ cache- pol i cy- conf >
</ cont ai ner - cache- conf >

The default HTTP session timeout can be modified in

server/defaul t/ depl oy/j bossweb-t ontat 55. sar/ conf/web. xnl for JBoss 4.0.x, or in
server/ def aul t/ depl oy/ j boss-web. depl oyer/ conf/web. xnl for JBoss 4.2.x. The following
entry in this file controls the default session timeout for all web applications:

<sessi on- confi g>
<l-- HITP Session tineout, in mnutes -->
<sessi on-ti meout >30</ sessi on-ti meout >

</ sessi on- confi g>

To override this value for your own application, simply include this entry in your application's
own web. xm .

261

262

Chapter 22.

Seam annotations

When you write a Seam application, you'll use a lot of annotations. Seam lets you use
annotations to achieve a declarative style of programming. Most of the annotations you'll use
are defined by the EJB 3.0 specification. The annotations for data validation are defined by the
Hibernate Validator package. Finally, Seam defines its own set of annotations, which we'll
describe in this chapter.

All of these annotations are defined in the package or g. j boss. seam annot at i ons.

1. Annotations for component definition

The first group of annotations lets you define a Seam component. These annotations appear on
the component class.

@\ane

@\ane(" conponent Nanme")

Defines the Seam component name for a class. This annotation is required for all Seam
components.

@scope

@cope(ScopeType. CONVERSATI ON)

Defines the default context of the component. The possible values are defined by the
ScopeType enumeration: EVENT, PAGE, CONVERSATI ON, SESSI ON, BUSI NESS PROCESS,
APPL| CATI ON, STATELESS.

When no scope is explicitly specified, the default depends upon the component type. For
stateless session beans, the default is STATELESS. For entity beans and stateful session
beans, the default is CONVERSATI ON. For JavaBeans, the default is EVENT.

@0l e

@Rol e(nane="r ol eNane", scope=ScopeType. SESSI ON)

Allows a Seam component to be bound to multiple contexts variables. The @Nanme/@cope
annotations define a "default role". Each @ol e annotation defines an additional role.

* nanme — the context variable name.

* scope — the context variable scope. When no scope is explicitly specified, the default
depends upon the component type, as above.

263

Chapter 22. Seam annotations

@Rol es

@Rol es({
@Rol e(name="user", scope=ScopeType. CONVERSATI ON),

@Rol e(name="current User", scope=ScopeType. SESSI ON)
})
Allows specification of multiple additional roles.

@ nt er cept

@ntercept (I nterceptionType. ALVWAYS)

Determines when Seam interceptors are active. The possible values are defined by the
I nt er cepti onType enumeration: ALWAYS, AFTER RESTORE_ VI EW
AFTER_UPDATE_MODEL_VALUES, | NVOKE_APPLI CATI ON, NEVER.

When no interception type is explicitly specified, the default depends upon the component
type. For entity beans, the default is NEVER. For session beans, message driven beans and

JavaBeans, the default is ALWAYS.
@ndi Nanme
@ndi Nanme(" ny/ j ndi / nane")
Specifies the JINDI name that Seam will use to look up the EJB component. If no JNDI

name is explicitly specified, Seam will use the JNDI pattern specified by
org.jboss.seamcore.init.jndi Pattern.

@onver sat i onal
@onver sat i onal (i f Not BegunQut cone="error")
Specifies that a conversation scope component is conversational, meaning that no method

of the component can be called unless a long-running conversation started by this
component is active (unless the method would begin a new long-running conversation).

@t art up
@5t art up(depends={"org.j boss.core.jndi", "org.jboss.core.jta"})

Specifies that an application scope component is started immediately at initialization time.
This is mainly used for certain built-in components that bootstrap critical infrastructure such

as JNDI, datasources, etc.

264

Annotations for component definition

@t artup

Specifies that a session scope component is started immediately at session creation time.

» depends — specifies that the named components must be started first, if they are
installed.

@nstall

@nstall (fal se)

Specifies whether or not a component should be installed by default. The lack of an @Install
annotation indicates a component should be installed.

@ nstal | (dependenci es="org. j boss. seam core. j bpni)

Specifies that a component should only be stalled if the components listed as dependencies
are also installed.

@ nstal | (generi cDependenci es=ManagedQueueSender . cl ass)

Specifies that a component should only be installed if a component that is implemented by a
certain class is installed. This is useful when the dependency doesn't have a single
well-known name.

@nstal |l (cl assDependenci es="or g. hi ber nat e. Sessi on")

Specifies that a component should only be installed if the named class is in the classpath.

@nstal |l (precedence=BU LT_I N)

Specifies the precedence of the component. If multiple components with the same name
exist, the one with the higher precedence will be installed. The defined precendence values
are (in ascending order):

e BU LT_I N— Precedence of all built-in Seam components
* FRAMEWORK — Precedence to use for components of frameworks which extend Seam
* APPLI CATI ON— Predence of application components (the default precedence)

» DEPLOYMENT — Precedence to use for components which override application
components in a particular deployment

265

Chapter 22. Seam annotations

* MOCK — Precedence for mock objects used in testing

@ynchroni zed

@ynchroni zed(ti meout =1000)

Specifies that a component is accessed concurrently by multiple clients, and that Seam
should serialize requests. If a request is not able to obtain its lock on the component in the

given timeout period, an exception will be raised.
@ReadOnl y

@ReadOnl y

Specifies that a JavaBean component or component method does not require state
replication at the end of the invocation.

2. Annotations for bijection

The next two annotations control bijection. These attributes occur on component instance
variables or property accessor methods.

@n

@n

Specifies that a component attribute is to be injected from a context variable at the
beginning of each component invocation. If the context variable is null, an exception will be

thrown.

@ n(required=fal se)

Specifies that a component attribute is to be injected from a context variable at the
beginning of each component invocation. The context variable may be null.

@n(create=true)

Specifies that a component attribute is to be injected from a context variable at the
beginning of each component invocation. If the context variable is null, an instance of the

component is instantiated by Seam.

@ n(val ue="cont ext Vari abl eNane")

266

Annotations for bijection

Specifies the name of the context variable explicitly, instead of using the annotated instance
variable name.

@ n(val ue="#{cust oner . addr esses["' shi pping']}")

Specifies that a component attribute is to be injected by evaluating a JSF EL expression at
the beginning of each component invocation.

* val ue — specifies the name of the context variable. Default to the name of the
component attribute. Alternatively, specifies a JSF EL expression, surrounded by #{...}.

* creat e — specifies that Seam should instantiate the component with the same name as
the context variable if the context variable is undefined (null) in all contexts. Default to
false.

* requi red — specifies Seam should throw an exception if the context variable is
undefined in all contexts.

@out
@ut

Specifies that a component attribute that is a Seam component is to be outjected to its
context variable at the end of the invocation. If the attribute is null, an exception is thrown.

@ut (requi red=f al se)

Specifies that a component attribute that is a Seam component is to be outjected to its
context variable at the end of the invocation. The attribute may be null.

@ut (scope=ScopeType. SESSI ON)

Specifies that a component attribute that is not a Seam component type is to be outjected to
a specific scope at the end of the invocation.

Alternatively, if no scope is explicitly specified, the scope of the component with the @ut
attribute is used (or the EVENT scope if the component is stateless).

@ut (val ue="cont ext Vari abl eNane")

Specifies the name of the context variable explicitly, instead of using the annotated instance
variable name.

« val ue — specifies the name of the context variable. Default to the name of the
component attribute.

267

Chapter 22. Seam annotations

e requi red — specifies Seam should throw an exception if the component attribute is null
during outjection.

Note that it is quite common for these annotations to occur together, for example:

@n(create=true) @ut private User currentUser;

The next annotation supports the manager component pattern, where a Seam component that
manages the lifecycle of an instance of some other class that is to be injected. It appears on a
component getter method.

@Jnwr ap

@Jnwr ap

Specifies that the object returned by the annotated getter method is the thing that is injected
instead of the component instance itself.

The next annotation supports the factory component pattern, where a Seam component is
responsible for initializing the value of a context variable. This is especially useful for initializing
any state needed for rendering the response to a non-faces request. It appears on a component
method.

@actory

@actory("processl nstance")

Specifies that the method of the component is used to initialize the value of the named
context variable, when the context variable has no value. This style is used with methods
that return voi d.

@actory("processlnstance", scope=CONVERSATI ON)

Specifies that the method returns a value that Seam should use to initialize the value of the
named context variable, when the context variable has no value. This style is used with
methods that return a value. If no scope is explicitly specified, the scope of the component
with the @act ory method is used (unless the component is stateless, in which case the
EVENT context is used).

» val ue — specifies the name of the context variable. If the method is a getter method,
default to the JavaBeans property name.

268

Annotations for component lifecycle

* scope — specifies the scope that Seam should bind the returned value to. Only
meaningful for factory methods which return a value.

This annotation lets you inject a Log:

@.ogger
@.ogger (" cat egor yName")

Specifies that a component field is to be injected with an instance of
org. j boss. seam | og. Log. For entity beans, the field must be declared as static.

» val ue — specifies the name of the log category. Default to the name of the component
class.

The last annotation lets you inject a request parameter value:

@Request Par anet er

@Request Par anet er (" par anet er Nane")

Specifies that a component attribute is to be injected with the value of a request parameter.
Basic type conversions are performed automatically.

» val ue — specifies the name of the request parameter. Default to the name of the
component attribute.

3. Annotations for component lifecycle methods

These annotations allow a component to react to its own lifecycle events. They occur on
methods of the component. There may be only one of each per component class.

@Cr eat e
@r eat e
Specifies that the method should be called when an instance of the component is

instantiated by Seam. Note that create methods are only supported for JavaBeans and
stateful session beans.

@estr oy

@est r oy

269

Chapter 22. Seam annotations

Specifies that the method should be called when the context ends and its context variables
are destroyed. Note that create methods are only supported for JavaBeans and stateful
session beans.

Note that all stateful session bean components must define a method annotated @est r oy
@enove in order to guarantee destruction of the stateful bean when a context ends.

Destroy methods should be used only for cleanup. Seam catches, logs and swallows any
exception that propagates out of a destroy method.

@bserver

@ser ver (" sonet hi ngChanged")

Specifies that the method should be called when a component-driven event of the specified
type occurs.

@xserver (val ue="sonet hi ngChanged", cr eat e=f al se)

Specifies that the method should be called when an event of the specified type occurs but
that an instance should not be created if one doesn't exist. If an instance does not exist and
create is false, the event will not be observed. The default value for create is true.

4. Annotations for context demarcation

These annotations provide declarative conversation demarcation. They appear on methods of
Seam components, usually action listener methods.

Every web request has a conversation context associated with it. Most of these conversations

end at the end of the request. If you want a conversation that span multiple requests, you must
"promote" the current conversation to a long-running conversation by calling a method marked
with @egi n.

@Begi n

@Begi n

Specifies that a long-running conversation begins when this method returns a non-null
outcome without exception.

@Begi n(i f Qut cone={"success", "continue"})

270

methods

Specifies that a long-running conversation begins when this action listener method
returns with one of the given outcomes.

@egi n(j oi n=true)

Specifies that if a long-running conversation is already in progress, the conversation
context is simply propagated.

@egi n(nest ed=t r ue)

Specifies that if a long-running conversation is already in progress, a hew nested
conversation context begins. The nested conversation will end when the next @nd is
encountered, and the outer conversation will resume. It is perfectly legal for multiple
nested conversations to exist concurrently in the same outer conversation.

@Begi n(pagef | ow="process definition nane")

Specifies a jBPM process definition name that defines the pageflow for this conversation.

@egi n(fl ushMode=FI ushModeType. MANUAL)

Specify the flush mode of any Seam-managed persistence contexts.

f 1 ushMode=Fl ushModeType. MANUAL supports the use of atomic conversations where all
write operations are queued in the conversation context until an explicit call to f | ush()
(which usually occurs at the end of the conversation).

* i f Qut come — specifies the JSF outcome or outcomes that result in a new long-running
conversation context.

» j oi n — determines the behavior when a long-running conversation is already in
progress. If t r ue, the context is propagated. If f al se, an exception is thrown. Default to
f al se. This setting is ignored when nest ed=t r ue is specified

* nest ed — specifies that a nested conversation should be started if a long-running
conversation is already in progress.

e fl ushMode — set the flush mode of any Seam-managed Hibernate sessions or JPA
persistence contexts that are created during this conversation.

271

Chapter 22. Seam annotations

» pagef| ow— a process definition name of a jBPM process definition deployed via
org.j boss. seam core. j bpm pagef | owDefi ni ti ons.

@nd

@nd

Specifies that a long-running conversation ends when this method returns a non-null
outcome without exception.

@nd(i f Qut come={"success", "error"}, evenlfException={SoneExcepti on.cl ass,
O her Excepti on. cl ass})

Specifies that a long-running conversation ends when this action listener method returns
with one of the given outcomes or throws one of the specified classes of exception.

i f Qut come — specifies the JSF outcome or outcomes that result in the end of the
current long-running conversation.

» bef oreRedi rect — by default, the conversation will not actually be destroyed until
after any redirect has occurred. Setting bef or eRedi r ect =t r ue specifies that the
conversation should be destroyed at the end of the current request, and that the
redirect will be processed in a new temporary conversation context.

@t art Task

@t art Task

"Starts" a jBPM task. Specifies that a long-running conversation begins when this method
returns a non-null outcome without exception. This conversation is associated with the
jBPM task specified in the named request parameter. Within the context of this
conversation, a business process context is also defined, for the business process instance
of the task instance.

The JBPM Taskl nst ance will be available in a request context variable named
t askl nst ance. The jPBM Pr ocessl nst ance will be available in a request context variable
named pr ocessl nst ance. (Of course, these objects are available for injection via @n.)

» taskl dPar anet er — the name of a request parameter which holds the id of the task.
Default to "t askl d", which is also the default used by the Seam t askLi st JSF
component.

e fl ushMode — set the flush mode of any Seam-managed Hibernate sessions or JPA
persistence contexts that are created during this conversation.

272

Annotations for context demarcation

@Begi nTask

@egi nTask

Resumes work on an incomplete jBPM task. Specifies that a long-running conversation
begins when this method returns a non-null outcome without exception. This conversation is
associated with the jBPM task specified in the named request parameter. Within the context
of this conversation, a business process context is also defined, for the business process
instance of the task instance.

The JBPM Taskl nst ance will be available in a request context variable named
t askl nst ance. The jPBM Pr ocessl nst ance will be available in a request context variable
named pr ocessl nst ance.

» taskl dPar anet er — the name of a request parameter which holds the id of the task.
Default to "t askl d", which is also the default used by the Seam t askLi st JSF
component.

« fl ushMode — set the flush mode of any Seam-managed Hibernate sessions or JPA
persistence contexts that are created during this conversation.

@ndTask

@ndTask

"Ends" a jBPM task. Specifies that a long-running conversation ends when this method
returns a non-null outcome, and that the current task is complete. Triggers a jBPM
transition. The actual transition triggered will be the default transition unless the
application has called Tr ansi ti on. set Name() on the built-in component named
transition.

@ndTask(transition="transiti onNanme")

Triggers the given jBPM transition.

@ndTask(i f Qut come={"success", "continue"})

Specifies that the task ends when this method returns one of the listed outcomes.

e transiti on — the name of the [BPM transition to be triggered when ending the task.
Defaults to the default transition.

273

Chapter 22. Seam annotations

« i f Qut come — specifies the JSF outcome or outcomes that result in the end of the task.

» bef oreRedi rect — by default, the conversation will not actually be destroyed until
after any redirect has occurred. Setting bef or eRedi r ect =t r ue specifies that the
conversation should be destroyed at the end of the current request, and that the
redirect will be processed in a new temporary conversation context.

@Cr eat ePr ocess

@Cr eat eProcess(definiti on="process definition name")

Creates a new jBPM process instance when the method returns a non-null outcome without
exception. The Processl nst ance object will be available in a context variable named
processl nst ance.

 defini ti on — the name of the |BPM process definition deployed via
org.j boss. seam core.j bpm processDefinitions.

@ResuneProcess

@ResunePr ocess(processl dPar anet er =" processl d")

Re-enters the scope of an existing jBPM process instance when the method returns a
non-null outcome without exception. The Pr ocessl nst ance object will be available in a
context variable named pr ocessl nst ance.

» processl dPar anet er — the name a request parameter holding the process id. Default to
"processld".
5. Annotations for transaction demarcation

Seam provides an annotation that lets you force a rollback of the JTA transaction for certain
action listener outcomes.
@®ol | back

@Rol | back(i fQutcone={"failure", "not-found"})

If the outcome of the method matches any of the listed outcomes, or if no outcomes are
listed, set the transaction to rollback only when the method completes.

i f Qut come — the JSF outcomes that cause a transaction rollback (no outcomes is
interpreted to mean any outcome).

274

Annotations for exceptions

@r ansacti onal

@r ansact i onal

Specifies that a JavaBean component should have a similar transactional behavior to the
default behavior of a session bean component. ie. method invocations should take place in
a transaction, and if no transaction exists when the method is called, a transaction will be
started just for that method. This annotation may be applied at either class or method level.

Seam applications usually use the standard EJB3 annotations for all other transaction
demarcation needs.

6. Annotations for exceptions

These annotations let you specify how Seam should handle an exception that propagates out of
a Seam component.

@Redi r ect

@Redi rect (viewl d="error.jsp")

Specifies that the annotated exception causes a browser redirect to a specified view id.
* vi ew d — specifies the JSF view id to redirect to.

e message — a message to be displayed, default to the exception message.

« end — specifies that the long-running conversation should end, default to f al se.

@+t t pError

@t t pError (error Code=404)

Specifies that the annotated exception causes a HTTP error to be sent.
e error Code — the HTTP error code, default to 500.
* message — a message to be sent with the HTTP error, default to the exception message.

» end — specifies that the long-running conversation should end, default to f al se.

7. Annotations for validation

This annotation triggers Hibernate Validator. It appears on a method of a Seam component,
almost always an action listener method.

275

Chapter 22. Seam annotations

Please refer to the documentation for the Hibernate Annotations package for information about

the annotations defined by the Hibernate Validator framework.

Note that use of @f I nval i d is now semi-deprecated and <s: val i dat eAl | > is now preferred.

@flnvalid

@flnvalid(outcome="invalid", refreshEntities=true)

Specifies that Hibernate Validator should validate the component before the method is
invoked. If the invocation fails, the specified outcome will be returned, and the validation
failure messages returned by Hibernate Validator will be added to the FacesCont ext .
Otherwise, the invocation will proceed.

* out cone — the JSF outcome when validation fails.

» refreshEntities — specifies that any invalid entity in the managed state should be
refreshed from the database when validation fails. Default to f al se. (Useful with
extended persistence contexts.)

8. Annotations for Seam Remoting

Seam Remoting requires that the local interface of a session bean be annotated with the
following annotation:

@\¥bRenot e

@¢bRenot e(excl ude="pat h. t 0. excl ude")

Indicates that the annotated method may be called from client-side JavaScript. The
excl ude property is optional and allows objects to be excluded from the result's object
graph (see the Remoting chapter for more details).

9. Annotations for Seam interceptors

The following annotations appear on Seam interceptor classes.
Please refer to the documentation for the EJB 3.0 specification for information about the

annotations required for EJB interceptor definition.

@ nt ercept or

@nterceptor(statel ess=true)

276

Annotations for asynchronicity

Specifies that this interceptor is stateless and Seam may optimize replication.

@ nt ercept or (t ype=CLI ENT)

Specifies that this interceptor is a "client-side" interceptor that is called before the EJB
container.

@ nt er cept or (ar ound={ Sorrel nt er cept or. cl ass, O herlnterceptor.class})

Specifies that this interceptor is positioned higher in the stack than the given interceptors.

@ nt ercept or (wi t hi n={ Sorrel nt er ceptor. cl ass, O herlnterceptor.class})

Specifies that this interceptor is positioned deeper in the stack than the given
interceptors.

10. Annotations for asynchronicity
The following annotations are used to declare an asynchronous method, for example:
@\synchronous public void scheduleAlert(Al ert alert, @xpiration Date date)

{3

@\synchronous public Timer schedul eAlerts(Alert alert, @xpiration Date
dat e,
@nterval Duration long interval) { ... }

@\synchronous

@\synchr onous

Specifies that the method call is processed asynchronously.

@ur ati on

@ur ati on

277

Chapter 22. Seam annotations

Specifies that a parameter of the asynchronous call is the duration before the call is
processed (or first processed for recurring calls).

@xpiration
@Expiration
Specifies that a parameter of the asynchronous call is the datetime at which the call is
processed (or first processed for recurring calls).

@nterval Durati on

@ nt erval Durati on

Specifies that an asynchronous method call recurs, and that the annotationed parameter is
duration between recurrences.

11. Annotations for use with JSF datarabi e

The following annotations make it easy to implement clickable lists backed by a stateful session
bean. They appear on attributes.

@at aMbdel

@pat aMbdel ("vari abl eNanme")

Exposes an attribute of type Li st, Map, Set or Cbj ect[] as a JSF Dat aMbdel into the
scope of the owning component (or the EVENT scope if the owning component is
STATELESS). In the case of Map, each row of the Dat avbdel is a Map. Entry.

* val ue — name of the conversation context variable. Default to the attribute name.

» scope — if scope=ScopeType. PAGE is explicitly specified, the Dat aMbdel will be kept in
the PAGE context.

@at aMbdel Sel ecti on

@at aMbdel Sel ecti on

Injects the selected value from the JSF Dat aMbdel (this is the element of the underlying
collection, or the map value).

» val ue — name of the conversation context variable. Not needed if there is exactly one
@pat aMbdel in the component.

278

Meta-annotations for databinding

@at aModel Sel ecti onl ndex

@pat aMbdel Sel ecti onl ndex

Exposes the selection index of the JSF Dat aMbdel as an attribute of the component (this is
the row number of the underlying collection, or the map key).

« val ue — name of the conversation context variable. Not needed if there is exactly one
@at aMbdel in the component.

12. Meta-annotations for databinding

These meta-annotations make it possible to implement similar functionality to @at aMbdel and
@at aModel Sel ect i on for other datastructures apart from lists.

@at aBi nder d ass

@pat aBi nder Cl ass(Dat avbdel Bi nder . cl ass)

Specifies that an annotation is a databinding annotation.

@at aSel ect or Cl ass

@pat aSel ect or A ass(Dat aMbdel Sel ect or. cl ass)

Specifies that an annotation is a dataselection annotation.

13. Annotations for packaging

This annotation provides a mechanism for declaring information about a set of components that
are packaged together. It can be applied to any Java package.

@Nanespace
@\anespace(val ue="http://jboss. conf product s/ sean exanpl e/ seanpay")
Specifies that components in the current package are associated with the given

namespace. The declared namespace can be used as an XML namespace in a
conponent s. xn file to simplify application configuration.

@\anespace(val ue="http://jboss. conl product s/ seani core",
prefi x="org.j boss. seam core")

279

Chapter 22. Seam annotations

Specifies a namespace to associate with a given package. Additionally, it specifies a
component name prefix to be applied to component hames specified in the XML file. For
example, an XML element named ni cr ocont ai ner that is associated with this namespace
would be understood to actually refere to a component named

org.j boss. seam core. m crocont ai ner.

280

Chapter 23.

Built-in Seam components

This chapter describes Seam's built-in components, and their configuration properties.

Note that you can replace any of the built in components with your own implementations simply
by specifying the name of one of the built in components on your own class using @\ane.

Note also that even though all the built in components use a qualified name, most of them are
aliased to unqualified names by default. These aliases specify aut o- creat e="true", So you do
not need to use cr eat e=t r ue when injecting built-in components by their unqualified name.

1. Context injection components

The first set of built in components exist purely to support injection of various contextual objects.
For example, the following component instance variable would have the Seam session context
object injected:

@n private Context sessionContext;

org.j boss. seam cor e. event Cont ext
Manager component for the event context object

org. j boss. seam cor e. pageCont ext
Manager component for the page context object

org. j boss. seam core. conver sat i onCont ext
Manager component for the conversation context object

org.j boss. seam cor e. sessi onCont ext
Manager component for the session context object

org.j boss. seam core. appl i cati onCont ext
Manager component for the appication context object

org.j boss. seam cor e. busi nessProcessCont ext
Manager component for the business process context object

org. j boss. seam core. facesCont ext
Manager component for the FacesCont ext context object (not a true Seam context)

All of these components are always installed.

2. Utility components

These components are merely useful.

281

Chapter 23. Built-in Seam components

org.j boss. seam core. facesMessages

Allows faces success messages to propagate across a browser redirect.

add(FacesMessage facesMessage) — add a faces message, which will be displayed
during the next render response phase that occurs in the current conversation.

add(String nessageTenpl at e) — add a faces message, rendered from the given
message template which may contain EL expressions.

add(Severity severity, String messageTenpl ate) — add a faces message,
rendered from the given message template which may contain EL expressions.

addFr onResour ceBundl e(String key) — add a faces message, rendered from a
message template defined in the Seam resource bundle which may contain EL
expressions.

addFr onResour ceBundl e(Severity severity, String key) — add a faces message,
rendered from a message template defined in the Seam resource bundle which may
contain EL expressions.

cl ear () — clear all messages.

org.j boss. seam core. redirect

A convenient API for performing redirects with parameters (this is especially useful for
bookmarkable search results screens).

redirect.vi e d — the JSF view id to redirect to.

redirect. conversat i onPropagat i onEnabl ed — determines whether the conversation
will propagate across the redirect.

redi rect. paramet ers — a map of request parameter name to value, to be passed in
the redirect request.

execut e() — perform the redirect immediately.

capt ur eCurr ent Request () — stores the view id and request parameters of the current
GET request (in the conversation context), for later use by calling execut e() .

org.j boss. seam core. htt pError

A convenient API for sending HTTP errors.

org.j boss. seam core. events

An API for raising events that can be observed via @bser ver methods, or method bindings
in conponent s. xni .

* rai seEvent (String type) — raise an event of a particular type and distribute to all

observers.

e rai seAsynchronousEvent (String type) — raise an event to be processed

282

Components for internationalization and

asynchronously by the EJB3 timer service.

e raiseTinedEvent (String type,) — schedule an event to be processed
asynchronously by the EJB3 timer service.

e addLi stener(String type, String methodBi ndi ng) — add an observer for a
particular event type.

org. j boss. seam core.interpol at or
An API for interpolating the values of JSF EL expressions in Strings.

e interpol ate(String tenpl ate) — scan the template for JSF EL expressions of the
form #{. ..} and replace them with their evaluated values.

org.j boss. seam cor e. expressi ons
An API for creating value and method bindings.

e createVal ueBi ndi ng(String expressi on) — create a value binding object.
* creat eMet hodBi ndi ng(String expression) — create a method binding object.

org.j boss. seam cor e. poj oCache
Manager component for a JBoss Cache Poj oCache instance.

e poj oCache. cf gResour ceNanme — the name of the configuration file. Default to
treecache. xm .

org.j boss. seam cor e. ui Conponent
Allows access to a JSF Ul Conmponent by its id from the EL. For example, we can write
@ n("#{ui Component[' nyForm address'].val ue}").

All of these components are always installed.

3. Components for internationalization and themes

The next group of components make it easy to build internationalized user interfaces using
Seam.

org.j boss. seam core. | ocal e
The Seam locale. The locale is session scoped.

org.j boss.seam core.tinmezone
The Seam timezone. The timezone is session scoped.

org.j boss. seam core. resour ceBundl e
The Seam resource bundle. The resource bundle is session scoped. The Seam resource
bundle performs a depth-first search for keys in a list of Java resource bundles.

* resour ceBundl e. bundl eNanmes — the names of the Java resource bundles to search.

283

Chapter 23. Built-in Seam components

Default to messages.

org.j boss. seam core. | ocal eSel ect or
Supports selection of the locale either at configuration time, or by the user at runtime.

» sel ect () — select the specified locale.

* local eSel ector. | ocal e —the actual j ava. util . Local e.

* local eSel ector. | ocal eStri ng — the stringified representation of the locale.
* |l ocal eSel ect or. | anguage — the language for the specified locale.

* | ocal eSel ector. count ry — the country for the specified locale.

e |l ocal eSel ect or. vari ant — the variant for the specified locale.

e | ocal eSel ect or. supportedLocal es — a list of Sel ect | t ens representing the
supported locales listed in j sf-confi g. xm .

* | ocal eSel ect or. cooki eEnabl ed — specifies that the locale selection should be
persisted via a cookie.

org.j boss. seam core. ti mezoneSel ect or
Supports selection of the timezone either at configuration time, or by the user at runtime.

» sel ect () — select the specified locale.
e timezoneSel ector.timezone —the actual j ava. uti | . Ti meZone.
* tinezoneSel ector.timeZonel d — the stringified representation of the timezone.

e tinezoneSel ect or. cooki eEnabl ed — specifies that the timezone selection should be
persisted via a cookie.

org.j boss. seam core. nessages
A map containing internationalized messages rendered from message templates defined in
the Seam resource bundle.

org.j boss. seam t hene. t heneSel ect or
Supports selection of the theme either at configuration time, or by the user at runtime.

« sel ect () — select the specified theme.

e thene. avai | abl eThemes — the list of defined themes.

e theneSel ector.t heme — the selected theme.

e theneSel ector.themes — a list of Sel ect | t ens representing the defined themes.

e theneSel ect or. cooki eEnabl ed — specifies that the theme selection should be
persisted via a cookie.

284

themes

org.j boss. seam t hene. t hene
A map containing theme entries.

All of these components are always installed.

4. Components for controlling conversations

The next group of components allow control of conversations by the application or user
interface.

org.j boss. seam core. conversation
API for application control of attributes of the current Seam conversation.
e getld() — returns the current conversation id
* i sNested() — is the current conversation a nested conversation?
e i sLongRunni ng() — is the current conversation a long-running conversation?
e getld() — returns the current conversation id
e get Parent | d() — returns the conversation id of the parent conversation
* get Root | d() — returns the conversation id of the root conversation
» set Ti meout (i nt timeout) — sets the timeout for the current conversation

e setView d(String outcone) — sets the view id to be used when switching back to the
current conversation from the conversation switcher, conversation list, or breadcrumbs.

e setDescription(String description) — sets the description of the current
conversation to be displayed in the conversation switcher, conversation list, or
breadcrumbs.

e redirect () — redirect to the last well-defined view id for this conversation (useful after
login challenges).

* | eave() — exit the scope of this conversation, without actually ending the conversation.
* begi n() — begin a long-running conversation (equivalent to @egi n).

* begi nPagefl oW String pagef| owName) — begin a long-running conversation with a
pageflow (equivalent to @egi n(pagef | ow="...")).

e end() — end a long-running conversation (equivalent to @nd).
« pop() — pop the conversation stack, returning to the parent conversation.

* root () — return to the root conversation of the conversation stack.

285

Chapter 23. Built-in Seam components

e changeFl ushMode(Fl ushMbdeType fl ushMode) — change the flush mode of the
conversation.

org. j boss. seam core. conversati onLi st
Manager component for the conversation list.

org.j boss. seam core. conversati onSt ack
Manager component for the conversation stack (breadcrumbs).

org.j boss. seam core. sw tcher

The conversation switcher.

All of these components are always installed.

5.]BPM-related components

These components are for use with jBPM.
org.j boss. seam cor e. pagef | ow
API control of Seam pageflows.
e islnProcess() — returnstrue if there is currently a pageflow in process
* get Processl nstance() — returns jBPM Pr ocessl nst ance for the current pageflow

* begin(String pagefl owNane) — begin a pageflow in the context of the current
conversation

e reposition(String nodeName) — reposition the current pageflow to a particular node

org.j boss. seam core. act or
API for application control of attributes of the jBPM actor associated with the current
session.

e setld(String actorld) — sets the jBPM actor id of the current user.

e get G oupActorl ds() — returns a Set to which jBPM actor ids for the current users
groups may be added.

org.j boss.seam core.transition
API for application control of the jBPM transition for the current task.

e setName(String transitionName) — sets the jBPM transition name to be used when
the current task is ended via @ndTask.

org.j boss. seam cor e. busi nessProcess
API for programmatic control of the association between the conversation and business
process.

286

Security-related components

busi nessProcess. t askl d — the id of the task associated with the current conversation.

busi nessProcess. processl d — the id of the process associated with the current
conversation.

busi nessProcess. hasCurrent Task() — is a task instance associated with the current
conversation?

busi nessProcess. hasCurrent Process() — is a process instance associated with the
current conversation.

creat eProcess(String nane) — create an instance of the named process definition
and associate it with the current conversation.

start Task() — start the task associated with the current conversation.

endTask(String transitionName) — end the task associated with the current
conversation.

resuneTask(Long i d) — associate the task with the given id with the current
conversation.

resumePr ocess(Long i d) — associate the process with the given id with the current

conversation.

e transition(String transitionNane) — trigger the transition.

org.j boss. seam cor e. t askl nst ance
Manager component for the jBPM Taskl nst ance.

org. j boss. seam core. processl nstance
Manager component for the jBPM Pr ocessl nst ance.

org. j boss. seam core. j bpnCont ext
Manager component for an event-scoped JbpnCont ext .

org.j boss. seam core. t askl nst anceli st
Manager component for the jBPM task list.

org.j boss. seam cor e. pool edTaskl nst anceLi st
Manager component for the jBPM pooled task list.

org.j boss. seam cor e. t askl nst anceli st For Type
Manager component for the jBPM task lists.

org. j boss. seam core. pool edTask
Action handler for pooled task assignment.

All of these components are installed whenever the component or g. j boss. seam cor e. j bpmis

installed.

287

Chapter 23. Built-in Seam components

6. Security-related components

These components relate to web-tier security.
org.j boss. seam core. user Pri nci pal
Manager component for the current user Pri nci pal .

org.j boss. seam core.isUserlnRol e
Allows JSF pages to choose to render a control, depending upon the roles available to the
current principal. <h: commandBut t on val ue="edit"
rendered="#{i sUserlnRol e["adm n']}"/>.

7. JMS-related components

These components are for use with managed Topi cPubl i sher s and QueueSender s (see
below).

org.j boss. seam j ns. queueSessi on
Manager component for a JMS QueueSessi on .

org.j boss. seam j ns. t opi cSessi on
Manager component for a JMS Topi cSessi on .

8. Mail-related components

These components are for use with Seam's Email support

org.j boss. seam nai | . mai | Sessi on
Manager component for a JavaMail Sessi on .
e org.jboss.seam nuil . mai | Sessi on. host — the hostname of the SMTP server to use
e org.jboss.seam mai |l . mai | Sessi on. port — the port of the SMTP server to use

e org.jboss.seam nai | . mai | Sessi on. user nane — the username to use to connect to
the SMTP server.

e org.jboss.seam nai | . mai | Sessi on. passwor d — the password to use to connect to
the SMTP server

e org.jboss.seam mai | . mai | Sessi on. debug — enable JavaMail debugging (very
verbose)

e org.jboss.seam nail . mai | Sessi on. sessi onJndi Nane — name under which a
javax.mail.Session is bound to JNDI

288

Infrastructural components

9. Infrastructural components

These components provide critical platform infrastructure. You can install a component by
including its class name in the or g. j boss. seam core. i ni t. conponent C asses configuration

property.

org.jboss.seamcore.init
Initialization settings for Seam. Always installed.

e org.jboss.seamcore.init.jndiPattern— the JNDI pattern used for looking up
session beans

e org.jboss.seamcore.init.debug — enable Seam debug mode

e org.jboss.seamcore.init.clientSideConversations —if settotrue, Seam will
save conversation context variables in the client instead of in the Ht t pSessi on.

e org.jboss.seamcore.init.userTransacti onName — the JNDI name to use when
looking up the JTA User Tr ansact i on object.

org.j boss. seam cor e. nanager
Internal component for Seam page and conversation context management. Always
installed.

e org.jboss.seam core. manager . conver sati onTi meout — the conversation context
timeout in milliseconds.

e org.jboss.seam core. manager . concurr ent Request Ti meout — maximum wait time for
a thread attempting to gain a lock on the long-running conversation context.

e org.jboss.seam core. manager . conver sat i onl dPar anmet er — the request parameter
used to propagate the conversation id, default to conver sati onl d.

e org.jboss. seam core. manager. conver sati onl sLongRunni ngPar amet er — the
request parameter used to propagate information about whether the conversation is
long-running, default to conver sat i onl sLongRunni ng.

org.j boss. seam cor e. pages
Internal component for Seam workspace management. Always installed.

e org.jboss.seam core. pages. noConver sat i onVi el d — global setting for the view id
to redirect to when a conversation entry is not found on the server side.

org.jboss.seamcore.ejb
Bootstraps the JBoss Embeddable EJB3 container. Install as class
org. j boss. seam core. Ej b. This is useful when using Seam with EJB components outside
the context of a Java EE 5 application server.

The basic Embedded EJB configuration is defined in j boss- enbedded- beans. xni .
Additional microcontainer configuration (for example, extra datasources) may be specified

289

Chapter 23. Built-in Seam components

by j boss- beans. xm or META- | NF/ j boss- beans. xni in the classpath.

org.j boss. seam core. m crocont ai ner
Bootstraps the JBoss microcontainer. Install as class
org.j boss. seam core. M crocont ai ner. This is useful when using Seam with Hibernate
and no EJB components outside the context of a Java EE application server. The
microcontainer can provide a partial EE environment with JNDI, JTA, a JCA datasource and
Hibernate.

The microcontainer configuration may be specified by j boss- beans. xm or
META- | NF/ j boss- beans. xnl in the classpath.

org.j boss.seam core.jbpm
Bootstraps a JbpnConfi gur at i on. Install as class or g. j boss. seam cor e. Jbpm

e org.jboss.seam core.jbpm processDefinitions — a list of resource names of jPDL
files to be used for orchestration of business processes.

e org.jboss.seam core.jbpm pagef | owDef i ni ti ons — a list of resource names of jPDL
files to be used for orchestration of conversation page flows.

org.j boss. seam core. conversati onEntries
Internal session-scoped component recording the active long-running conversations
between requests.

org.j boss. seam core. f acesPage
Internal page-scoped component recording the conversation context associated with a

page.

org. j boss. seam core. persi st enceCont ext s
Internal component recording the persistence contexts which were used in the current
conversation.

org.j boss. seam j ns. queueConnecti on
Manages a JMS QueueConnect i on. Installed whenever managed managed QueueSender is
installed.

e org.jboss.seam j ns. queueConnecti on. queueConnect i onFact or yJndi Name — the
JNDI name of a IMS QueueConnect i onFact ory. Default to U L2Connect i onFact ory

org. j boss. seam j ms. t opi cConnecti on
Manages a JMS Topi cConnect i on. Installed whenever managed managed
Topi cPubl i sher is installed.

e org.jboss.seam jns.topi cConnection.topi cConnecti onFact oryJndi Name — the
JNDI name of a JMS Topi cConnect i onFact ory. Default to U L2Connect i onFact ory

org.j boss. seam per si st ence. persi st enceProvi der
Abstraction layer for non-standardized features of JPA provider.

org.j boss. seam core. val i dati on

290

Special components

Internal component for Hibernate Validator support.

org. j boss. seam debug. i ntrospect or
Support for the Seam Debug Page.

org.j boss. seam debug. cont exts
Support for the Seam Debug Page.

10. Special components

Certain special Seam component classes are installable multiple times under names specified
in the Seam configuration. For example, the following lines in conponent s. xn install and
configure two Seam components:

<conponent nane="booki ngDat abase"
cl ass="org. j boss. seam cor e. ManagedPer si st enceCont ext " >
<property
nanme="per si st enceUni t IJndi Nane" >j ava: / conp/ enf / booki ngPer si st ence</ property>
</ conponent >

<component nane="user Dat abase"
cl ass="org.j boss. seam cor e. ManagedPer si st enceCont ext " >
<property
name="per si st enceUni t IJndi Nane" >j ava: / conp/ enf / user Per si st ence</ pr operty>
</ conponent >

The Seam component names are booki ngDat abase and user Dat abase.

<entityManager> , org.j boss. seam cor e. ManagedPer si st enceCont ext
Manager component for a conversation scoped managed Ent i t yManager with an extended
persistence context.

e <entityManager> .entityManager Fact ory — a value binding expression that
evaluates to an instance of Enti t yManager Fact ory.

<entityManager > . persi stenceUni t IJndi Nanme — the JNDI name of the entity manager
factory, default to j ava: / <managedPer si st enceCont ext > .

<entityManager Factory> , org.j boss. seam core. EntityManager Fact ory
Manages a JPA Ent i t yManager Fact ory. This is most useful when using JPA outside of an
EJB 3.0 supporting environment.

e entityMnager Fact ory. persi st enceUni t Name — the name of the persistence unit.
See the API JavaDoc for further configuration properties.

<sessi on> , org.j boss. seam cor e. ManagedSessi on
Manager component for a conversation scoped managed Hibernate Sessi on.

291

Chapter 23. Built-in Seam components

e <sessi on> . sessi onFact ory — a value binding expression that evaluates to an
instance of Sessi onFact ory.

<sessi on> . sessi onFact or yJndi Nane — the JNDI name of the session factory, default
tojava:/ <managedSession> .

<sessi onFactory> , org.j boss. seam cor e. Hi ber nat eSessi onFactory
Manages a Hibernate Sessi onFact ory.

» <sessi onFact or y>. cf gResour ceNane — the path to the configuration file. Default to
hi bernate. cfg. xn .

See the API JavaDoc for further configuration properties.

<managedQueueSender > , org. j boss. seam j ns. ManagedQueueSender
Manager component for an event scoped managed JMS QueueSender .

* <managedQueueSender > . queueJndi Nane — the JNDI name of the JMS queue.

<managedTopi cPubl i sher > , org.j boss. seam j ns. ManagedTopi cPubl i sher
Manager component for an event scoped managed JMS Topi cPubl i sher.

e <managedTopi cPubl i sher > .t opi cJndi Name — the JNDI name of the JMS topic.

<managedWor ki ngMenory> , org. j boss. seam dr ool s. ManagedWor ki ngMenory
Manager component for a conversation scoped managed Drools Wor ki nghMenory.

e <managedWr ki ngMenory> . rul eBase — a value expression that evaluates to an
instance of Rul eBase.

<rul eBase> , org.]j boss. seam drool s. Rul eBase
Manager component for an application scoped Drools Rul eBase. Note that this is not really
intended for production usage, since it does not support dynamic installation of new rules.

e <rul eBase> .rul eFi | es — a list of files containing Drools rules.
<rul eBase> . dsl Fi | e — a Drools DSL definition.
<entityHome> , org.j boss. seam franewor k. Enti t yHone
<hi ber nat eEnti t yHonme> , org. j boss. seam franewor k. H ber nat eEnti t yHome
<entityQuery> ,org.jboss. seam franework. EntityQuery

<hi bernat eEntityQuery> , org.jboss. seam franmewor k. Hi bernat eEntityQuery

292

Chapter 24.

Seam JSF controls

Seam includes a number of JSF controls that are useful for working with Seam. These are

intended to complement the built-in JSF controls, and controls from other third-party libraries.

We recommend the Ajax4JSF and ADF faces (now Trinidad) tag libraries for use with Seam.
We do not recommend the use of the Tomahawk tag library.

To use these controls, define the "s" namespace in your page as follows (facelets only):

<htm xm ns="http://ww. wW3. org/ 1999/ xht m "
xm ns:s="http://jboss. conl products/seanitaglib">

The ui example demonstrates the use of a number of these tags.

<s:val i dat e> Description

A non-visual control, validates a JSF input field against the bound
property using Hibernate Validator.

Attributes
None.
Usage
<h:i nput Text id="userNane" required="true"
val ue="#{ cust oner . user Nane}" >
<s:validate />

</ h:i nput Text >
<h: message for="user Name" styl eC ass="error" />

<s:validateAl | > Description

A non-visual control, validates all child JSF input fields against their
bound properties using Hibernate Validator.

Attributes
None.
Usage
<s:val i dateAl |l >

<div class="entry">
<h: out put Label

293

Chapter 24. Seam JSF controls

<s: fornmattedText >

f or =" user nane" >User nane: </ h: out put Label >
<h: i nput Text id="usernanme" val ue="#{user.usernane}"
requi red="true"/>
<h: message for="usernanme" styled ass="error" />
</ di v>
<div class="entry">
<h: out put Labe
f or =" passwor d" >Passwor d: </ h: out put Label >
<h:i nput Secret i d="password"
val ue="#{user. password}" required="true"/>
<h: message for="password" styleC ass="error" />
</ di v>
<div class="entry">
<h: out put Label for="verify">Verify
Passwor d: </ h: out put Label >
<h:i nput Secret id="verify"
val ue="#{register.verify}" required="true"/>
<h: message for="verify" styled ass="error" />
</ di v>
</s:validateAll >

Description

Outputs Seam Text, a rich text markup useful for blogs, wikis and
other applications that might use rich text. See the Seam Text chapter
for full usage.

Attributes

* val ue — an EL expression specifying the rich text markup to
render.

Usage

<s:formattedText val ue="#{blog.text}"/>

Example

294

<s: convert Dat eTi me> Description

<s:convert Enune

<s:convertEntity>

+Lorem ipsym -

I

Preview Lorem ipsum

Lorem ipsum dofor sit ame?, consectetuer adipiscing elit.

-Suspendisse a risus- 9415 lorem pharetra viverra picoe i ipsurn, Marn et
turpis id arcu lobortis dapibus.

Curabitur et sem vel quam

1. venenatis mathis.
2. Mulla hendrerit orci ut massa,
3. Donec condimenturm,

libero in iaculis hendrerit,
risus dolar congue nulla,
+ non accumsan ante risus et ipsurn,

“Suspendisse dui, Maecenas lorem. Maecenas sit amet purus nec metus
sodales sagittis. Phasellus varius lacus nec velit, *

Perform date or time conversions in the Seam timezone.
Attributes
None.

Usage

Description

Assigns an enum converter to the current component. This is primarily
useful for radio button and dropdown controls.

Attributes
None.

Usage

Description

Assigns an entity converter to the current component. This is primarily
useful for radio button and dropdown controls.

The converter works with any entity which has an @ d annotation -

295

Chapter 24. Seam JSF controls

<s:enumtenp

<s:selectltens>

either simple or composite. If your Managed Persistence Context isn't
called ent i t yManager , then you need to set it in components.xml:

Attributes
None.

Configuration

<conponent nane="org. | boss.seamui.entityConverter">
<property nane="entityManager">#{en} </ property>
</ conmponent >

Usage

<h: sel ect OneMenu val ue="#{ person. conti nent}"
requi red="true">
<s:sel ectltenms val ue="#{continents.resultList}"
var="continent" |abel ="#{continent.nnane}"
noSel ecti onLabel =" Pl ease Select..."/>
<s:convertEntity />
</ h: sel ect OneMenu>

Description
Creates a Sel ect | t emfrom an enum value.

Attributes

» enunVal ue — the string representation of the enum value.

* | abel — the label to be used when rendering the Sel ect |t em

Usage

Description
Creates a Li st <Sel ect | t en» from a List, Set, DataModel or Array.
Attributes

» val ue — an EL expression specifying the data that backs the
Li st<Sel ectltenr

296

» var — defines the name of the local variable that holds the current
object during iteration

* | abel — the label to be used when rendering the Sel ect 1t em Can
reference the var variable

* di sabl ed — if true the Sel ect | t emwill be rendered disabled. Can
reference the var variable

* noSel ecti onLabel — specifies the (optional) label to place at the
top of list (if requi red="true" is also specified then selecting this
value will cause a validation error)

* hi deNoSel ect i onLabel — if true, the noSel ecti onLabel will be
hidden when a value is selected

Usage

<h: sel ect OneMenu val ue="#{ per son. age}"

converter="#{converters. ageConverter}">
<s:sel ectltens val ue="#{ages}" var="age"

| abel ="#{age}" />

</ h: sel ect OneMenu>

<s: graphi cl mage> Description

An extended <h: gr aphi cl mage> that allows the image to be created
in a Seam Component; further transforms can be applied to the
image. Facelets only.

All attributes for <h: gr aphi cl mage> are supported, as well as:

Attributes

» val ue — image to display. Can be a path St ri ng (loaded from the
classpath), abyte[],ajava.io.File,ajava.io.lnputStreamor
aj ava. net. URL. Currently supported image formats are
i mage/ png, i mage/ j peg and i mage/ gi f.

» fil eName — if not specified the served image will have a generated
file name. If you want to name your file, you should specify it here.
This name should be unique

Transformations

297

Chapter 24. Seam JSF controls

<s: decorat e>

To apply a transform to the image, you would nest a tag specifying the
transform to apply. Seam currently supports these transforms:
<s:transform nageSi ze>

* wi dt h — new width of the image

* hei ght — new height of the image

e mai ntai nRati o — if t rue, and one of wi dt h/hei ght are
specified, the image will be resized with the dimension not
specified being calculated to maintain the aspect ratio.

» fact or — scale the image by the given factor
<s:transform nageBl ur>

* radi us — perform a convolution blur with the given radius
<s:transformnm nageType>

* cont ent Type — alter the type of the image to either

i mage/ j peg or i mage/ png

It's easy to create your own transform - create a Ul Conponent which
i npl enent sorg. j boss. seam ui . graphi cl mage. | nageTr ansf orm
Inside the appl yTr ansf or n() method use

i mage. get Buf f er edl mage() to get the original image and

i mage. set Buf f er edl mage() to set your transformed image.
Transforms are applied in the order specified in the view.

Usage

Description

"Decorate" a JSF input field when validation fails or when
requi red="true" is set.

Attributes
None.

Usage

298

<s: | ayout For m»

Description

A layout component for producing a "standard" form layout. Each child
component will be treated as a row, and if the child is a
<s: decor at e>, additional formatting will be applied:

» Label —if al abel facetis on the <s: decor at e> then it's contents
will be used as the label for this field. The labels are rendered
right-aligned in a column

Some further decoration facets are supported - bef or eLabel ,
af t er Label , ar oundLabel , bef or el nval i dLabel ,
afterlnval i dLabel and ar oundl nval i dLabel .

» Other text — if a bel owLabel facet or/and a bel owFi el d facet are
present on <s: decor at e> then it's contents will be placed below the
label or the field

* Required — if requi red="t rue" is set on the field, then the

ar oundRequi r edFi el d, bef or eRequi r edFi el d,

af t er Requi r edFi el d, ar oundRequi r edLabel ,

bef or eRequi r edLabel and af t er Requi r edLabel will be applied.
Attributes

None.

Usage

<s: | ayout For m>
<f:facet nane="aroundl nval i dFi el d">
<s:span styleC ass="error"/>
</f:facet>
<f:facet nane="afterlnvalidField">
<s: nessage />
</f:facet>
<f:facet name="beforeRequiredLabel ">
<s: span>#</s: span>
</f:facet>
<f:facet nane="aroundLabel ">
<s:span style="text-align:right;" />
</f:facet>
<f:facet nane="aroundl nval i dLabel ">
<s:span style="text-align:right;"
styl ed ass="error" />

299

Chapter 24. Seam JSF controls

</f:facet>
<s: decor at e>
<f:facet nanme="| abel ">
<h: out put Text val ue="Nanme" />
</f:facet>
<h:i nput Text val ue="#{person. nane}"
requi red="true"/ >
<f:facet nanme="bel owFi el d">
<h: out put Text styl ed ass="hel p"
val ue="Enter your nane as it appears
on your passport" />
</f:facet>
</ s: decor at e>
</ s: | ayout For n>

Marne I
BElter ondr nattie 45 It Sppesrs O pOUr passport
<s: nessage> Description
"Decorate" a JSF input field with the validation error message.
Attributes
None.

Usage

<s: span> Description
Render a HTML .
Attributes
None.

Usage

<s:div> Description

Render a HTML <di v>.

300

Attributes
None.

Usage

<s: fragnent > Description

A non-rendering component useful for enabling/disabling rendering of
it's children.

Attributes
None.

Usage

<s: cache> Description

Cache the rendered page fragment using JBoss Cache. Note that
<s: cache> actually uses the instance of JBoss Cache managed by
the built-in poj oCache component.

Attributes
» key — the key to cache rendered content, often a value expression.

For example, if we were caching a page fragment that displays a
document, we might use key="Docunent - #{ docunent . i d}".

* enabl ed — a value expression that determines if the cache should
be used.

* regi on — a JBoss Cache node to use (different nodes can have
different expiry policies).

Usage

301

Chapter 24. Seam JSF controls

<s:link>

<s: button>

Description

A link that supports invocation of an action with control over
conversation propagation. Does not submit the form.

Attributes

* val ue — the label.

» acti on — a method binding that specified the action listener.
* vi ew— the JSF view id to link to.

» fragment — the fragment identifier to link to.

* di sabl ed — is the link disabled?

» propagati on — determines the conversation propagation style:
begi n, j oi n, nest, none or end.

» pagef | ow— a pageflow definition to begin. (This is only useful

when pr opagat i on="begi n" or propagati on="j oi n".)

Usage

Description

A button that supports invocation of an action with control over
conversation propagation. Does not submit the form.

Attributes

* val ue — the label.

* acti on — a method binding that specified the action listener.
* vi ew— the JSF view id to link to.

» fragnment — the fragment identifier to link to.

+ di sabl ed — is the link disabled?

* propagati on — determines the conversation propagation style:
begi n, j oi n, nest, none or end.

302

<s: sel ect Dat e>

* pagef | ow— a pageflow definition to begin. (This is only useful
when pr opagat i on="begi n" or propagati on="j oi n".)

Usage

Description

Displays a dynamic date picker component that selects a date for the

specified input field. The body of the sel ect Dat e element should

contain HTML elements, such as text or an image, that prompt the

user to click to display the date picker. The date picker must be styled
using CSS. An example CSS file can be found in the Seam booking
demo as dat e. css, or can be generated using seam-gen. The CSS

styles used to control the appearance of the date picker are also
described below.

Attributes

» for — The id of the input field that the date picker will insert the
selected date into.

» dat eFor mat — The date format string. This should match the date

format of the input field.

» startYear — The popup year selector range will start at this year.

» endYear — The popup year selector range will end at this year.

Usage

<div class="row'>
<h: out put Label for="dob">Date of
bi rt h<en®* </ en»</ h: out put Label >
<h:i nput Text id="dob" val ue="#{user. dob}"
requi red="true">
<s:convertDat eTi ne pattern="W dd/yyyy"/>
</ h:i nput Text >
<s:sel ect Date for="dob" start Year="1910"
endYear =" 2007" ><i ng
src="i ng/ dat epi cker. png"/ ></s: sel ect Dat e>
<di v cl ass="val i dationError"><h: nessage
f or="dob"/ ></di v>
</ di v>

303

Chapter 24. Seam JSF controls

Example
< March 2007 =
January
February
March 1 2 3
4 April 7 8 9 10
Ma
11 " ha 15 18 17
June
18 wuly Bl o2z 23 24
o5 AHOUSL e og op 3
Septernber
October [Ch 2007
Movernber
December
CSS Styling

The following list describes the CSS class names that are used to
control the style of the selectDate control.

» seam dat e — This class is applied to the outer di v containing the
popup calendar. (1) It is also applied to the t abl e that controls the
inner layout of the calendar. (2)

* seam dat e- header — This class is applied to the calendar header
table row (t r) and header table cells (t d). (3)

* seam dat e- header - pr evhMont h — This class is applied to the
"previous month" table cell, (t d), which when clicked causes the
calendar to display the month prior to the one currently displayed.

(4)

* seam dat e- header - next Mont h — This class is applied to the "next
month" table cell, (t d), which when clicked causes the calendar to
display the month following the one currently displayed. (5)

» seam dat e- header Days — This class is applied to the calendar
days header row (t r), which contains the names of the week days.

(6)

* seam dat e- f oot er — This class is applied to the calendar footer
row (t r), which displays the current date. (7)

304

seam dat e-i nMont h — This class is applied to the table cell (t d)
elements that contain a date within the month currently displayed.

8

seam dat e- out Mont h — This class is applied to the table cell (t d)
elements that contain a date outside of the month currently
displayed. (9)

seam dat e- sel ect ed — This class is applied to the table cell (t d)
element that contains the currently selected date. (10)

seam dat e- dayf f - i nMont h — This class is applied to the table
cell (t d) elements that contain a "day off" date (i.e. weekend days,
Saturday and Sunday) within the currently selected month. (11)

seam dat e- dayf f - out Mont h — This class is applied to the table
cell (t d) elements that contain a "day off" date (i.e. weekend days,
Saturday and Sunday) outside of the currently selected month. (12)

seam dat e- hover — This class is applied to the table cell (t d)
element over which the cursor is hovering. (13)

seam dat e- mont hNames — This class is applied to the di v control
that contains the popup month selector. (14)

seam dat e- nont hNameLi nk — This class is applied to the anchor
(a) controls that contain the popup month names. (15)

seam dat e- years — This class is applied to the di v control that
contains the popup year selector. (16)

seam dat e- year Li nk — This class is applied to the anchor (a)
controls that contain the popup years. (15)

<s: conver sat i onPr opagescription

: @ o N
n | .
-~ y Jaguary 1068 *
< March | 2007 = February L
mr | | | -—--6 | March] ig?g
0O % Aol M,lgn |
= 1 2z 3 .0 = May 197
?{' 5 6 7 8 o910 Ji?f{h:) 1973 -
11 12 13 14 15 16 17 /D AlgLst e
E—_ |12 19 20 21 [z 244 S%r:étt%rgg;er 3
&\E“ﬁ 7 2 2 20 T Moot
1 %] 21 March 2007 | Decenber

Customize the conversation propagation for a command link or button
(or similar JSF control). Facelets only.

Attributes

305

Chapter 24. Seam JSF controls

<s:conversationl d>

<s:taskl d>

<s:fil eUpl oad>

e propagati on — determines the conversation propagation style:
begi n, j oi n, nest, none or end.

* pagef | ow— a pageflow definition to begin. (This is only useful

when pr opagat i on="begi n" or propagati on="j oi n".)

Usage

Description

Add the conversation id to an output link (or similar JSF control).
Facelets only.

Attributes
None.

Usage

Description

Add the task id to an output link (or similar JSF control), when the task
is available via #{t ask} . Facelets only.

Attributes
None.

Usage

Description

Renders a file upload control. This control must be used within a form
with an encoding type of nul ti part/form data, i.e:

306

<h: form enctype="nul ti part/form data">

For multipart requests, the Seam Multipart servlet filter must also be
configured in web. xm :

<filter>
<filter-name>Seam Filter</filter-nane>
<filter-class>org.jboss. seam web. SeanFilter</filter-class>
</filter>

<filter-mppi ng>
<filter-name>Seam Filter</filter-nanme>

<url-pattern>/*</url-pattern>
</filter-mpping>

Configuration

The following configuration options for multipart requests may be

configured in components.xmil:

» creat eTenpFi | es — if this option is set to true, uploaded files are
streamed to a temporary file instead of in memory.

* maxRequest Si ze — the maximum size of a file upload request, in

bytes.

Here's an example:

<conponent
cl ass="org.j boss. seam web. Mul tipartFilter">
<property nane="cr eat eTenpFi |l es">true</ property>
<property
nane="nmaxRequest Si ze" >1000000</ pr opert y>
</ conmponent >

Attributes

307

Chapter 24. Seam JSF controls

» dat a — this value binding receives the binary file data. The
receiving field should be declared as a byt e[] or I nput St ream
(required).

» cont ent Type — this value binding receives the file's content type
(optional).

» fil eNane — this value binding receives the filename (optional).

* accept — a comma-separated list of content types to accept, may
not be supported by the browser. E.g. "i mages/ png, i mages/j pg",
"i mages/*".

» styl e — The control's style

» styl eCl ass — The control's style class

Usage

Table 24.1. Seam JSF Control Reference

308

Chapter 25.

Expression language enhancements

The standard Unified Expression Language (EL) assumes that any parameters to a method
expression will be provided by Java code. This means that a method with parameters cannot be
used as a JSF method binding. Seam provides an enhancement to the EL that allows
parameters to be included in a method expression itself. This applies to any Seam method
expression, including any JSF method binding, for example:

<s: commandBut t on acti on="#{hot el Booki ng. bookHot el (hotel)}" val ue="Book
Hotel "/ >

1. Configuration

To use this feature in Facelets, you will need to declare a special view handler,
Seanfacel et Vi enHandl er in f aces-config. xm .

<f aces-confi g>
<appl i cati on>

<vi ew handl er >or g. j boss. seam ui . f acel et. Seanfacel et Vi ewHand| er </ vi ew handl er >
</ applicati on>

</ faces-config>

2. Usage

Parameters are surrounded by parentheses, and separated by commas:

<h: commandBut t on acti on="#{ hot el Booki ng. bookHot el (hotel, user)}" val ue="Book
Hotel "/ >

The parameters hot el and user will be evaluated as value expressions and passed to the
bookHot el () method of the component. This gives you an alternative to the use of @ n.

Any value expression may be used as a parameter:

<h: commandBut t on acti on="#{ hot el Booki ng. bookHot el (hotel .id, user.usernane)}"
val ue="Book Hotel "/>

You may even pass literal strings using single or double quotes:

<h: commandLi nk action="#{printer.printin(‘Hello world!")}” value="Hello"/>

<h: commandLi nk action="#{printer.println(“Hello again”)}' value="Hello' />

309

Chapter 25. Expression language enhancements

You might even want to use this notation for all your action methods, even when you don’t have
parameters to pass. This improves readability by making it clear that the expression is a method
expression and not a value expression:

<s:link val ue="Cancel " acti on="#{hot el Booki ng. cancel ()}"/>

3. Limitations
Please be aware of the following limitations:

3.1. Incompatibility with JSP 2.1

This extension is not currently compatible with JSP 2.1. So if you want to use this extension with
JSF 1.2, you will need to use Facelets. The extension works correctly with JSP 2.0.

3.2. Calling a met hodexpressi on from Java code

Normally, when a Met hodExpr essi on or Met hodBi ndi ng is created, the parameter types are
passed in by JSF. In the case of a method binding, JSF assumes that there are no parameters
to pass. With this extension, we can’t know the parameter types until after the expression has
been evaluated. This has two minor consequences:

« When you invoke a Met hodExpr essi on in Java code, parameters you pass may be ignored.
Parameters defined in the expression will take precedence.

e Ordinarily, it is safe to call met hodExpr essi on. get Met hodl nf o() . get Par aniTypes() at any
time. For an expression with parameters, you must first invoke the Met hodExpr essi on before
calling get Par anTTypes() .

Both of these cases are exceedingly rare and only apply when you want to invoke the
Met hodExpr essi on by hand in Java code.

310

Chapter 26.

Testing Seam applications

Most Seam applications will need at least two kinds of automated tests: unit tests, which test a
particular Seam component in isolation, and scripted integration tests which exercise all Java
layers of the application (that is, everything except the view pages).

Both kinds of tests are very easy to write.

1. Unit testing Seam components

All Seam components are POJOs. This is a great place to start if you want easy unit testing.
And since Seam emphasises the use of bijection for inter-component interactions and access to
contextual objects, it's very easy to test a Seam component outside of its normal runtime
environment.

Consider the following Seam component:

@t at el ess
@scope(EVENT)
@\ane("register")
public class RegisterAction inplements Register
{
private User user;
private EntityManager em

@n
public void setUser(User user) {
this.user = user;

}

@Per si st enceCont ext
publ i c voi d set Booki ngDat abase(EntityManager en) {
this.em= em

}

public String register()
{
Li st existing = em createQery("sel ect usernane from User where
user nane=: user name")
. set Par anmet er ("user nane", user.get Usernane())
.getResul tList();
i f (existing.size()==0)

{
em persi st (user);
return "success";
}
el se
{
return null;
}

311

Chapter 26. Testing Seam applications

We could write a TestNG test for this component as follows:

public class Regi sterActionTest

{
@est
public testRegisterAction()
{
EntityManager em = get EntityManager Factory(). creat eEntityManager();
em get Transacti on() . begi n();
User gavin = new User();
gavi n. set Nanme(" Gavi n Ki ng");
gavi n. set User Name(" 1ovt haf ew") ;
gavi n. set Password("secret");
Regi st er Acti on acti on = new Regi sterAction();
action. set User (gavi n) ;
act i on. set Booki ngDat abase(en) ;
assert "success".equal s(action.register());
em get Transaction().commit();
em cl ose();
}
private EntityManager Factory enf;
public EntityManager Factory get EntityManager Factory()
{
return enf;
}
@confi gurati on(bef oreTest C ass=true)
public void init()
{
enf =
Per si st ence. creat eEnti t yManager Fact or y(" myResour ceLocal Enti t yManager") ;
}
@onfiguration(afterTestd ass=true)
public void destroy()
{
enf. cl ose();
}
}

Seam components don't usually depend directly upon container infrastructure, so most unit
testing as as easy as that!

312

Integration testing Seam applications

2. Integration testing Seam applications

Integration testing is slightly more difficult. In this case, we can't eliminate the container
infrastructure; indeed, that is part of what is being tested! At the same time, we don't want to be
forced to deploy our application to an application server to run the automated tests. We need to
be able to reproduce just enough of the container infrastructure inside our testing environment
to be able to exercise the whole application, without hurting performance too much.

A second problem is emulating user interactions. A third problem is where to put our assertions.
Some test frameworks let us test the whole application by reproducing user interactions with the
web browser. These frameworks have their place, but they are not appropriate for use at
development time.

The approach taken by Seam is to let you write tests that script your components while running
inside a pruned down container environment (Seam, together with the JBoss Embeddable EJB
container). The role of the test script is basically to reproduce the interaction between the view

and the Seam components. In other words, you get to pretend you are the JSF implementation!

This approach tests everything except the view.

Let's consider a JSP view for the component we unit tested above:

<ht m >
<head>
<title>Regi ster New User</title>
</ head>
<body>
<f:view
<h: forn»
<t abl e border="0">
<tr>
<t d>User name</t d>
<t d><h: i nput Text val ue="#{user.usernane}"/></td>
</[tr>
<tr>
<t d>Real Nane</td>
<t d><h: i nput Text val ue="#{user.nane}"/></td>
</[tr>
<tr>
<t d>Passwor d</t d>
<t d><h:i nput Secret val ue="#{user. password}"/></td>
</[tr>
</ tabl e>

<h: nessages/ >
<h: commandBut t on type="submit" val ue="Regi ster"
acti on="#{register.register}"/>
</ h: form>
</f:view
</ body>
</htm >

We want to test the registration functionality of our application (the stuff that happens when the

313

Chapter 26. Testing Seam applications

user clicks the Register button). We'll reproduce the JSF request lifecycle in an automated
TestNG test:

public class Regi sterTest extends SeanTest

{
@est
public void testRegister() throws Exception
{
new FacesRequest () {
@verride
protected void processValidations() throws Exception
{
val i dat eVal ue("#{user.usernane}", "1lovthafew');
val i dat eVal ue("#{user.nane}", "Gavin King");
val i dat eVal ue("#{user. password}", "secret");
assert !isValidationFailure();
}
@verride
prot ected voi d updat eModel Val ues() throws Exception
{
set Val ue("#{user. usernane}", "lovthafew');
set Val ue("#{user.nane}", "Gavin King");
set Val ue("#{user. password}", "secret");
}
@verride
protected void i nvokeApplication()
{
assert invokeMethod("#{register.register}").equal s("success");
}
@verride
protected voi d render Response()
{
assert getVal ue("#{user.usernane}").equal s("1lovthafew');
assert getVal ue("#{user.nane}").equal s("Gvin King");
assert getVal ue("#{user.password}").equal s("secret");
}
}.run();
}
}

Notice that we've extended Seanilest , which provides a Seam environment for our components,
and written our test script as an anonymous class that extends Seaniest . FacesRequest , which
provides an emulated JSF request lifecycle. (There is also a Seanfest . NonFacesRequest for

314

Integration testing Seam applications

testing GET requests.) We've written our code in methods which are named for the various JSF
phases, to emulate the calls that JSF would make to our components. Then we've thrown in
various assertions.

You'll find plenty of integration tests for the Seam example applications which demonstrate
more complex cases. There are instructions for running these tests using Ant, or using the
TestNG plugin for eclipse:

315

Chapter 26. Testing Seam applications

e

£ All Tests| o Faied Tests|

|Results of running suite

Suites: 1/1 Tests: 1/1

Methods: 2/2

Passed: 2 B Failed: 0 B Skipped: 0

= Hil Registration (2/0/0/0)
=g Register (2/0/0/0)

----- el org.jboss.seam.example.numberguess.test. NumberGues
k| org.jboss.seam.example.numberguess.test. \umberGues

Failure Exception

316

Using mocks in integration tests

2.1. Using mocks in integration tests

Occasionally, we need to be able to replace the implementation of some Seam component that
depends upon resources which are not available in the integration test environment. For
example, suppose we have some Seam component which is a facade to some payment
processing system:

@Nanme(" paynent Processor")
public class Paynment Processor {
publi ¢ bool ean processPaynent (Paynment paynment) { }

}

For integration tests, we can mock out this component as follows:

@Nanme(" paynent Processor")
@ nst al | (precedence=MOCK)
publ i c class MockPaynent Processor extends Paynment Processor {
public void processPaynment (Paynment paynent) {
return true;

}

Since the MOCK precedence is higher than the default precedence of application components,
Seam will install the mock implementation whenever it is in the classpath. When deployed into
production, the mock implementation is absent, so the real component will be installed.

317

318

Chapter 27.

Seam tools

1. BPM designer and viewer

The jBPM designer and viewer will let you design and view in a nice way your business
processes and your pageflows. This convenient tool is part of the JBoss Developer Studio and
more details can be found in the jBPM's documentation (http://docs.jboss.com/jbpm/v3/gpd/)

1.1. Business process designer

This tool lets you design your own business process in a graphical way.

=

(D start

o State
B End
#f/% Fork
:]-oa Join

L:_?J D ecision

Margues 0 ==5tart State==

I od
ode . ==Task Node==
V Task Maode E approval

] Process State

2% Super State
approve
— Transition

. ==Task Node==
= process

reject

shipped

==End State==
= |
complete

Diagram | Swirmlanes | Design | Source

1.2. Pageflow viewer

This tool will let you design to some extend your pageflows and let you build graphical views of
them so you can easily share and compare ideas on how it should be designed.

319

Chapter 27. Seam tools

"
D start

LJ?J D ecision

Marques 0 <<Start Statesx=
start

L=|'§| Page

—4 Transttion

= =Pfage==
= displayGuess

quess false
L;-?J <=<Decision== false 2 <{Dec.'s..'o.n:a-=-
EvalualEEue=s evaluateRemainingGues
true true
Ii_'— <<Page=> ? ==fage==

win lose

Diagrarn | Design| Source

2. CRUD-application generator

This chapter, will give you a short overview of the support for Seam that is available in the
Hibernate Tools. Hibernate Tools is a set of tools for working with Hibernate and related
technologies, such as JBoss Seam and EJB3. The tools are available as a set of eclipse plugins
and Ant tasks. You can download the Hibernate Tools from the JBoss Tools or Hibernate Tools
websites.

The specific support for Seam that is currently available is generation of a fully functional Seam
based CRUD-application. The CRUD-application can be generated based on your existing
Hibernate mapping files or EJB3 annotated POJQO's or even fully reverse engineered from your
existing database schema.

The following sections is focused on the features required to understand for usage with Seam.
The content is derived from the the Hibernate Tools reference documentation. Thus if you need
more detailed information please refer to the Hibernate Tools documentation.

2.1. Creating a Hibernate configuration file

To be able to reverse engineer and generate code a hibernate.properties or hibernate.cfg.xml
file is needed. The Hibernate Tools provide a wizard for generating the hibernate.cfg.xml file if
you do not already have such file.

Start the wizard by clicking "New Wizard" (Ctrl+N), select the Hibernate/Hibernate Configuration
file (cfg.xml) wizard and press "Next". After selecting the wanted location for the
hibernate.cfg.xml file, you will see the following page:

320

Creating a Hibernate Console configuration

Hibernate Configuration File (cfg.xml) ’ ’

This wizard creates a new configuration file to use with Hibemate.

Container: Jhibernatetook-demo/src
File name: hibernate.ofg. xmi
Session factory name: |

Database diaect: Ir|-|5,q|_

o 1] 1]

Driver class: | org.hsgidb.jdbcDriver
Connection URL: | jdbc:hsgidb:hsgl:/flocalhost
Default Schema: !

Default Catalog: |

Usermame: |sa

Fassword: |

[# Create a console configuration

< Back Hest > Cancel J

Tip: The contents in the combo boxes for the JDBC driver class and JDBC URL change
automatically, depending on the Dialect and actual driver you have chosen.

Enter your configuration information in this dialog. Details about the configuration options can
be found in Hibernate reference documentation.

Press "Finish" to create the configuration file, after optionally creating a Console onfiguration,
the hibernate.cfg.xml will be automatically opened in an editor. The last option "Create Console
Configuration” is enabled by default and when enabled i will automatically use the
hibernate.cfg.xml for the basis of a "Console Configuration”

2.2. Creating a Hibernate Console configuration

A Console Configuration describes to the Hibernate plugin which configuration files should be
used to configure hibernate, including which classpath is needed to load the POJQO's, JDBC
drivers etc. It is required to make usage of query prototyping, reverse engineering and code
generation. You can have multiple named console configurations. Normally you would just need
one per project, but more (or less) is definitly possible.

You create a console configuration by running the Console Configuration wizard, shown in the
following screenshot. The same wizard will also be used if you are coming from the
hibernate.cfg.xml wizard and had enabled "Create Console Configuration".

321

Chapter 27. Seam tools

Create Hibernate Console Configuration ’
This wizard allows you to create a configuration for Hibermate Console. ’
Name: | hibernatetools-demo
Property fle: | Browse... |
Configuration fie: |
Entity resolver: | Browse. ..
[Enable hibernate ejb3/annotations (requires running ecipse with a Java 5 runtime)
Mapping files
Hame Add
Remove

v |
P ; _Down |

Classpath (onby add path for POJQ and driver - No Hibernate jars!)

Name
: : Add JAR/DF...
Jhibernatetools-demaoybuid/ecipse |
[hibernatetooks-demoyib/jdbc/hsgidb.jar Add External JARS... |
Remove |
Up |
, y Down |

[<Back [Emsn] cancel

Creating a Hibernate Console configuration

The following table describes the relevant settings. The wizard can automatically detect default
values for most of these if you started the Wizard with the relevant java project selected

Parameter Description Auto detected

value

Name The unique name of the configuration Name of the
selected project

Property file Path to a hibernate.properties file First
hibernate.properties
file found in the

322

Creating a Hibernate Console configuration

Parameter

Description

Auto detected
value

Configuration file

Enable
Hibernate
ejb3/annotations

Mapping files

Classpath

Path to a hibernate.cfg.xml file

Selecting this option enables usage of annotated
classes. hbm.xml files are of course still possible to use
too. This feature requires running the Eclipse IDE with
a JDK 5 runtime, otherwise you will get classloading
and/or version errors.

List of additional mapping files that should be loaded.
Note: A hibernate.cfg.xml can also contain mappings.
Thus if these a duplicated here, you will get "Duplicate
mapping" errors when using the console configuration.

The classpath for loading POJO and JDBC drivers. Do
not add Hibernate core libraries or dependencies, they
are already included. If you get ClassNotFound errors
then check this list for possible missing or redundant
directories/jars.

selected project

First
hibernate.cfg.xml
file found in the
selected project

Not enabled

If no
hibernate.cfg.xml
file is found, all
hbm.xml files
found in the
selected project

The default build
output directory
and any JARs
with a class
implementing
java.sql.Driver in
the selected
project

Table 27.1. Hibernate Console Configuration Parameters

Clicking "Finish" creates the configuration and shows it in the "Hibernate Configurations" view

323

Chapter 27. Seam tools

= Hibernate Configu... X

SR hibernatetools-demo

[# Configuration
¥ Session factory
-I- (2] Database
=88 fyBLIC
= CUSTOMER
] CUSTOMERORDER
B LINEITEM
E PRODUCT
B SIMPLECUSTOMERORDER
B SIMPLELINEITEM

}}1 — E

+

+

+

+

+

+

Console overview

2.3. Reverse engineering and code generation

A very simple "click-and-generate" reverse engineering and code generation facility is available.
It is this facility that allows you to generate the skeleton for a full Seam CRUD application.

To start working with this process, start the "Hibernate Code Generation" which is available in
the toolbar via the Hibernate icon or via the "Run/Hibernate Code Generation" menu item.

2.3.1. Code Generation Launcher

When you click on "Hibernate Code Generation" the standard Eclipse launcher dialog will
appear. In this dialog you can create, edit and delete named Hibernate code generation
"launchers".

avigate Search Project Run XML Win

il B -FHroo-
Run As bR
¥4 Hibernate Code Generation...... _!
E Organize Favorites... ?{
1 "http:,

B e L b T T]

324

Reverse engineering and code generation

The dialog has the standard tabs "Refresh” and "Common" that can be used to configure which
directories should be automatically refreshed and various general settings launchers, such as
saving them in a project for sharing the launcher within a team.

Create, manage, and run configurations ’
& [Exporters]: At least one exporter option must be selected .

Configurations: Wiie: |H'Ev.r_|:c|nflgurnl.‘|nn ..

= ¥ Hibernate Code G"enerution
¥ New_configuration . "
g 3 Main |FJ‘ Exporters | <7 Refresh | [T Common

Console ;onﬁgum%n: |hibernatetods-demo -

Output directory: | ‘hibernatetook-demo)\src Browse... |

[« Reverse engineer from JDBC Connection

Package: | com.biz.model
reveng.xmi; 1 Setup...
reveng. strategy: | Browse... |

[+ Generate basic typed composite ids

[use custom templates

New Delete | Apply | Reyert

The first time you create a code generation launcher you should give it a meaningfull name,
otherwise the default prefix "New_Generation" will be used.

Note: The "At least one exporter option must be selected" is just a warning stating that for this
launch to work you need to select an exporter on the Exporter tab. When an exporter has been
selected the warning will disappear.

On the "Main" tab you the following fields:

Field Description

Console The name of the console configuration which should be used when
Configuration code generating.
Output directory Path to a directory into where all output will be written by default. Be

aware that existing files will be overwritten, so be sure to specify the
correct directory.

Reverse engineer If enabled the tools will reverse engineer the database available via
from JDBC the connection information in the selected Hibernate Console
Connection Configuration and generate code based on the database schema. If

not enabled the code generation will just be based on the mappings

325

Chapter 27. Seam tools

Field Description

already specified in the Hibernate Console configuration.

Package The package name here is used as the default package name for any
entities found when reverse engineering.

reveng.xml Path to a reveng.xml file. A reveng.xml file allows you to control
certain aspects of the reverse engineering. e.g. how jdbc types are
mapped to hibernate types and especially important which tables are
included/excluded from the process. Clicking "setup" allows you to
select an existing reveng.xml file or create a new one..

reveng. strategy If reveng.xml does not provide enough customization you can provide
your own implementation of an ReverseEngineeringStrategy. The
class need to be in the claspath of the Console Configuration,
otherwise you will get class not found exceptions.

Generate basic typed This field should always be enabled when generating the Seam

composite ids CRUD application. A table that has a multi-colum primary key a
<composite-id> mapping will always be created. If this option is
enabled and there are matching foreign-keys each key column is still
considered a 'basic' scalar (string, long, etc.) instead of a reference to
an entity. If you disable this option a <key-many-to-one> instead.
Note: a <many-to-one> property is still created, but is simply marked
as non-updatable and non-insertable.

Use custom If enabled, the Template directory will be searched first when looking
templates up the velocity templates, allowing you to redefine how the individual
templates process the hibernate mapping model.

Template directory A path to a directory with custom velocity templates.

Table 27.2. Code generation "Main" tab fields

2.3.2. Exporters

The exporters tab is used to specify which type of code that should be generated. Each
selection represents an "Exporter” that are responsible for generating the code, hence the
name.

326

Reverse engineering and code generation

Create, manage, and run configurations
Sebect or configure a code generation

A7

Configurations: Name: | hew_configuration

= "4 Hibernate Code Generation

s New_configuration
s Main % Exporters |

Refresh | [Common

| Generate domain code (java)

[

-

[~ Generate DAC code (java)

[Generate mappings (hbm.xmi)

| Generate hibernate configuration (hibernate.cfg.xmi)

— Generate schema htmi-documentation

Delete Apply | Revert

|

Mew J

The following table describes in short the various exporters. The most relevant for Seam is of
course the "JBoss Seam Skeleton app".

Field Description

Generate domain
code

JDK 1.5 constructs

EJB3/JSR-220
annotations

Generate DAO code

Generate Mappings

Generate hibernate
configuration file

Generate schema
html-documentation

Generate JBoss
Seam skeleton app

Generates POJO's for all the persistent classes and components
found in the given Hibernate configuration.

When enabled the POJO's will use JDK 1.5 constructs.

When enabled the POJO's will be annotated according to the
EJB3/JSR-220 persistency specification.

Generates a set of DAQO's for each entity found.
Generate mapping (hbm.xml) files for each entity

Generate a hibernate.cfg.xml file. Used to keep the hibernate.cfg.xml
uptodate with any new found mapping files.

Generates set of html pages that documents the database schema
and some of the mappings.

Generates a complete JBoss Seam skeleton app. The generation will
include annotated POJO's, Seam controller beans and a JSP for the

327

Chapter 27. Seam tools

Field Description

(beta) presentation layer. See the generated readme.txt for how to use it.

Note: this exporter generates a full application, including a build.xml
thus you will get the best results if you use an output directory which
is the root of your project.

Table 27.3. Code generation "Exporter" tab fields

2.3.3. Generating and using the code

When you have finished filling out the settings, simply press "Run” to start the generation of
code. This might take a little while if you are reverse engineering from a database.

When the generation have finished you should now have a complete skeleton Seam application
in the output directory. In the output directory there is a r eadne. t xt file describing the steps
needed to deploy and run the example.

If you want to regenerate/update the skeleton code then simply run the code generation again
by selecting the "Hibernate Code Generation" in the toolbar or "Run" menu. Enjoy.

328

Index

329

330

	Seam Reference Guide
	Table of Contents
	Chapter 1. Feedback
	Introduction to JBoss Seam
	Chapter 2. Seam Tutorial
	1. Try the examples
	1.1. Running the examples on JBoss AS
	1.2. Running the examples on Tomcat
	1.3. Running the example tests

	2. Your first Seam application: the registration example
	2.1. Understanding the code
	2.1.1. The entity bean: User.java
	2.1.2. The stateless session bean class: RegisterAction.java
	2.1.3. The session bean local interface: Register.java
	2.1.4. The Seam component deployment descriptor: components.xml
	2.1.5. The web deployment description: web.xml
	2.1.6. The JSF configration: faces-config.xml
	2.1.7. The EJB deployment descriptor: ejb-jar.xml
	2.1.8. The EJB persistence deployment descriptor: persistence.xml
	2.1.9. The view: register.jsp and registered.jsp
	2.1.10. The EAR deployment descriptor: application.xml

	2.2. How it works

	3. Clickable lists in Seam: the messages example
	3.1. Understanding the code
	3.1.1. The entity bean: Message.java
	3.1.2. The stateful session bean: MessageManagerBean.java
	3.1.3. The session bean local interface: MessageManager.java
	3.1.4. The view: messages.jsp

	3.2. How it works

	4. Seam and jBPM: the todo list example
	4.1. Understanding the code
	4.2. How it works

	5. Seam pageflow: the numberguess example
	5.1. Understanding the code
	5.2. How it works

	6. A complete Seam application: the Hotel Booking example
	6.1. Introduction
	6.2. Overview of the booking example
	6.3. Understanding Seam conversations
	6.4. The Seam UI control library
	6.5. The Seam Debug Page

	7. A complete application featuring Seam and jBPM: the DVD Store example
	8. A complete application featuring Seam workspace management: the Issue Tracker example
	9. An example of Seam with Hibernate: the Hibernate Booking example
	10. A RESTful Seam application: the Blog example
	10.1. Using "pull"-style MVC
	10.2. Bookmarkable search results page
	10.3. Using "push"-style MVC in a RESTful application

	Chapter 3. The contextual component model
	1. Seam contexts
	1.1. Stateless context
	1.2. Event context
	1.3. Page context
	1.4. Conversation context
	1.5. Session context
	1.6. Business process context
	1.7. Application context
	1.8. Context variables
	1.9. Context search priority
	1.10. Concurrency model

	2. Seam components
	2.1. Stateless session beans
	2.2. Stateful session beans
	2.3. Entity beans
	2.4. JavaBeans
	2.5. Message-driven beans
	2.6. Interception
	2.7. Component names
	2.8. Defining the component scope
	2.9. Components with multiple roles
	2.10. Built-in components

	3. Bijection
	4. Lifecycle methods
	5. Conditional installation
	6. Logging
	7. The Mutable interface and @ReadOnly
	8. Factory and manager components

	Chapter 4. Configuring Seam components
	1. Configuring components via property settings
	2. Configuring components via components.xml
	3. Fine-grained configuration files
	4. Configurable property types
	5. Using XML Namespaces

	Chapter 5. Events, interceptors and exception handling
	1. Seam events
	1.1. Page actions
	1.1.1. Page parameters
	1.1.2. Navigation
	1.1.3. Fine-grained files for definition of navigation, page actions and parameters

	1.2. Component-driven events
	1.3. Contextual events

	2. Seam interceptors
	3. Managing exceptions
	3.1. Exceptions and transactions
	3.2. Enabling Seam exception handling
	3.3. Using annotations for exception handling
	3.4. Using XML for exception handling

	Chapter 6. Conversations and workspace management
	1. Seam's conversation model
	2. Nested conversations
	3. Starting conversations with GET requests
	4. Using <s:link> and <s:button>
	5. Success messages
	6. Using an "explicit" conversation id
	7. Workspace management
	7.1. Workspace management and JSF navigation
	7.2. Workspace management and jPDL pageflow
	7.3. The conversation switcher
	7.4. The conversation list
	7.5. Breadcrumbs

	8. Conversational components and JSF component bindings

	Chapter 7. Pageflows and business processes
	1. Pageflow in Seam
	1.1. The two navigation models
	1.2. Seam and the back button

	2. Using jPDL pageflows
	2.1. Installing pageflows
	2.2. Starting pageflows
	2.3. Page nodes and transitions
	2.4. Controlling the flow
	2.5. Ending the flow

	3. Business process management in Seam
	4. Using jPDL business process definitions
	4.1. Installing process definitions
	4.2. Initializing actor ids
	4.3. Initiating a business process
	4.4. Task assignment
	4.5. Task lists
	4.6. Performing a task

	Chapter 8. Seam and Object/Relational Mapping
	1. Introduction
	2. Seam managed transactions
	2.1. Enabling Seam-managed transactions

	3. Seam-managed persistence contexts
	3.1. Using a Seam-managed persistence context with JPA
	3.2. Using a Seam-managed Hibernate session
	3.3. Seam-managed persistence contexts and atomic conversations

	4. Using the JPA "delegate"
	5. Using EL in EJB-QL/HQL
	6. Using Hibernate filters

	Chapter 9. JSF form validation in Seam
	Chapter 10. The Seam Application Framework
	1. Introduction
	2. Home objects
	3. Query objects
	4. Controller objects

	Chapter 11. Seam and JBoss Rules
	1. Installing rules
	2. Using rules from a Seam component
	3. Using rules from a jBPM process definition

	Chapter 12. Security
	1. Overview
	1.1. Which mode is right for my application?

	2. Requirements
	3. Authentication
	3.1. Configuration
	3.2. Writing an authentication method
	3.3. Writing a login form
	3.4. Simplified Configuration - Summary
	3.5. Handling Security Exceptions
	3.6. Login Redirection
	3.7. Advanced Authentication Features
	3.7.1. Using your container's JAAS configuration

	4. Error Messages
	5. Authorization
	5.1. Core concepts
	5.2. Securing components
	5.2.1. The @Restrict annotation
	5.2.2. Inline restrictions

	5.3. Security in the user interface
	5.4. Securing pages
	5.5. Securing Entities
	5.5.1. Entity security with JPA
	5.5.2. Entity security with Hibernate

	6. Writing Security Rules
	6.1. Permissions Overview
	6.2. Configuring a rules file
	6.3. Creating a security rules file
	6.3.1. Wildcard permission checks

	7. SSL Security
	8. Implementing a Captcha Test
	8.1. Configuring the Captcha Servlet
	8.2. Adding a Captcha to a page

	Chapter 13. Internationalization and themes
	1. Locales
	2. Labels
	2.1. Defining labels
	2.2. Displaying labels
	2.3. Faces messages

	3. Timezones
	4. Themes
	5. Persisting locale and theme preferences via cookies

	Chapter 14. Seam Text
	1. Basic fomatting
	2. Entering code and text with special characters
	3. Links
	4. Entering HTML

	Chapter 15. iText PDF generation
	1. Using PDF Support
	2. Creating a document
	2.1. p:document

	3. Basic Text Elements
	3.1. p:paragraph
	3.2. p:text
	3.3. p:font
	3.4. p:newPage
	3.5. p:image
	3.6. p:anchor

	4. Headers and Footers
	4.1. p:header and p:footer
	4.2. p:pageNumber

	5. Chapters and Sections
	5.1. p:chapter and p:section
	5.2. p:title

	6. Lists
	6.1. p:list
	6.2. p:listItem

	7. Tables
	7.1. p:table
	7.2. p:cell

	8. Document Constants
	8.1. Color Values
	8.2. Alignment Values

	9. Configuring iText
	10. iText links

	Chapter 16. Email
	1. Creating a message
	1.1. Attachments
	1.2. HTML/Text alternative part
	1.3. Multiple recipients
	1.4. Multiple messages
	1.5. Templating
	1.6. Internationalisation
	1.7. Other Headers

	2. Receiving emails
	3. Configuration
	3.1. mailSession
	3.1.1. JNDI lookup in JBoss AS
	3.1.2. Seam configured Session

	4. Tags

	Chapter 17. Asynchronicity and messaging
	1. Asynchronicity
	1.1. Asynchronous methods
	1.2. Asynchronous events

	2. Messaging in Seam
	2.1. Configuration
	2.2. Sending messages
	2.3. Receiving messages using a message-driven bean
	2.4. Receiving messages in the client

	Chapter 18. Caching
	1. Using JBossCache in Seam
	2. Page fragment caching

	Chapter 19. Remoting
	1. Configuration
	2. The "Seam" object
	2.1. A Hello World example
	2.2. Seam.Component
	2.2.1. Seam.Component.newInstance()
	2.2.2. Seam.Component.getInstance()
	2.2.3. Seam.Component.getComponentName()

	2.3. Seam.Remoting
	2.3.1. Seam.Remoting.createType()
	2.3.2. Seam.Remoting.getTypeName()

	3. Client Interfaces
	4. The Context
	4.1. Setting and reading the Conversation ID

	5. Batch Requests
	6. Working with Data types
	6.1. Primitives / Basic Types
	6.1.1. String
	6.1.2. Number
	6.1.3. Boolean

	6.2. JavaBeans
	6.3. Dates and Times
	6.4. Enums
	6.5. Collections
	6.5.1. Bags
	6.5.2. Maps

	7. Debugging
	8. The Loading Message
	8.1. Changing the message
	8.2. Hiding the loading message
	8.3. A Custom Loading Indicator

	9. Controlling what data is returned
	9.1. Constraining normal fields
	9.2. Constraining Maps and Collections
	9.3. Constraining objects of a specific type
	9.4. Combining Constraints

	10. JMS Messaging
	10.1. Configuration
	10.2. Subscribing to a JMS Topic
	10.3. Unsubscribing from a Topic
	10.4. Tuning the Polling Process

	Chapter 20. Spring Framework integration
	1. Injecting Seam components into Spring beans
	2. Injecting Spring beans into Seam components
	3. Making a Spring bean into a Seam component
	4. Seam-scoped Spring beans
	5. Spring Application Context as a Seam Component

	Chapter 21. Configuring Seam and packaging Seam applications
	1. Basic Seam configuration
	1.1. Integrating Seam with JSF and your servlet container
	1.2. Seam Resource Servlet
	1.3. Seam servlet filters
	1.3.1. Exception handling
	1.3.2. Conversation propagation with redirects
	1.3.3. Multipart form submissions
	1.3.4. Character encoding
	1.3.5. Context management for custom servlets

	1.4. Integrating Seam with your EJB container
	1.5. Using facelets
	1.6. Don't forget!

	2. Configuring Seam in Java EE 5
	2.1. Packaging

	3. Configuring Seam in Java SE, with the JBoss Embeddable EJB3 container
	3.1. Installing the Embeddable EJB3 container
	3.2. Configuring a datasource with the Embeddable EJB3 container
	3.3. Packaging

	4. Configuring Seam in J2EE
	4.1. Boostrapping Hibernate in Seam
	4.2. Boostrapping JPA in Seam
	4.3. Packaging

	5. Configuring Seam in Java SE, with the JBoss Microcontainer
	5.1. Using Hibernate and the JBoss Microcontainer
	5.2. Packaging

	6. Configuring jBPM in Seam
	6.1. Packaging

	7. Configuring Seam in a Portal
	8. Configuring SFSB and Session Timeouts in JBoss AS

	Chapter 22. Seam annotations
	1. Annotations for component definition
	2. Annotations for bijection
	3. Annotations for component lifecycle methods
	4. Annotations for context demarcation
	5. Annotations for transaction demarcation
	6. Annotations for exceptions
	7. Annotations for validation
	8. Annotations for Seam Remoting
	9. Annotations for Seam interceptors
	10. Annotations for asynchronicity
	11. Annotations for use with JSF dataTable
	12. Meta-annotations for databinding
	13. Annotations for packaging

	Chapter 23. Built-in Seam components
	1. Context injection components
	2. Utility components
	3. Components for internationalization and themes
	4. Components for controlling conversations
	5. jBPM-related components
	6. Security-related components
	7. JMS-related components
	8. Mail-related components
	9. Infrastructural components
	10. Special components

	Chapter 24. Seam JSF controls
	Chapter 25. Expression language enhancements
	1. Configuration
	2. Usage
	3. Limitations
	3.1. Incompatibility with JSP 2.1
	3.2. Calling a MethodExpression from Java code

	Chapter 26. Testing Seam applications
	1. Unit testing Seam components
	2. Integration testing Seam applications
	2.1. Using mocks in integration tests

	Chapter 27. Seam tools
	1. jBPM designer and viewer
	1.1. Business process designer
	1.2. Pageflow viewer

	2. CRUD-application generator
	2.1. Creating a Hibernate configuration file
	2.2. Creating a Hibernate Console configuration
	2.3. Reverse engineering and code generation
	2.3.1. Code Generation Launcher
	2.3.2. Exporters
	2.3.3. Generating and using the code

	Index

