Hibernate Reference Guide

JBoss Enterprise
Application Platform

4.3

‘ ‘ Red Hat

ISBN: N/A
Publication date: Sep, 2007

Hibernate Reference Guide

The JBoss Enterprise Application Platform Edition of the Hibernate Reference Guide 3.2

Hibernate Reference Guide: JBoss Enterprise Application

Platform
Copyright © 2008 Red Hat, Inc

Copyright © 2008 Red Hat, Inc. This material may only be distributed subject to the terms and conditions set forth in the
Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License (which is presently available at
http://creativecommons.org/licenses/by-nc-sa/3.0/).

Red Hat and the Red Hat "Shadow Man" logo are registered trademarks of Red Hat, Inc. in the United States and other
countries.

All other trademarks referenced herein are the property of their respective owners.
The GPG fingerprint of the security@redhat.com key is:

CA 20 86 86 2B D6 9D FC 65 F6 EC C4 21 91 80 CD DB 42 A6 OE

1801 Varsity Drive

Raleigh, NC 27606-2072

USA

Phone: +1 919 754 3700

Phone: 888 733 4281

Fax: +1 919 754 3701

PO Box 13588

Research Triangle Park, NC 27709
USA

http://creativecommons.org/licenses/by-nc-sa/3.0/

Hibernate Reference Guide

L FEEADACK ..o e 1

L 1= = o R iii
2. Introduction t0 HIDEINALEcooiiiiiiiii e 5
L PIEfACE i e 5
2. Part 1 - The first Hibernate Applicationc.ccooiiiiiiiiiiiiii e 5
2.1, The fIrSE ClASS ...oieeiieeeii e 6

2.2. The mapping file ... e 7

2.3. Hibernate configurationooooiiiiiiiiiiie e 9

2.4. BUilding With ANt ... 11

2.5. Startup and helpers ... 12

2.6. Loading and storing ObJECESiiviiiiiii e 13

3. Part 2 - Mapping aSSOCIAtIONSccuuiiiiiaiiiae e 17
3.1. Mapping the Person Classc.oiiiiiiiiiiiiiic e 17

3.2. A unidirectional Set-based assoCIationoooevvviimiiiiiniineeeeeein 18

3.3. Working the assoCiationcooouuiiiiiiiii e 19

3.4, Collection Of VAIUESouiiieieii i e 21

3.5. Bi-directional aSSOCIALIONScccvvuiiieriiieieii et 22

3.6. Working bi-directional linkScoviiiiiiiiiii e 23

4. Part 3 - The EventManager web applicationcccooeviiiiiiiiii i 24
4.1. Writing the basiC Servlet ... 24

4.2. Processing and renNderingooooeuuuieeiiiiiieeiei e 25

4.3. Deploying and teStINGcc.uveiiiieiii e 27

D SUMIMIANY e et e e e et e e e e e e e eanes 28
B T A o a1 1 (= o3 11] - 29
L. OVEIVIEW oottt ettt e ettt 29
2. INSTANCE STALES ...etiitiit ittt et e e et e e e e e e e e eaa s 32
TN Y Q1 (=T | = L1 32
N 107 ¥ | o] o [o] o A PP P PP UPPPPI 33
5. CoNtextual SESSIONSciiiiieiii e e e 33
LB o] a1 To U = 11T o T 35
1. Programmatic configurationc.oooiiuiiiiiiii e 35
2. Obtaining & SESSIONFACIONYuuiiiiiiiieiei e 36
3. IDBC CONNECLIONSuiieitii ettt ettt e e e e e e 36
4. Optional configuration ProPertiescco.uiieiiiiii e 38
1@ T B I - 1= ox (PSSR 44

4.2. 0uter Join FetChiNgoooiiii e 45

4.3, BIiNAry SrEAMS ..uuiiiiiiiii e 45

4.4, Second-level and query Cacheccocoiiiiiiiiiiii e, 45

4.5. Query Language SUDSHIULIONviiuiiiiiiiie e 45

4.6. Hibernate StatiStiCSuiiveiieii e e e e e 46

LT o To o 1 T 46
6. Implementing a NamingSIrategyocoeuuuiiiiiiiieiii e 47
7. XML configuration fil@coeuiiiiiii e a7
8. J2EE Application Server integrationcooeeuiiiiiiiiiiieie e 48
8.1. Transaction strategy configurationcccooeviiiiiiiiiiiiiiinee e 49

8.2. INDI-bound SeSSIONFACIONYcccviiviiieiiiiieiiie e 50

Hibernate Reference Guide

8.3. Current Session context management with JTAccoooiiiiiiiinieiiinnnn. 51

8.4, IMX dePIOYMENT ..ot 51

5. PErSIStENt ClASSEScieiiii ittt 53
1. A simple POJO eXampPIeiiiiiiieiiei e 53
1.1. Implement a no-argument CONSIIUCTONccuvuiviiiiiiii e e 54

1.2. Provide an identifier property (optional)coooviiiiiiiiiiiiieeene, 54

1.3. Prefer non-final classes (optional)covviiiiiiiiiiiinie e, 55

1.4. Declare accessors and mutators for persistent fields (optional) 55

2. Implementing INNEITANCEuiiiiii e 55
3. Implementing equals() and hashCode()cceviviiiiiiiiii e 56
4. DYNAMIC MOUEIS ..oeiiiiiiii et e s 57
B TUPHIZEIS et 59
6. BASIC O/R MaAPPING «.evrniiiinieiieeii et e e e e e e e e e s e e et s e et e e et s e e et e e e e eatnaeeanaeeanaees 61
1. Mapping deCIarationoieueiiii e 61
R I Lo o1 1/ o PP 62

1.2. hibernate-mappingcocoii i 63

I R o = PP 64

R o PP PPPPPTI 67

1.5, COMPOSITE-IA ...eneieieit e eaa s 71

I G o 1Yol 0 1 g = Lo) 73

1.7. version (OPLioNAI)c.uiiii e 74

1.8. timestamp (OPLIONAI)ooeeiei e 74

TR o (0] o1=] ¢ PP 75
1,20, MANY-T0-0NE ..ot 77
R o [= 8 (0 B [PP 80
O 2 o = (8] = | o PP PUPPPPIN 82
1.13. component, dynamiC-COMPONENTiiuuniiiiiiiiieeiiee et eanne 82
R o o o] o 1T =2 PP PP 83
1,25, SUDCIASS .eevviiiii ettt 84
1.16. JOINEA-SUDCIASSietiiiiii e 85
L1.17. UNION-SUDCIASSuiiiiiiiiiieeie et e e e e ean s 86
TR0 T 87

L 0. KBY i e 88
1.20. column and formula elementscooooeeiiiiiiiiiii e 89
2 1111 o Lo AU 90

L 22, ANY it 90

b o 11T g F= L (= 1Y o 1= 91
2.1, Entities and VAlUEBSoouniiiiiiii e 91

2.2. BASIC VAIUE LYPES ...ueiiiiiiei ettt 92

2.3. CUSIOM ValUEB LYPES .vniiiieii e e e e 93

3. Mapping a class More than ONCEcoouuiiiiiiiii e 95
4. SQL quoted identifiersciiiiii e 95
5. Metadata alterNatiVEScoceuiiiiiiiiieiei e 96
5.1. USing XDOCIEt MAIKUPiiiiiiieiiii e 96

5.2. Using JDK 5.0 ANNOLAtIONScevuiiiiiieiicciii e e e e e e e e e eanne e 98

6. Generated PrOPErtieSoiiu it 99
7. Auxiliary Database ODJECESiiiiiiiiiii e 99

vi

T &o] | [=Tox 1o g TNV =T o] o] 1o To [P PP PPPPT 101

1. Persistent COIECLIONSccoiuiiiiiii e e 101
2. COllECtioN MAPPINGS -.evneieieeiiee ittt e e e e e et eeanaaeens 102
2.1. Collection fOreign KeYScouuiiiiiiiieii e 103

2.2. Collection lemMENtSiiiiiiiiee e 104

2.3. Indexed COIECHIONScoeuiiii e 104

2.4. Collections of values and many-to-many associations 105

2.5. One-to-many asSOCIAtIONSciciuiieiiieiiiie e 107

3. Advanced collection MAaPPINGScoeuruneieiiieieii e 108
3.1. Sorted COIECHIONScvieiii e 108

3.2. Bidirectional aSSOCIAtIONSccuuiiiiiiiiiieiei e 109

3.3. Bidirectional associations with indexed collectionsccccceevevennen. 111

3.4. Ternary asSOCIAtIONScivuuieiiieiiie e e e e e e e e e e e e 112
3.5.USING AN <IADAG> ...oeniiiiii e 112

4. COlleCtion eXAMPIESuniiii e 113
8. ASSOCIAtION MAPPINGS ..uiiiiiiiii et et e e e e e e e e e e e e e e e e e e 117
I a1 0T U Td 1o o I PPN 117
2. Unidirectional @SSOCIAtIONSuiiiiiiiieiiiiiii et eeeans 117
2.1, MANY 0 ONE .ottt e et ea e 117

2.2, ONE 0 ONE oottt e 117

A T o 1= (o 1 4T 0 118

3. Unidirectional associations with join tablesc.ooooiiiii, 119
3.1, 0NE L0 MABNY ottt e 119

3.2. MANY 10 ONE ottt e e 120

3.3 ONE 0 ONE e e 120

R 0 o 0= 1)V (o N 11T 0 Y 121

4. Bidirectional aSSOCIAtIONSccuuiiiiiiiii e e 122
4.1. one to Many / Many t0 ONEcccuuuiiiiiiiiieiii e 122

4.2, 0N TO ONE ottt ettt et et ettt e et e e e 123

5. Bidirectional associations with join tables ..o, 124
5.1. 0ne to many / Many t0 ONEcoeuuuieiiiiiiieieii et 124

5.2, ONEB O ONE e e 125

5.3. MaANY 10 MENY ..oiiiiiiiii e 125

6. More complex association MAaPPINGS ...cceuereerereuierii e e e eean 126
9. COMPONENT MAPPING ...eneieineeiee ittt e et et e e e et e e e e e e e et eean e eanaas 129
1. Dependent ODJECESiiiiiii it 129
2. Collections of dependent 0DJECESvvviiiiiiii i 131
3. Components as Map INAICESc.uuiiiuniiii i 132
4. Components as composite identifiersc.ooooviiiiiiiii 132
5. DYNamIiC COMPONENTSiiiiniiiii et e et e e e e e e e e e e e e et e e e e et e e aaneeeens 134
10. INNErtANCE MEAPPING ... eeeitieeiiii e ettt e e e et e e e et e e e ent e e eentaeeeee 135
1. The Three Strat@gieSuiieen it e e e e e e e aneees 135
1.1. Table per class hierarchycooooiiiiiiiiii e, 135

1.2. Table per SUDCIASSccoouuniiiiii e 136

1.3. Table per subclass, using a discriminatorc.ccocceeveiiieiiineeenneennn, 136

1.4. Mixing table per class hierarchy with table per subclass 137

1.5. Table per CONCIete CIaSSccuuuiiiiiiiiiee e 138

Vii

Hibernate Reference Guide

1.6. Table per concrete class, using implicit polymorphism 139

1.7. Mixing implicit polymorphism with other inheritance mappings 139

A ¢ 11 = 11 0] L TSP UPTRPPP 140
11. WOrking With ODJECESceeieiiieii et e 143
1. Hibernate object Statescccvuiiiiii i 143
2. Making ObJeCtS PErSISIENTiiiiiiii e 143
3. Loading @n ODJECEiiiiiie e 144
B @ 10 1= Y/ o To [P 145
4.1, EXECULING QUETIESieieieiieii ettt ettt e e 146

4.2. Filtering COIIECLIONScvuiiiii e 150

O T O 11 (=] o= Wo [=T =T PP UP TP PPN 150

4.4, Queries IN NALIVE SQLiiueieii e 151

5. Modifying persistent ODJECEScvvviiiiiiiiiir e 151
6. Modifying detached ObJECTScoueiiiiii e 152
7. Automatic state deteCHiONoveiiiiiiiiiiiii e 153
8. Deleting persistent 0DJECEScouviiiiii i 154
9. Replicating object between two different datastoresccoooeveviiiiiiinnnenn. 154
10. Flushing the SESSIONccvuiiiiicie e e e 155
11. TranSitive PEISISIEICEcuuiiiieiii ettt e e e e e e e eaae e 156
12. USING MELATALAceevvieieiiie e e e e e e eees 157
12. Transactions ANA CONCUITENCY ...uuierueernieeiieeeieeetseeaaeeanaeeataeeeneeeenaeeaneannneenens 159
1. Session and tranSACION SCOPESuiuuniiitn it aeet e e e e et e e e et e e e eenaaes 159
R U T 1 o) Yo 159

1.2. LONQ CONVEISALIONS ..ovuiiiiieiiiieeiii e e ee e e e e e e e e e et e et e et e e aaeeeens 160

1.3. Considering Object Identityccouviiiiiiiiiiiiiiieeee e 161

1.4, COMMON ISSUBS .eittneeeiiineeteit e e eett e e eett s e e e et s e e e eat e e e eent s eeeentnaeaeens 162

2. Database transaction demarCationcoooeeuiiiiiiiiiiiieiie e 163
2.1. Non-managed enVIFONMENTcc.uuuieiiiiiieiiiiie et e e 164

b2 U L= 1 o N 1 165

2.3. Exception handlingccoouiiiiiiii e 166

2.4, TranSaction tIMEOULvieuiei i e e e e 167

3. Optimistic CONCUITENCY CONIIOLcvviiii i 168
3.1. Application version checkingc.ocoeuiiiiiiiii e, 168

3.2. Extended session and automatic VErsioningccceeeveneveinieeinennnnn 169

3.3. Detached objects and automatic versioningccoevvveneiiinnieineennnn. 170

3.4. Customizing automatic VErsioNiNgcoveeeeueieieiiinneieiinneeeiineeeeneens 170

4, PeSSIMISHIC LOCKING ..vvvuiiiieiiii e e e e et e e e e e aa e eens 171
5. Connection Release MOAESoiiuiiiiiiiii e 172
13. INtErceptors and EVENTSciiiiiiiiiiiii ettt e e et e e et e e e e eee 175
I [01 (] o= o (o = PP 175
2. EVENE SYSIEIM oiiiiiiiiii e 177
3. Hibernate declarative SECUIILYcocveuiiiiiiiie e e 178
14, BACh PrOCESSING eeniitiiiiii ettt ettt e e et e e e e e e eans 181
I 2 T (od T £ o P TRPTPN 181
2. BatCh UPAALES ...uviieicii e e e 182
3. The StatelessSession INterfacecoiiiiiiiiiiiii e, 182
4. DML-StYlE OPEIatiONSiiiiiiiieiiii et 183

viii

15. HQL: The Hibernate QUery LaNQUAGEooeeeurnieiiiiiiaieiiiieeeeii e e e eeni e eens 187

1. CASE SENSILVILY .uueveeiiiiiiiii e e et e e e e e et e e e e e e e e e 187
2. The frOM CIAUSEeeiiie e 187
3. ASSOCIAtioNS AN JOINS ...covuiiiiiii e 188
4. FOrmMS Of JOIN SYNTAX 11vuuiiiiiiiiiicii e e e e e e e e e e e e e e e e eens 189
5. Refering to identifier Property ... 189
6. ThE SEIECE CIAUSEniieiicii e e e e eens 190
7. Aggregate fUNCLONScouiiiiii e e e e e e e 191
8. POlYMOIPhIC QUETIES ... 192
9. The WRHEIE CIAUSEuviiiiii e 192
10, EXPIESSIONS ...ttt ettt et et e e e e e e 194
11. The Order DY ClAUSE ... oot et 198
12. The group BY ClaUSEceeeiiiii e e e 198
13, SUDQUETIES .ttt e e et et e et e et e e e ees 199
14, HQL @XAMPIES ..ot et e 199
15. Bulk update and deleteooiiiiiiii i 202
16. TIPS & THICKS vttt ettt e e e e eeens 202
I 0 3 o o 1 = 1 £ 203
18. Row value CONSIIUCIOr SYNTAX ...cuuuiiiiiii et e e e e e e 204
16. Criteria QUEIIES ...ieunieii ettt et e e e e e et e et e e e e et e e et e e et aeeaa e e eaeeeens 205
1. Creating a Criteria INSTANCEicvuvieiii i e e 205
2. Narrowing the reSUIt Sceu i e 205
3. 0rdering the rESUILSoouuii i e 206
Nt o ol - U110 1S PP 206
5. Dynamic association fetChingcoooieiiiiiiiiiii e 207
(ST = L]] [0 [=T = 208
7. Projections, aggregation and groupingcc.ueeeueeeuoeeuieeie e eeieeeens 208
8. Detached queries and SUDQUETIEScoouuuiiiiiiiiieiiiii e 210
9. Queries by natural Identifiercccoiiiiiiii 211
L7, NBEVE SQL ettt e ettt e e et e et et e e et e e eebb e e aaaaeanae 213
1. USING @ SQLQUETY .ottt ettt e et eeeab e eeens 213
STt = T [0 1= 1= 213

1.2, ENTILY QUETIES ..euieiiiii ettt ettt ettt ettt e ettt e e et e eeeni e e eens 214

1.3. Handling associations and collectionsccccoeviiviiiieiii v, 214

1.4. Returning multiple entitiesoooiuiiiiii e 215

1.5. Returning non-managed entitiesScccouiiiiiiiiieiiiii e 217

1.6. Handling inheritanCeccoviiii i e 217

1.7, PArAMELEIS ...ttt ettt et e e e e eaaes 217

2. NAMEA SQL QUETIES ...nieiiiiieeiiiii ettt e e e eaaans 218
2.1. Using return-property to explicitly specify column/alias names 219

2.2. Using stored procedures for QUEIYINGcccuurveiemiinieieiinieieiineeeennnn 220

3. Custom SQL for create, update and deleteccoovviviiiiiiiiinii i, 221
4. Custom SQL fOr 10adingcooeuuiiiiiiiiie e 223
18. FiltEIING GALA ...vvu ittt e e et e e e en e e e eaa e eee 225
1. HIbernate filterscoooue e e 225
S Y| I 1V =T o] o1 o [PP PTPT 229

1. WOorking With XML DAtauuiiiiiiiiiiii e e 229

Hibernate Reference Guide

1.1. Specifying XML and class mapping togetherccccoooeeiiieiiiinneeenn, 229
1.2. Specifying only an XML Mappingoeeeeveeeneeeiieeiineeeiieeeiiereneeaneeenns 230
2. XML Mapping Metadataccouvieuniiiiaiie i 230
3. Manipulating XML datalocoeeuiieiiii e 232
20. IMProving PErfOrMANCEc.uiiiiieiiii e e e e e e e e e e e 235
1. FetChing Srat@QIES iieeieiii et e e e e e e 235
1.1. Working with lazy assocCiationscceeuiiiiiiiinieiiiii e 236
1.2. Tuning fetCh Strategiesoveiiiiiiii e 237
1.3. Single-ended assocCiation ProXi€Scccuuiieveiriieeiiiiieeeiiiiieeeeniaeeeens 237
1.4. Initializing collections and ProXi€Sscceueveveiiereiiieeiineeeierneeaneeeens 239
1.5. Using batch fetchingcooiiiii e, 241
1.6. Using subselect fetChingcovviiiiiiiiiii e 241
1.7. Using lazy property fetChingccooviiiiiiiiii e, 242
2. The Second Level Cache ... 242
2.1. CaChe MAPPINGS .veniieiiiieiiii e eaaans 243
2.2. Strategy: read ONlYco.iiiiii i 244
2.3. Strategy: read/WIItecoouiiiieiiiii e 244
2.4, Strategy: NONStrict read/Wrtecvvviiiiiiii i 244
2.5. Strategy: transactionaloviiiiiiiiiii 245
3. Managing the CaChEScooiiiiiiiii e 245
4. The QUEINY CaACNEciii e e e e e aans 246
5. Understanding Collection performancecooooiiiiiiiiiiiiii e, 247
L0 I 1= (o] T 1 1) PP 247

5.2. Lists, maps, idbags and sets are the most efficient collections to update 248
5.3. Bags and lists are the most efficient inverse collections 249
5.4.0N€ ShOt deleteuiiiiiii i 249
6. MONItoring PEIrfOrMANCEieuiiiiiie e 250
6.1. Monitoring a SeSSIONFACLONYoviiiiiiiiiiiii e 250
B.2. MEIIICS .euiiiiii et 251
A I oo 1= A U1 o = PP 253
1. Automatic Schema generationooveieiiiiieiiiii e 253
1.1. Customizing the SChemMacccooiiiiiiii e, 253
1.2. RUNNING the tO0]oviiiii e 256
I R o o o= 4 1T 257
L4, USING AN <ottt e eaas 257
1.5. Incremental schema updatescooveiiiiiiiiiiiiiiiee e 258
1.6. Using Ant for incremental schema updatescoocceeveviiiiineeinneennn, 258
1.7. Schema validation ..o 259
1.8. Using Ant for schema validationcccoooeiiiiiiiiiiiinii e 259
22. Example: Parent/Childcoooiiiiiii e 261
1. A note about COIIECLIONSuiiiiiiii e e e e 261
2. Bidirectional ONe-t0-MaNYcccuiiiiiieeiieeiir e e e e e e e e e eeans 261
3. Cascading lifeCYCIE ... 263
4. Cascades and UNSAVEd-VAlUEccoeuuiiiiiiiiiieiiie e 264
L ©o 1 o111 o ISP 265
23. Example: Weblog APPIICALIONcouuiii e 267
1. PErSiStENt ClaSSEScivviiiiiiiiiiiei et e et e e e e e e e e e e e eaneees 267

2. HIbernate MapPingsS .. .coceuuueiiiiiieieii ettt et e e e e 268

3. HIDEINALE COUE ... e 270

24. Example: Various MapPingscc.ueeeuu ettt e e e e ean s 275
1. EMPIOYEI/EMPIOYEEiiiiiiiie et e 275

p U 11 Lo 7 AT, (o] ¢ G PR 277

3. CUuStOMEr/Order/ProdUCTcieiiiiei e 279

4. Miscellaneous example MapPiNgSoooeuurieiiiiie e 281

4.1, "Typed" one-t0-0Nne asSOCIALIONuvviiieiiiieiiii e e e e e 281

4.2. Composite Key example ..o 281

4.3. Many-to-many with shared composite key attributeccccoceeenes 283

4.4. Content based diSCrmINAtioNc.ooiiuiiiiiiiiiii e 284

4.5. Associations on alternate Keyscoviiiiiiiiiiiiiiieci e 285

P =TS o - T 1ot PP 287
100 [PP 291

Xi

Xii

Chapter 1.

Feedback

If you spot a typo in this guide, or if you have thought of a way to make this manual better, we
would love to hear from you! Submit a report in JIRA? against the Product: JBoss Enterprise
Application Platform, Version: <ver si on>, Component: Doc. If you have a suggestion for
improving the documentation, try to be as specific as possible. If you have found an error,
include the section number and some of the surrounding text so we can find it easily.

1 http://jira.jposs.com/jira/browse/JBPAPP

http://jira.jboss.com/jira/browse/JBPAPP
http://jira.jboss.com/jira/browse/JBPAPP

Preface

Working with object-oriented software and a relational database can be cumbersome and time
consuming in today's enterprise environments. Hibernate is an object/relational mapping tool for
Java environments. The term object/relational mapping (ORM) refers to the technique of
mapping a data representation from an object model to a relational data model with a
SQL-based schema.

Hibernate not only takes care of the mapping from Java classes to database tables (and from
Java data types to SQL data types), but also provides data query and retrieval facilities and can
significantly reduce development time otherwise spent with manual data handling in SQL and
JDBC.

Hibernates goal is to relieve the developer from 95 percent of common data persistence related
programming tasks. Hibernate may not be the best solution for data-centric applications that
only use stored-procedures to implement the business logic in the database, it is most useful
with object-oriented domain models and business logic in the Java-based middle-tier. However,
Hibernate can certainly help you to remove or encapsulate vendor-specific SQL code and will
help with the common task of result set translation from a tabular representation to a graph of
objects.

If you are new to Hibernate and Object/Relational Mapping or even Java, please follow these
steps:

1. Read Chapter 2, Introduction to Hibernate for a tutorial with step-by-step instructions. The
source code for the tutorial is included in the distribution in the doc/ r ef erence/ t utori al /
directory.

2. Read Chapter 3, Architecture to understand the environments where Hibernate can be used.

3. Have a look at the eg/ directory in the Hibernate distribution, it contains a simple standalone
application. Copy your JDBC driver to the | i b/ directory and edit
et ¢/ hi ber nat e. properti es, specifying correct values for your database. From a command
prompt in the distribution directory, type ant eg (using Ant), or under Windows, type bui | d

eg.

4. Use this reference documentation as your primary source of information. Consider reading
Hibernate in Action (http://www.manning.com/bauer) if you need more help with application
design or if you prefer a step-by-step tutorial. Also visit http://caveatemptor.hibernate.org and
download the example application for Hibernate in Action.

5. FAQs are answered on the Hibernate website.
6. Third party demos, examples, and tutorials are linked on the Hibernate website.
7. The Community Area on the Hibernate website is a good resource for design patterns and

various integration solutions (Tomcat, JBoss AS, Struts, EJB, etc.).

If you have questions, use the user forum linked on the Hibernate website. We also provide a

Preface

JIRA issue trackings system for bug reports and feature requests. If you are interested in the
development of Hibernate, join the developer mailing list. If you are interested in translating this
documentation into your language, contact us on the developer mailing list.

Commercial development support, production support, and training for Hibernate is available
through JBoss Inc. (see http://www.hibernate.org/SupportTraining/). Hibernate is a Professional
Open Source project and a critical component of the JBoss Enterprise Middleware System
(JEMS) suite of products.

Chapter 2.

Introduction to Hibernate

1. Preface

This chapter is an introductory tutorial for new users of Hibernate. We start with a simple
command line application using an in-memory database and develop it in easy to understand
steps.

This tutorial is intended for new users of Hibernate but requires Java and SQL knowledge. It is
based on a tutorial by Michael Gloegl, the third-party libraries we name are for JDK 1.4 and 5.0.
You might need others for JDK 1.3.

The source code for the tutorial is included in the distribution in the doc/ r ef erence/ tutori al /
directory.

2. Part 1 - The first Hibernate Application

First, we'll create a simple console-based Hibernate application. We use an Java database
(HSQL DB), so we do not have to install any database server.

Let's assume we need a small database application that can store events we want to attend,
and information about the hosts of these events.

The first thing we do, is set up our development directory and put all the Java libraries we need
into it. Download the Hibernate distribution from the Hibernate website. Extract the package and
place all required libraries found in /1i b into into the / 1'i b directory of your new development
working directory. It should look like this:

+lib

antlr.jar
cglib.jar
asmj ar

asmattrs.jars

comons- col | ections. jar
comons- | oggi ng. j ar

hi ber nat e3. j ar

jta.jar
domdj . j ar
| og4j .j ar

This is the minimum set of required libraries (note that we also copied hibernate3.jar, the main
archive) for Hibernate at the time of writing. The Hibernate release you are using might require
more or less libraries. See the README. t xt file inthe I'i b/ directory of the Hibernate distribution
for more information about required and optional third-party libraries. (Actually, Log4j is not
required but preferred by many developers.)

Next we create a class that represents the event we want to store in database.

Chapter 2. Introduction to Hibernate

2.1. The first class

Our first persistent class is a simple JavaBean class with some properties:

package events;
i mport java.util.Date;

public class Event {
private Long id;

private String title;
private Date date;

public Event() {}

public Long getld() {
return id;

}

private void setld(Long id) {
this.id = id;
}

public Date getDate() ({
return date;

}

public void setDate(Date date) {
this.date = date;

}

public String getTitle() {
return titl e;

}

public void setTitle(String title) {
this.title = title;
}

You can see that this class uses standard JavaBean naming conventions for property getter
and setter methods, as well as private visibility for the fields. This is a recommended design -
but not required. Hibernate can also access fields directly, the benefit of accessor methods is
robustness for refactoring. The no-argument constructor is required to instantiate an object of
this class through reflection.

The i d property holds a unique identifier value for a particular event. All persistent entity classes
(there are less important dependent classes as well) will need such an identifier property if we
want to use the full feature set of Hibernate. In fact, most applications (esp. web applications)
need to distinguish objects by identifier, so you should consider this a feature rather than a
limitation. However, we usually don't manipulate the identity of an object, hence the setter
method should be private. Only Hibernate will assign identifiers when an object is saved. You

The mapping file

can see that Hibernate can access public, private, and protected accessor methods, as well as
(public, private, protected) fields directly. The choice is up to you and you can match it to fit your
application design.

The no-argument constructor is a requirement for all persistent classes; Hibernate has to create
objects for you, using Java Reflection. The constructor can be private, however, package
visibility is required for runtime proxy generation and efficient data retrieval without bytecode
instrumentation.

Place this Java source file in a directory called sr c in the development folder, and in its correct
package. The directory should now look like this:

+ib
<Hi bernate and third-party |ibraries>
+src
+event s
Event . | ava

In the next step, we tell Hibernate about this persistent class.

2.2. The mapping file

Hibernate needs to know how to load and store objects of the persistent class. This is where the
Hibernate mapping file comes into play. The mapping file tells Hibernate what table in the
database it has to access, and what columns in that table it should use.

The basic structure of a mapping file looks like this:

<?xm version="1.0"7?>

<! DOCTYPE hi ber nat e- mappi ng PUBLI C
"-// H bernat e/ H bernate Mappi ng DTD 3. 0//EN'
"http://hibernate. sourceforge. net/ hi ber nat e- mappi ng- 3. 0. dt d" >

<hi ber nat e- mappi ng>

[...]

</ hi ber nat e- nappi ng>

Note that the Hibernate DTD is very sophisticated. You can use it for auto-completion of XML
mapping elements and attributes in your editor or IDE. You also should open up the DTD file in
your text editor - it's the easiest way to get an overview of all elements and attributes and to see
the defaults, as well as some comments. Note that Hibernate will not load the DTD file from the
web, but first look it up from the classpath of the application. The DTD file is included in

hi ber nat e3. j ar as well as in the src/ directory of the Hibernate distribution.

We will omit the DTD declaration in future examples to shorten the code. It is of course not
optional.

Between the two hi ber nat e- mappi ng tags, include a cl ass element. All persistent entity

Chapter 2. Introduction to Hibernate

classes (again, there might be dependent classes later on, which are not first-class entities)
need such a mapping, to a table in the SQL database:

<hi ber nat e- mappi ng>
<cl ass nane="events. Event" tabl e="EVENTS">
</ cl ass>

</ hi ber nat e- nappi ng>

So far we told Hibernate how to persist and load object of class Event to the table EVENTS, each
instance represented by a row in that table. Now we continue with a mapping of the unique
identifier property to the tables primary key. In addition, as we don't want to care about handling
this identifier, we configure Hibernate's identifier generation strategy for a surrogate primary key
column:

<hi ber nat e- mappi ng>

<cl ass nanme="events. Event" tabl e="EVENTS">
<id name="id" col um="EVENT_I D"'>
<generator class="native"/>
</id>
</ cl ass>

</ hi ber nat e- mappi ng>

The i d element is the declaration of the identifer property, nane="i d" declares the name of the
Java property - Hibernate will use the getter and setter methods to access the property. The
column attribute tells Hibernate which column of the EVENTS table we use for this primary key.
The nested gener at or element specifies the identifier generation strategy, in this case we used
nat i ve, which picks the best strategy depending on the configured database (dialect).
Hibernate supports database generated, globally unique, as well as application assigned
identifiers (or any strategy you have written an extension for).

Finally we include declarations for the persistent properties of the class in the mapping file. By
default, no properties of the class are considered persistent:

<hi ber nat e- mappi ng>

<cl ass nanme="events. Event" tabl e="EVENTS">
<id name="id" col um="EVENT_I D"'>
<generator class="native"/>
</id>
<property nane="date" type="tinestanp" col utm="EVENT_DATE"/>
<property nane="title"/>
</ cl ass>

</ hi ber nat e- nappi ng>

Hibernate configuration

Just as with the i d element, the nane attribute of the pr operty element tells Hibernate which
getter and setter methods to use. So, in this case, Hibernate will look for
getDate()/setDate(),aswellasgetTitle()/setTitle().

Why does the dat e property mapping include the col um attribute, but the ti t | e doesn't?
Without the col umn attribute Hibernate by default uses the property name as the column name.
This works fine for ti t| e. However, dat e is a reserved keyword in most database, so we better
map it to a different name.

The next interesting thing is that the ti t | e mapping also lacks a t ype attribute. The types we
declare and use in the mapping files are not, as you might expect, Java data types. They are
also not SQL database types. These types are so called Hibernate mapping types, converters
which can translate from Java to SQL data types and vice versa. Again, Hibernate will try to
determine the correct conversion and mapping type itself if the t ype attribute is not present in
the mapping. In some cases this automatic detection (using Reflection on the Java class) might
not have the default you expect or need. This is the case with the dat e property. Hibernate can't
know if the property (which is of j ava. uti | . Dat) should map to a SQL dat e, t i nest anp, or

ti me column. We preserve full date and time information by mapping the property with a

ti nest anp converter.

This mapping file should be saved as Event . hbm xm , right in the directory next to the Event
Java class source file. The naming of mapping files can be arbitrary, however the hbom xm suffix
is a convention in the Hibernate developer community. The directory structure should now look
like this:

+ib
<Hi bernate and third-party |ibraries>
+src
+event s
Event . | ava
Event . hbm xmi

We continue with the main configuration of Hibernate.

2.3. Hibernate configuration

We now have a persistent class and its mapping file in place. It is time to configure Hibernate.
Before we do this, we will need a database. HSQL DB, a java-based SQL DBMS, can be
downloaded from the HSQL DB website. Actually, you only need the hsql db. j ar from this
download. Place this file in the I'i b/ directory of the development folder.

Create a directory called dat a in the root of the development directory - this is where HSQL DB
will store its data files. Now start the database by running j ava -cl asspath
../lib/hsqgldb.jar org.hsqgldb. Server in this data directory. You can see it start up and
bind to a TCP/IP socket, this is where our application will connect later. If you want to start with
a fresh database during this tutorial, shutdown HSQL DB (press CTRL + Cin the window),
delete all files in the dat a/ directory, and start HSQL DB again.

Chapter 2. Introduction to Hibernate

Hibernate is the layer in your application which connects to this database, so it needs

connection information. The connections are made through a JDBC connection pool, which we

also have to configure. The Hibernate distribution contains several open source JDBC

connection pooling tools, but will use the Hibernate built-in connection pool for this tutorial. Note

that you have to copy the required library into your classpath and use different connection
pooling settings if you want to use a production-quality third party JDBC pooling software.

For Hibernate's configuration, we can use a simple hi ber nat e. properti es file, a slightly more

sophisticated hi ber nat e. cf g. xnl file, or even complete programmatic setup. Most users
prefer the XML configuration file:

<?xm version='"1.0" encodi ng="utf-8" ?>
<! DOCTYPE hi ber nat e- confi gurati on PUBLIC
"-// Hi bernate/ H bernate Configuration DTD 3.0//EN'

"http://hibernate. sourceforge. net/ hi bernate-configuration-3.0.dtd">

<hi ber nat e- confi gur ati on>

<sessi on-fact ory>

<! -- Database connection settings -->

<property
nane="connection. driver_cl ass">org. hsql db. j dbcDri ver </ property>

<property

name="connection. url ">j dbc: hsql db: hsql : / /| ocal host </ property>
<property nane="connecti on. user nane">sa</ property>
<property nane="connecti on. password"></property>

<I-- JDBC connection pool (use the built-in) -->
<property nane="connecti on. pool _size">1</property>

<I-- SQ dialect -->
<property
nanme="di al ect ">or g. hi ber nat e. di al ect. HSQLDi al ect </ pr operty>

<l-- Enable Hi bernate's automatic session context nmanagenent -->
<property nane="current_sessi on_context cl ass" >t hread</ property>

<l -- Disable the second-|evel cache -->
<property

nanme="cache. provi der _cl ass" >or g. hi ber nat e. cache. NoCachePr ovi der </ pr operty>

<l-- Echo all executed SQ. to stdout -->
<property nane="show_sql ">true</ property>

<l-- Drop and re-create the database schema on startup -->
<property nane="hbnRddl . aut 0" >cr eat e</ pr operty>

<mappi ng resource="events/Event. hbm xm "/>
</ sessi on-factory>

</ hi ber nat e- confi gurati on>

10

Building with Ant

Note that this XML configuration uses a different DTD. We configure Hibernate's

Sessi onFact ory - a global factory responsible for a particular database. If you have several
databases, use several <sessi on- f act or y> configurations, usually in several configuration
files (for easier startup).

The first four pr oper t y elements contain the necessary configuration for the JDBC connection.
The dialect property element specifies the particular SQL variant Hibernate generates.
Hibernate's automatic session management for persistence contexts will come in handy as you
will soon see. The hbn2ddl . aut o option turns on automatic generation of database schemas -
directly into the database. This can of course also be turned off (by removing the config option)
or redirected to a file with the help of the SchemaExport Ant task. Finally, we add the mapping
file(s) for persistent classes to the configuration.

Copy this file into the source directory, so it will end up in the root of the classpath. Hibernate
automatically looks for a file called hi ber nat e. cf g. xm in the root of the classpath, on startup.

2.4. Building with Ant

We'll now build the tutorial with Ant. You will need to have Ant installed - get it from the Ant
download pagel. How to install Ant will not be covered here. Please refer to the Ant manual®.
After you have installed Ant, we can start to create the buildfile. It will be called bui | d. xm and
placed directly in the development directory.

A basic build file looks like this:

<proj ect nane="hi bernate-tutorial" default="conpile">

<property nane="sourcedir" val ue="${basedir}/src"/>
<property name="targetdir" val ue="${basedir}/bin"/>
<property name="librarydir" val ue="${basedir}/lib"/>

<path id="libraries">
<fileset dir="${librarydir}">
<i nclude nane="*.jar"/>
</fileset>
</ pat h>

<target name="cl ean">
<delete dir="${targetdir}"/>
<nmkdir dir="${targetdir}"/>
</target>

<t arget name="conpil e" depends="cl ean, copy-resources">
<javac srcdir="${sourcedir}"
destdir="${targetdir}"
cl asspathref="1ibraries"/>
</target>

<t arget nane="copy-resources">

1 http://ant.apache.org/bindownload.cgi
2 http://ant.apache.org/manual/index.html

11

http://ant.apache.org/bindownload.cgi
http://ant.apache.org/bindownload.cgi
http://ant.apache.org/manual/index.html
http://ant.apache.org/bindownload.cgi
http://ant.apache.org/manual/index.html

Chapter 2. Introduction to Hibernate

Th

<copy todir="${targetdir}">
<fileset dir="${sourcedir}">
<excl ude name="**/*_java"/>
</fil eset>
</ copy>
</target>

</ pr oj ect >

is will tell Ant to add all files in the lib directory ending with . j ar to the classpath used for

compilation. It will also copy all non-Java source files to the target directory, e.g. configuration
and Hibernate mapping files. If you now run Ant, you should get this output:

2.

C:\ hi bernat eTut ori al \ >ant
Bui l dfile: build.xm

copy- r esour ces:
[copy] Copying 2 files to C \hibernateTutorial\bin

conpi | e:
[javac] Conpiling 1 source file to C\hibernateTutorial\bin

BUI LD SUCCESSFUL
Total tine: 1 second

5. Startup and helpers

It's time to load and store some Event objects, but first we have to complete the setup with
some infrastructure code. We have to startup Hibernate. This startup includes building a global
Sessi onFact or y object and to store it somewhere for easy access in application code. A
Sessi onFact ory can open up new Sessi on's. A Sessi on represents a single-threaded unit of
work, the Sessi onFact ory is a thread-safe global object, instantiated once.

We'll create a Hi ber nat et i | helper class which takes care of startup and makes accessing a
Sessi onFact ory convenient. Let's have a look at the implementation:

package util;

i nport org. hi bernate. *;
i mport org. hi bernate.cfg.*;

public class HibernateUtil {
private static final SessionFactory sessi onFactory;

static {
try {
/]l Create the SessionFactory from hi bernate. cfg.xm
sessi onFactory = new
Configuration().configure().buil dSessionFactory();
} catch (Throwabl e ex) {

12

Loading and storing objects

/1 Make sure you |l og the exception, as it might be swall owed
Systemerr.printin("Initial SessionFactory creation failed." +

ex);
t hrow new ExceptionlnlnitializerError(ex);
}
}
public static SessionFactory get Sessi onFactory() ({
return sessionFactory;
}
}

This class does not only produce the global Sessi onFact ory in its static initializer (called once
by the JVM when the class is loaded), but also hides the fact that it uses a static singleton. It
might as well lookup the Sessi onFact ory from JNDI in an application server.

If you give the Sessi onFact ory a name in your configuration file, Hibernate will in fact try to
bind it to JNDI after it has been built. To avoid this code completely you could also use JMX
deployment and let the JMX-capable container instantiate and bind a Hi ber nat eSer vi ce to
JNDI. These advanced options are discussed in the Hibernate reference documentation.

Place Hi bernatelti | . j ava in the development source directory, in a package next to event s:
+ib
<Hi bernate and third-party |ibraries>
+src
+event s

Event . | ava
Event . hbm xm
+uti |
Hi bernateltil.java
hi ber nat e. cf g. xm
+dat a
bui | d. xm

This should again compile without problems. We finally need to configure a logging system -
Hibernate uses commons logging and leaves you the choice between Log4j and JDK 1.4
logging. Most developers prefer Log4j: copy | og4j . properti es from the Hibernate distribution
(it's in the et ¢/ directory) to your sr ¢ directory, next to hi ber nat e. cf g. xml . Have a look at the
example configuration and change the settings if you like to have more verbose output. By
default, only Hibernate startup message are shown on stdout.

The tutorial infrastructure is complete - and we are ready to do some real work with Hibernate.
2.6. Loading and storing objects

Finally, we can use Hibernate to load and store objects. We write an Event Manager class with a
mai n() method:

13

Chapter 2. Introduction to Hibernate

package events;
i mport org. hi bernate. Sessi on;

i mport java.util.Date;
i mport util.H bernateUtil;
public class Event Manager {

public static void main(String[] args) {
Event Manager ngr = new Event Manager () ;

if (args[0].equal s("store")) {
ngr . cr eat eAndSt or eEvent ("My Event", new Date());
}

Hi bernat eUti | . get Sessi onFactory(). cl ose();

}
private void createAndStoreEvent(String title, Date theDate) {

Sessi on session =
Hi bernat eUti | . get Sessi onFact ory(). get Current Sessi on() ;

sessi on. begi nTransacti on();

Event theEvent = new Event();
theEvent.setTitle(title);
t heEvent . set Dat e(t heDat e) ;

sessi on. save(t heEvent);

sessi on. get Transaction().comm t();

We create a new Event object, and hand it over to Hibernate. Hibernate now takes care of the
SQL and executes | NSERT s on the database. Let's have a look at the Sessi on and
Transact i on-handling code before we run this.

A Sessi on is a single unit of work. For now we'll keep things simple and assume a one-to-one
granularity between a Hibernate Sessi on and a database transaction. To shield our code from
the actual underlying transaction system (in this case plain JDBC, but it could also run with JTA)
we use the Transact i on API that is available on the Hibernate Sessi on.

What does sessi onFact ory. get Current Sessi on() do? First, you can call it as many times
and anywhere you like, once you get hold of your Sessi onFact ory (easy thanks to

Hi bernatelti |). The get Current Sessi on() method always returns the "current” unit of work.
Remember that we switched the configuration option for this mechanism to "thread" in

hi ber nat e. cf g. xml ? Hence, the current unit of work is bound to the current Java thread that
executes our application. However, this is not the full picture, you also have to consider scope,

14

Loading and storing objects

when a unit of work begins and when it ends.

A Sessi on begins when it is first needed, when the first call to get Cur r ent Sessi on() is made.
It is then bound by Hibernate to the current thread. When the transaction ends, either through
commit or rollback, Hibernate automatically unbinds the Sessi on from the thread and closes it
for you. If you call get Cur r ent Sessi on() again, you get a new Sessi on and can start a new
unit of work. This thread-bound programming model is the most popular way of using Hibernate,
as it allows flexible layering of your code (transaction demarcation code can be separated from
data access code, we'll do this later in this tutorial).

Related to the unit of work scope, should the Hibernate Sessi on be used to execute one or
several database operations? The above example uses one Sessi on for one operation. This is
pure coincidence, the example is just not complex enough to show any other approach. The
scope of a Hibernate Sessi on is flexible but you should never design your application to use a
new Hibernate Sessi on for every database operation. So even if you see it a few more times in
the following (very trivial) examples, consider session-per-operation an anti-pattern. A real (web)
application is shown later in this tutorial.

Have a look at Chapter 12, Transactions And Concurrency for more information about
transaction handling and demarcation. We also skipped any error handling and rollback in the
previous example.

To run this first routine we have to add a callable target to the Ant build file:

<target name="run" depends="conpile">
<java fork="true" cl assnane="events. Event Manager"
cl asspathref="1ibraries">
<cl asspath path="${targetdir}"/>
<arg val ue="${action}"/>
</java>
</target>

The value of the acti on argument is set on the command line when calling the target:

C:\ hi bernateTutorial \>ant run -Dacti on=store

You should see, after compilation, Hibernate starting up and, depending on your configuration,
lots of log output. At the end you will find the following line:

[java] Hi bernate: insert into EVENTS (EVENT_DATE, title, EVENT_ID) val ues
(?, 2, ?)

This is the | NSERT executed by Hibernate, the question marks represent JDBC bind
parameters. To see the values bound as arguments, or to reduce the verbosity of the log, check
your | og4j . properti es.

Now we'd like to list stored events as well, so we add an option to the main method:

15

Chapter 2. Introduction to Hibernate

if (args[O0].equal s("store")) {

ngr . cr eat eAndSt or eEvent ("My Event", new Date());
}
else if (args[0].equals("list")) {

Li st events = ngr.|istEvents();

for (int i =0; i < events.size(); i++) {
Event theEvent = (Event) events.get(i);
Systemout.println("Event: " + theEvent.getTitle() +

" Time: " + theEvent.getDate());

We also add a new | i st Event s() net hod:

private List listEvents() {
Sessi on session = H bernateUtil . get Sessi onFactory().get Current Session();
sessi on. begi nTransacti on();
Li st result = session.createQuery("fromEvent").list();
sessi on. get Transaction().commt();

return result;

What we do here is use an HQL (Hibernate Query Language) query to load all existing Event
objects from the database. Hibernate will generate the appropriate SQL, send it to the database
and populate Event objects with the data. You can create more complex queries with HQL, of
course.

Now, to execute and test all of this, follow these steps:

* Runant run -Daction=st ore to store something into the database and, of course, to
generate the database schema before through hbm2ddl.

* Now disable hbm2ddl by commenting out the property in your hi ber nat e. cf g. xm file.
Usually you only leave it turned on in continous unit testing, but another run of hbm2ddl would
drop everything you have stored - the cr eat e configuration setting actually translates into
"drop all tables from the schema, then re-create all tables, when the SessionFactory is build".

If you now call Ant with - Dact i on=Ii st, you should see the events you have stored so far. You
can of course also call the st or e action a few times more.

Note: Most new Hibernate users fail at this point and we see questions about Table not found
error messages regularly. However, if you follow the steps outlined above you will not have this
problem, as hbm2ddl creates the database schema on the first run, and subsequent application

16

Part 2 - Mapping associations

restarts will use this schema. If you change the mapping and/or database schema, you have to
re-enable hbm2ddl once again.

3. Part 2 - Mapping associations

We mapped a persistent entity class to a table. Let's build on this and add some class
associations. First we'll add people to our application, and store a list of events they participate
in.

3.1. Mapping the Person class
The first cut of the Per son class is simple:

package events;
public class Person {

private Long id;
private int age;
private String firstnane;
private String |astnane;

public Person() {}

/'l Accessor methods for all properties, private setter for 'id'

Create a new mapping file called Per son. hbm xm (don't forget the DTD reference at the top):

<hi ber nat e- mappi ng>

<cl ass nane="events. Person" tabl e=" PERSON">
<id name="id" col um="PERSON_| D' >
<generator class="native"/>
</id>
<property nane="age"/>
<property nane="firstnane"/>
<property nane="| ast nane"/ >
</ cl ass>

</ hi ber nat e- mappi ng>

Finally, add the new mapping to Hibernate's configuration:

<mappi ng resource="events/Event. hbm xm "/>
<mappi ng resour ce="event s/ Person. hbm xm "/ >

We'll now create an association between these two entities. Obviously, persons can participate
in events, and events have participants. The design questions we have to deal with are:

17

Chapter 2. Introduction to Hibernate

directionality, multiplicity, and collection behavior.

3.2. A unidirectional Set-based association

We'll add a collection of events to the Per son class. That way we can easily navigate to the
events for a particular person, without executing an explicit query - by calling

aPer son. get Event s() . We use a Java collection, a Set , because the collection will not contain
duplicate elements and the ordering is not relevant for us.

We need a unidirectional, many-valued associations, implemented with a Set . Let's write the
code for this in the Java classes and then map it:

public class Person {
private Set events = new HashSet ();

public Set getEvents() {
return events;

}

public void setEvents(Set events) {
this.events = events;

}

Before we map this association, think about the other side. Clearly, we could just keep this
unidirectional. Or, we could create another collection on the Event , if we want to be able to
navigate it bi-directional, i.e. anEvent . get Parti ci pant s() . This is not necessary, from a
functional perspective. You could always execute an explicit query to retrieve the participants for
a particular event. This is a design choice left to you, but what is clear from this discussion is the
multiplicity of the association: "many" valued on both sides, we call this a many-to-many
association. Hence, we use Hibernate's many-to-many mapping:

<cl ass name="events. Person" tabl e=" PERSON' >
<id nanme="id" col um="PERSON | D'>
<generator class="native"/>
</id>
<property nane="age"/>
<property nane="firstnane"/>
<property nane="I| ast nane"/ >

<set nane="events" tabl e="PERSON_EVENT" >

<key col utm="PERSON | D'/ >

<many-t o- many col uim="EVENT_| D' cl ass="events. Event"/>
</set>

</ cl ass>

Hibernate supports all kinds of collection mappings, a <set > being most common. For a
many-to-many association (or n:m entity relationship), an association table is needed. Each row

18

Working the association

in this table represents a link between a person and an event. The table name is configured with
the t abl e attribute of the set element. The identifier column name in the association, for the
person's side, is defined with the <key> element, the column name for the event's side with the
col umm attribute of the <many-t o- many>. You also have to tell Hibernate the class of the objects
in your collection (correct: the class on the other side of the collection of references).

The database schema for this mapping is therefore:

I I

| EVENTS | | PERSON_EVENT | | |
e I I I | PERSON |
I I I I l— I
*EVENT_ID	<-->	*EVENT_ID		
EVENT_DATE		*PERSON_I D	<-->	*PERSONID
TITLE				AGE
l | | FIRSTNAME |

| LASTNAME |

3.3. Working the association

Let's bring some people and events together in a new method in Event Manager :

private void addPer sonToEvent (Long personld, Long eventld) {

Sessi on session = HibernateUtil.get Sessi onFactory(). getCurrent Session();
sessi on. begi nTransacti on();

Person aPerson = (Person) session.| oad(Person.class, personld);
Event anEvent = (Event) session.| oad(Event.class, eventld);

aPer son. get Event s() . add(anEvent) ;

sessi on. get Transaction().conm t();

After loading a Per son and an Event , simply modify the collection using the normal collection
methods. As you can see, there is no explicit call to updat e() or save(), Hibernate
automatically detects that the collection has been modified and needs to be updated. This is
called automatic dirty checking, and you can also try it by modifying the name or the date
property of any of your objects. As long as they are in persistent state, that is, bound to a
particular Hibernate Sessi on (i.e. they have been just loaded or saved in a unit of work),
Hibernate monitors any changes and executes SQL in a write-behind fashion. The process of
synchronizing the memory state with the database, usually only at the end of a unit of work, is
called flushing. In our code, the unit of work ends with a commit (or rollback) of the database
transaction - as defined by the t hr ead configuration option for the Cur r ent Sessi onCont ext
class.

19

Chapter 2. Introduction to Hibernate

You might of course load person and event in different units of work. Or you modify an object
outside of a Sessi on, when it is not in persistent state (if it was persistent before, we call this
state detached). You can even modify a collection when it is detached:

private void addPer sonToEvent (Long personld, Long eventld) {

Sessi on session = H bernateUtil . get Sessi onFactory().get Current Session();
sessi on. begi nTransacti on();

Person aPerson = (Person) session
.createQuery("select p fromPerson p left join fetch p.events
where p.id = :pid")
. set Paraneter ("pi d', personld)
.uni queResult(); // Eager fetch the collection so we can use it
det ached

Event anEvent = (Event) session.|oad(Event.class, eventld);
sessi on. get Transaction().conm t();
/] End of first unit of work

aPer son. get Event s() . add(anEvent); // aPerson (and its collection) is
det ached

/1 Begin second unit of work

Sessi on session2 =
Hi ber nat eUti | . get Sessi onFact ory(). get Current Sessi on() ;
sessi on2. begi nTransacti on() ;

sessi on2. updat e(aPerson); // Reattachment of aPerson

sessi on2. get Transaction().comit();

The call to updat e makes a detached object persistent again, you could say it binds it to a new
unit of work, so any modifications you made to it while detached can be saved to the database.
This includes any modifications (additions/deletions) you made to a collection of that entity
object.

Well, this is not much use in our current situation, but it's an important concept you can design
into your own application. For now, complete this exercise by adding a new action to the

Event Manager 's main method and call it from the command line. If you need the identifiers of a
person and an event - the save() method returns it (you might have to modify some of the
previous methods to return that identifier):

else if (args[0].equal s("addpersontoevent")) {
Long eventld = ngr.createAndSt oreEvent ("My Event", new Date());
Long personld = ngr. creat eAndSt or ePer son(" Foo", "Bar");
ngr . addPer sonToEvent (per sonl d, eventld);
System out. println("Added person " + personld + " to event " + eventld);

20

Collection of values

This was an example of an association between two equally important classes, two entities. As
mentioned earlier, there are other classes and types in a typical model, usually "less important".
Some you have already seen, like ani nt or a String. We call these classes value types, and
their instances depend on a particular entity. Instances of these types don't have their own
identity, nor are they shared between entities (two persons don't reference the same fi r st nane
object, even if they have the same first name). Of course, value types can not only be found in
the JDK (in fact, in a Hibernate application all JDK classes are considered value types), but you
can also write dependent classes yourself, Addr ess or Monet ar yAnount , for example.

You can also design a collection of value types. This is conceptually very different from a
collection of references to other entities, but looks almost the same in Java.

3.4. Collection of values

We add a collection of value typed objects to the Per son entity. We want to store email
addresses, so the type we use is St ri ng, and the collection is again a Set :

private Set enmil Addresses = new HashSet ();

public Set getEmail Addresses() {
return email Addresses;

}

public void set Emai | Addr esses(Set enmi | Addr esses) {
this. emai | Addresses = enmi | Addr esses;

}

The mapping of this Set :

<set nane="enmi | Addr esses" tabl e="PERSON EMAI L_ADDR' >
<key col um="PERSON | D'/ >
<el ement type="string" colum="EMAl L_ADDR'/ >

</ set>

The difference compared with the earlier mapping is the el enent part, which tells Hibernate that
the collection does not contain references to another entity, but a collection of elements of type
St ri ng (the lowercase name tells you it's a Hibernate mapping type/converter). Once again, the
t abl e attribute of the set element determines the table name for the collection. The key
element defines the foreign-key column name in the collection table. The col unm attribute in the
el enent element defines the column name where the St ri ng values will actually be stored.

Have a look at the updated schema:

21

Chapter 2. Introduction to Hibernate

| EVENTS | | PERSON_EVENT | | |

S I I I I PERSON | I
I

I I I I l I I
PERSON_EMAI L_ADDR |

| *EVENT_ID | <--> | *EVENT_ID | | |
I I

| EVENT_DATE | | *PERSON_ID | <-->| *PERSON.ID | <--> |
* PERSON_I D |

| TITLE I I I | AGE I I
* EMAI L_ADDR |

- I | FIRSTNAME |
I I

| LASTNAME |

You can see that the primary key of the collection table is in fact a composite key, using both
columns. This also implies that there can't be duplicate email addresses per person, which is
exactly the semantics we need for a set in Java.

You can now try and add elements to this collection, just like we did before by linking persons
and events. It's the same code in Java:

private void addEnai | ToPer son(Long personld, String enail Address) {

Sessi on session = HibernateUtil.get Sessi onFactory(). get Current Sessi on();
sessi on. begi nTransacti on() ;

Person aPerson = (Person) session. | oad(Person.class, personld);

/1 The get Emai | Addresses() might trigger a |l azy | oad of the collection
aPer son. get Enai | Addr esses() . add(enai | Addr ess) ;

sessi on. get Transaction().commt();

This time we didnt' use a fetch query to initialize the collection. Hence, the call to its getter
method will trigger an additional select to initialize it, so we can add an element to it. Monitor the
SQL log and try to optimize this with an eager fetch.

3.5. Bi-directional associations

Next we are going to map a bi-directional association - making the association between person
and event work from both sides in Java. Of course, the database schema doesn't change, we
still have many-to-many multiplicity. A relational database is more flexible than a network
programming language, so it doesn't need anything like a navigation direction - data can be
viewed and retrieved in any possible way.

22

Working bi-directional links

First, add a collection of participants to the Event Event class:

private Set participants = new HashSet ();

public Set getParticipants() {
return participants;

}

public void setParticipants(Set participants) {
this.participants = partici pants;

}

Now map this side of the association too, in Event . hbm xni .

<set nanme="partici pants" tabl e="PERSON_EVENT" inverse="true">
<key col um="EVENT_|I D'/ >
<many-t o- many col utmm="PERSON | D' cl ass="events. Person"/>
</ set >

As you see, these are normal set mappings in both mapping documents. Notice that the
column names in key and many-t o- rany are swapped in both mapping documents. The most
important addition here is the i nver se="true" attribute in the set element of the Event's
collection mapping.

What this means is that Hibernate should take the other side - the Per son class - when it needs
to find out information about the link between the two. This will be a lot easier to understand
once you see how the bi-directional link between our two entities is created .

3.6. Working bi-directional links

First, keep in mind that Hibernate does not affect normal Java semantics. How did we create a
link between a Per son and an Event in the unidirectional example? We added an instance of
Event to the collection of event references, of an instance of Per son. So, obviously, if we want
to make this link working bi-directional, we have to do the same on the other side - adding a

Per son reference to the collection in an Event . This "setting the link on both sides" is absolutely
necessary and you should never forget doing it.

Many developers program defensive and create a link management methods to correctly set
both sides, e.g. in Per son:

protected Set getEvents() {
return events;

}

protected void set Events(Set events) {
this.events = events;

}

public voi d addToEvent (Event event) {
thi s. get Event s(). add(event);

23

Chapter 2. Introduction to Hibernate

event . get Parti ci pants().add(this);
}

public void renoveFronEvent (Event event) {
thi s. get Events().renove(event);
event . get Partici pants().renmove(this);

Notice that the get and set methods for the collection are now protected - this allows classes in
the same package and subclasses to still access the methods, but prevents everybody else
from messing with the collections directly (well, almost). You should probably do the same with
the collection on the other side.

What about the i nver se mapping attribute? For you, and for Java, a bi-directional link is simply
a matter of setting the references on both sides correctly. Hibernate however doesn't have
enough information to correctly arrange SQL | NSERT and UPDATE statements (to avoid
constraint violations), and needs some help to handle bi-directional associations properly.
Making one side of the association i nver se tells Hibernate to basically ignore it, to consider it a
mirror of the other side. That's all that is necessary for Hibernate to work out all of the issues
when transformation a directional navigation model to a SQL database schema. The rules you
have to remember are straightforward: All bi-directional associations need one side as i nver se.
In a one-to-many association it has to be the many-side, in many-to-many association you can
pick either side, there is no difference.

Let's turn this into a small web application.

4. Part 3 - The EventManager web application

A Hibernate web application uses Sessi on and Tr ansact i on almost like a standalone
application. However, some common patterns are useful. We now write an

Event Manager Ser vl et . This servlet can list all events stored in the database, and it provides an
HTML form to enter new events.

4.1. Writing the basic servlet
Create a new class in your source directory, in the event s package:

package events;
/'l Inports
public class Event Manager Servl et extends HttpServlet {

/'l Servl et code

The servlet handles HTTP GET requests only, hence, the method we implement is doGet () :

24

Processing and rendering

protected void doGet (HttpServl et Request request,
Ht t pSer vl et Response response)
throws Servl et Exception, |OException {

Si npl eDat eFor mat dat eFormatter = new Si npl eDat eFor mat (" dd. MM yyyy") ;

try {
// Begin unit of work
Hi ber nat eUti | . get Sessi onFact ory()
. get Current Sessi on() . begi nTransacti on();

/'l Process request and render page...

[/ End unit of work
Hi bernateUtil . get Sessi onFactory()
. get Current Sessi on().get Transaction().conmt();

} catch (Exception ex) {
Hi bernateUtil . get Sessi onFactory()
. get Current Sessi on().get Transacti on().roll back();
t hrow new Servl et Excepti on(ex);

The pattern we are applying here is called session-per-request. When a request hits the servlet,
a new Hibernate Sessi on is opened through the first call to get Curr ent Sessi on() on the
Sessi onFact ory. Then a database transaction is started - all data access as to occur inside a
transaction, no matter if data is read or written (we don't use the auto-commit mode in
applications).

Do not use a new Hibernate Sessi on for every database operation. Use one Hibernate Sessi on
that is scoped to the whole request. Use get Cur r ent Sessi on(), so that it is automatically
bound to the current Java thread.

Next, the possible actions of the request are processed and the response HTML is rendered.
We'll get to that part soon.

Finally, the unit of work ends when processing and rendering is complete. If any problem
occured during processing or rendering, an exception will be thrown and the database
transaction rolled back. This completes the sessi on- per - r equest pattern. Instead of the
transaction demarcation code in every servlet you could also write a servlet filter. See the
Hibernate website and Wiki for more information about this pattern, called Open Session in
View - you'll need it as soon as you consider rendering your view in JSP, not in a servlet.

4.2. Processing and rendering
Let's implement the processing of the request and rendering of the page.

/1l Wite HTM. header
PrintWiter out = response.getWiter();

25

Chapter 2. Introduction to Hibernate

out.println("<htm ><head><title>Event Manager</titl e></head><body>");

// Handl e actions
if ("store".equal s(request.getParaneter("action"))) {

String eventTitle = request.getParameter("eventTitle");
String eventDate = request. getParaneter("eventDate");

if ("".equals(eventTitle) || "".equal s(eventDate)) {
out. println("<i>Pl ease enter event title and date.</i>");
} else {
creat eAndSt or eEvent (event Titl e, dateFormatter. parse(eventDate));
out. println("<i >Added event. </i>");

}

[/ Print page
pri nt Event For m(out) ;
| i st Events(out, dateFormatter);

/'l Wite HTM. footer

out. println("</body></htm >");
out. flush();

out . cl ose();

Granted, this coding style with a mix of Java and HTML would not scale in a more complex
application - keep in mind that we are only illustrating basic Hibernate concepts in this tutorial.
The code prints an HTML header and a footer. Inside this page, an HTML form for event entry
and a list of all events in the database are printed. The first method is trivial and only outputs
HTML:

private void printEventForm(PrintWiter out) {
out.println("<h2>Add new event: </ h2>");
out.println("<form");
out.println("Title: <input name='eventTitle' |ength=" 50"/>
");
out.println("Date (e.g. 24.12.2009): <input nanme='event Date’

| engt h="10"'/ >
");
out.println("<input type='submt' nane='action' value='store'/>");
out.println("</fornp");

The | i st Event s() method uses the Hibernate Sessi on bound to the current thread to execute
a query:

private void |istEvents(PrintWiter out, SinpleDateFormat dateFormatter) {

List result = Hi bernateltil.getSessionFactory()
.getCurrent Session().createCriteria(Event.class).list();
if (result.size() > 0) {
out.println("<h2>Events in database: </ h2>");
out.println("<table border="1">");
out.println("<tr>");

26

Deploying and testing

out.println("<th>Event title</th>");
out.println("<th>Event date</th>");
out.println("</tr>");
for (lterator it = result.iterator(); it.hasNext();) {
Event event = (Event) it.next();
out.println("<tr>");
out.println("<td>" + event.getTitle() + "</td>");
out.println("<td>" + dateFormatter.format(event.getDate()) +
"</td>");
out.println("</tr>");

out.println("</table>");

Finally, the st or e action is dispatched to the cr eat eAndSt or eEvent () method, which also uses
the Sessi on of the current thread:

protected void createAndStoreEvent (String title, Date theDate) {
Event theEvent = new Event ();
theEvent.setTitle(title);
t heEvent . set Dat e(t heDat e) ;

Hi ber nat eUti | . get Sessi onFact ory()
. get Current Sessi on() . save(t heEvent);

That's it, the servlet is complete. A request to the servlet will be processed in a single Sessi on
and Tr ansact i on. As earlier in the standalone application, Hibernate can automatically bind
these ojects to the current thread of execution. This gives you the freedom to layer your code
and access the Sessi onFact ory in any way you like. Usually you'd use a more sophisticated
design and move the data access code into data access objects (the DAO pattern). See the
Hibernate Wiki for more examples.

4.3. Deploying and testing

To deploy this application you have to create a web archive, a WAR. Add the following Ant
target to your bui | d. xm :

<target name="war" depends="conpile">
<war destfile="hibernate-tutorial.war" webxm ="web. xm ">
<lib dir="%{librarydir}">
<excl ude nane="jsdk*.jar"/>
</lib>

<cl asses dir="${targetdir}"/>
</ war >
</target>

27

Chapter 2. Introduction to Hibernate

This target creates a file called hi ber nat e-t ut ori al . war in your project directory. It packages
all libraries and the web. xml descriptor, which is expected in the base directory of your project:

<?xm version="1.0" encodi ng="UTF-8"?>
<web- app version="2.4"
xm ns="http://java.sun. com xm / ns/j 2ee"
xm ns: xsi ="http://ww. wW3. org/ 2001/ XM_Schema- i nst ance"
Xsi : schemalLocati on="http://java. sun. coni xm / ns/j 2ee
http://java. sun. conf xm / ns/j 2ee/ web- app_2_4. xsd" >

<servl et>

<servl et - name>Event Manager </ servl et - nane>

<servl et - cl ass>event s. Event Manager Ser vl et </ servl et - cl ass>
</servl et>

<ser vl et - mappi ng>
<servl et - nane>Event Manager </ servl et - nane>
<url - pat t er n>/ event manager </ ur| - patt er n>
</ servl et - mappi ng>
</ web- app>

Before you compile and deploy the web application, note that an additional library is required:
j sdk. j ar. This is the Java servlet development kit, if you don't have this library already, get it
from the Sun website and copy it to your library directory. However, it will be only used for
compliation and excluded from the WAR package.

To build and deploy call ant war in your project directory and copy the

hi bernate-tutori al . war file into your Tomcat webapp directory. If you don't have Tomcat
installed, download it and follow the installation instructions. You don't have to change any
Tomcat configuration to deploy this application though.

Once deployed and Tomcat is running, access the application at

http://1 ocal host: 8080/ hi ber nat e-tutori al / event manager . Make sure you watch the
Tomcat log to see Hibernate initialize when the first request hits your servlet (the static initializer
in Hi bernatelWti| is called) and to get the detailed output if any exceptions occurs.

5. Summary

This tutorial covered the basics of writing a simple standalone Hibernate application and a small
web application.

If you already feel confident with Hibernate, continue browsing through the reference
documentation table of contents for topics you find interesting - most asked are transactional
processing (Chapter 12, Transactions And Concurrency), fetch performance (Chapter 20,
Improving performance), or the usage of the API (Chapter 11, Working with objects) and the
query features (Section 4, “Querying”).

Don't forget to check the Hibernate website for more (specialized) tutorials.

28

Chapter 3.

Architecture

1. Overview

A (very) high-level view of the Hibernate architecture:

Application

Persistent Objects

Hibernate

hibernate. XML hhpplng

properties

Database

Figure 3.1. High Level view of the Hibernate Architecture

This diagram shows Hibernate using the database and configuration data to provide persistence
services (and persistent objects) to the application.

We would like to show a more detailed view of the runtime architecture. Unfortunately,
Hibernate is flexible and supports several approaches. We will show the two extremes. The
"lite" architecture has the application provide its own JDBC connections and manage its own
transactions. This approach uses a minimal subset of Hibernate's APIs:

29

Chapter 3. Architecture

Transient Objects Application
Persistent
. Objects
SessionFactory Session JDBC | | JNDI | JTA
Database

Figure 3.2. The Lite Architecture

The "full cream” architecture abstracts the application away from the underlying JDBC/JTA APIs
and lets Hibernate take care of the details.

30

Overview

Transient Objects Application

Persistent
Objects

SessionFactory

Session | Transactio

TransactionFactory| ConnectionProvider

JNDI JDBC JTA

Database

ssssssssss ESaessssss essssssssEesess————— S

Heres some definitions of the objects in the diagrams:

SessionFactory (or g. hi ber nat e. Sessi onFact ory)
A threadsafe (immutable) cache of compiled mappings for a single database. A factory for
Sessi on and a client of Connect i onPr ovi der . Might hold an optional (second-level) cache
of data that is reusable between transactions, at a process- or cluster-level.

Session (or g. hi ber nat e. Sessi on)
A single-threaded, short-lived object representing a conversation between the application
and the persistent store. Wraps a JDBC connection. Factory for Tr ansact i on. Holds a
mandatory (first-level) cache of persistent objects, used when navigating the object graph or
looking up objects by identifier.

Persistent objects and collections
Short-lived, single threaded objects containing persistent state and business function.
These might be ordinary JavaBeans/POJOs, the only special thing about them is that they
are currently associated with (exactly one) Sessi on. As soon as the Sessi on is closed, they
will be detached and free to use in any application layer (e.g. directly as data transfer
objects to and from presentation).

Transient and detached objects and collections
Instances of persistent classes that are not currently associated with a Sessi on. They may

31

Chapter 3. Architecture

have been instantiated by the application and not (yet) persisted or they may have been
instantiated by a closed Sessi on.

Transaction (or g. hi ber nat e. Transact i on)
(Optional) A single-threaded, short-lived object used by the application to specify atomic
units of work. Abstracts application from underlying JDBC, JTA or CORBA transaction. A
Sessi on might span several Tr ansact i on s in some cases. However, transaction
demarcation, either using the underlying API or Tr ansact i on, is never optional!

ConnectionProvider (or g. hi ber nat e. connect i on. Connect i onProvi der)
(Optional) A factory for (and pool of) JDBC connections. Abstracts application from
underlying Dat asour ce or Dri ver Manager . Not exposed to application, but can be
extended/implemented by the developer.

TransactionFactory (or g. hi ber nat e. Transact i onFact ory)
(Optional) A factory for Tr ansact i on instances. Not exposed to the application, but can be
extended/implemented by the developer.

Extension Interfaces
Hibernate offers many optional extension interfaces you can implement to customize the
behavior of your persistence layer. See the APl documentation for details.

Given a "lite" architecture, the application bypasses the Tr ansact i on/Tr ansact i onFactory
and/or Connect i onProvi der APIs to talk to JTA or JDBC directly.

2. Instance states

An instance of a persistent classes may be in one of three different states, which are defined
with respect to a persistence context. The Hibernate Sessi on object is the persistence context:

transient
The instance is not, and has never been associated with any persistence context. It has no
persistent identity (primary key value).

persistent
The instance is currently associated with a persistence context. It has a persistent identity
(primary key value) and, perhaps, a corresponding row in the database. For a particular
persistence context, Hibernate guarantees that persistent identity is equivalent to Java
identity (in-memory location of the object).

detached
The instance was once associated with a persistence context, but that context was closed,
or the instance was serialized to another process. It has a persistent identity and, perhaps,
a corrsponding row in the database. For detached instances, Hibernate makes no
guarantees about the relationship between persistent identity and Java identity.

3. JMX Integration

32

JCA Support

JMX is the J2EE standard for management of Java components. Hibernate may be managed
via a JMX standard service. We provide an MBean implementation in the distribution,
org. hi bernate.jnx. H bernat eServi ce.

For an example how to deploy Hibernate as a JMX service on the JBoss Application Server,
please see the JBoss User Guide. On JBoss AS, you also get these benefits if you deploy using
JMX:

» Session Management: The Hibernate Sessi on's lifecycle can be automatically bound to the
scope of a JTA transaction. This means you no longer have to manually open and close the
Sessi on, this becomes the job of a JBoss EJB interceptor. You also don't have to worry about
transaction demarcation in your code anymore (unless you'd like to write a portable
persistence layer of course, use the optional Hibernate Tr ansact i on API for this). You call
the Hi ber nat eCont ext to access a Sessi on.

* HAR deployment: Usually you deploy the Hibernate JMX service using a JBoss service
deployment descriptor (in an EAR and/or SAR file), it supports all the usual configuration
options of a Hibernate Sessi onFact ory. However, you still have to name all your mapping
files in the deployment descriptor. If you decide to use the optional HAR deployment, JBoss
will automatically detect all mapping files in your HAR file.

Consult the JBoss AS user guide for more information about these options.

Another feature available as a JMX service are runtime Hibernate statistics. See Section 4.6,
“Hibernate statistics”.

4. JCA Support

Hibernate may also be configured as a JCA connector. Please see the website for more details.
Please note that Hibernate JCA support is still considered experimental.

5. Contextual Sessions

Most applications using Hibernate need some form of "contextual" sessions, where a given
session is in effect throughout the scope of a given context. However, across applications the
definition of what constitutes a context is typically different; and different contexts define
different scopes to the notion of current. Applications using Hibernate prior to version 3.0 tended
to utilize either home-grown Thr eadLocal -based contextual sessions, helper classes such as

Hi bernatelti |, or utilized third-party frameworks (such as Spring or Pico) which provided
proxy/interception-based contextual sessions.

Starting with version 3.0.1, Hibernate added the Sessi onFact ory. get Curr ent Sessi on()
method. Initially, this assumed usage of JTA transactions, where the JTA transaction defined
both the scope and context of a current session. The Hibernate team maintains that, given the
maturity of the numerous stand-alone JTA Transacti onManager implementations out there,
most (if not all) applications should be using JTA transaction management whether or not they

33

Chapter 3. Architecture

are deployed into a J2EE container. Based on that, the JTA-based contextual sessions is all you
should ever need to use.

However, as of version 3.1, the processing behind Sessi onFact ory. get Cur r ent Sessi on() is
now pluggable. To that end, a new extension interface

(or g. hi ber nat e. cont ext . Curr ent Sessi onCont ext) and a new configuration parameter

(hi ber nat e. current _sessi on_cont ext _cl ass) have been added to allow pluggability of the
scope and context of defining current sessions.

See the Javadocs for the or g. hi ber nat e. cont ext . Cur r ent Sessi onCont ext interface for a
detailed discussion of its contract. It defines a single method, cur r ent Sessi on() , by which the
implementation is responsible for tracking the current contextual session. Out-of-the-box,
Hibernate comes with three implementations of this interface.

e org. hi bernat e. cont ext . JTASessi onCont ext - current sessions are tracked and scoped by
a JTA transaction. The processing here is exactly the same as in the older JTA-only
approach. See the Javadocs for details.

e org. hi bernate. cont ext. ThreadLocal Sessi onCont ext - current sessions are tracked by
thread of execution. Again, see the Javadocs for details.

e org. hi bernat e. cont ext . ManagedSessi onCont ext - current sessions are tracked by thread
of execution. However, you are responsible to bind and unbind a Sessi on instance with static
methods on this class, it does never open, flush, or close a Sessi on.

The first two implementations provide a "one session - one database transaction" programming
model, also known and used as session-per-request. The beginning and end of a Hibernate
session is defined by the duration of a database transaction. If you use programatic transaction
demarcation in plain JSE without JTA, you are adviced to use the Hibernate Tr ansacti on API
to hide the underlying transaction system from your code. If you use JTA, use the JTA
interfaces to demarcate transactions. If you execute in an EJB container that supports CMT,
transaction boundaries are defined declaratively and you don't need any transaction or session
demarcation operations in your code. Refer to Chapter 12, Transactions And Concurrency for
more information and code examples.

The hi ber nat e. current _sessi on_cont ext _cl ass configuration parameter defines which

or g. hi ber nat e. cont ext . Curr ent Sessi onCont ext implementation should be used. Note that
for backwards compatibility, if this config param is not set but a

or g. hi bernate. transacti on. Transact i onManager Lookup is configured, Hibernate will use
the or g. hi ber nat e. cont ext . JTASessi onCont ext . Typically, the value of this parameter would
just name the implementation class to use; for the three out-of-the-box implementations,
however, there are two corresponding short names, "“jta", "thread”, and "managed".

34

Chapter 4.

Configuration

Because Hibernate is designed to operate in many different environments, there are a large
number of configuration parameters. Fortunately, most have sensible default values and
Hibernate is distributed with an example hi ber nat e. properti es file in et ¢/ that shows the
various options. Just put the example file in your classpath and customize it.

1. Programmatic configuration

An instance of or g. hi ber nat e. cf g. Confi gur ati on represents an entire set of mappings of an
application's Java types to an SQL database. The Confi gur ati on is used to build an
(immutable) Sessi onFact ory. The mappings are compiled from various XML mapping files.

You may obtain a Confi gur at i on instance by instantiating it directly and specifying XML
mapping documents. If the mapping files are in the classpath, use addResource():

Configuration cfg = new Confi guration()
. addResour ce("Item hbm xm ")
. addResour ce("Bi d. hbm xm ") ;

An alternative (sometimes better) way is to specify the mapped class, and let Hibernate find the
mapping document for you:

Configuration cfg = new Confi guration()
. addCl ass(org. hi bernate. aucti on.|ltem cl ass)
. addd ass(org. hi bernate. aucti on. Bi d. cl ass);

Then Hibernate will look for mapping files named / or g/ hi ber nat e/ aucti on/ | t em hbm xm
and / or g/ hi ber nat e/ aucti on/ Bi d. hbm xm in the classpath. This approach eliminates any
hardcoded filenames.

A Confi gurati on also allows you to specify configuration properties:

Configuration cfg = new Configuration()

. addd ass(org. hi bernate. aucti on.|tem cl ass)

. addd ass(org. hi bernat e. aucti on. Bi d. cl ass)

. set Property("hi bernate. dial ect",
org. hi bernat e. di al ect. My'SQLI nnoDBDi al ect")

. set Property("hi bernate. connection. dat asource",
"java: conp/ env/jdbc/test")

. set Property("hi bernate. order_updates", "true");

This is not the only way to pass configuration properties to Hibernate. The various options
include:

1. Pass an instance of j ava. uti | . Properti es to Confi guration. set Properties().
2. Place hi ber nat e. properti es in a root directory of the classpath.

35

Chapter 4. Configuration

3. Set Syst emproperties using j ava - Dpr oper t y=val ue.
4. Include <pr oper t y> elements in hi ber nat e. cf g. xm (discussed later).
hi ber nat e. properti es is the easiest approach if you want to get started quickly.

The Confi gurati on is intended as a startup-time object, to be discarded once a
Sessi onFact ory is created.

2. Obtaining a SessionFactory

When all mappings have been parsed by the Confi gur ati on, the application must obtain a
factory for Sessi on instances. This factory is intended to be shared by all application threads:

Sessi onFactory sessions = cfg. buil dSessi onFactory();

Hibernate does allow your application to instantiate more than one Sessi onFact ory. This is
useful if you are using more than one database.

3. JDBC connections

Usually, you want to have the Sessi onFact ory create and pool JDBC connections for you. If
you take this approach, opening a Sessi on is as simple as:

Sessi on session = sessions.openSession(); // open a new Session

As soon as you do something that requires access to the database, a JDBC connection will be
obtained from the pool.

For this to work, we need to pass some JDBC connection properties to Hibernate. All Hibernate
property names and semantics are defined on the class or g. hi ber nat e. cf g. Envi r onnment .
We will now describe the most important settings for JDBC connection configuration.

Hibernate will obtain (and pool) connections using j ava. sql . Dri ver Manager if you set the
following properties:

hi ber nat e. connection. driver_cl ass jdbc driver class

hi ber nat e. connecti on. ur| jdbc URL

hi ber nat e. connecti on. user nane database user

hi ber nat e. connect i on. passwor d database user password

hi ber nat e. connecti on. pool _si ze maximum number of pooled connections

Table 4.1. Hibernate JDBC Properties

36

JDBC connections

Hibernate's own connection pooling algorithm is however quite rudimentary. It is intended to
help you get started and is not intended for use in a production system or even for performance
testing. You should use a third party pool for best performance and stability. Just replace the

hi ber nat e. connect i on. pool _si ze property with connection pool specific settings. This will
turn off Hibernate's internal pool. For example, you might like to use C3PO.

C3P0 is an open source JDBC connection pool distributed along with Hibernate in the Ii b
directory. Hibernate will use its C3P0Connect i onPr ovi der for connection pooling if you set
hi ber nat e. ¢3p0. * properties. If you'd like to use Proxool refer to the packaged

hi ber nat e. properti es and the Hibernate web site for more information.

Here is an example hi ber nat e. properti es file for C3PO0:

hi ber nat e. connection. driver_class = org. postgresql .Driver

hi ber nat e. connection.url = jdbc:postgresqgl://|ocal host/ mydat abase
hi ber nat e. connecti on. usernane = nyuser

hi ber nat e. connecti on. password = secret

hi ber nat e. ¢c3p0. m n_si ze=5

hi ber nat e. c3p0. max_si ze=20

hi ber nat e. ¢c3p0. ti neout =1800

hi ber nat e. c3p0. max_st at enent s=50

hi ber nat e. di al ect = org. hi bernate. di al ect. Post greSQ.Di al ect

For use inside an application server, you should almost always configure Hibernate to obtain
connections from an application server Dat asour ce registered in JNDI. You'll need to set at
least one of the following properties:

hi ber nat e. connecti on. dat asource datasource JNDI hame

hi bernate. jndi.url URL of the JNDI provider (optional)

hi bernate.jndi.cl ass class of the JNDI | ni ti al Cont ext Factory
(optional)

hi ber nat e. connect i on. user nane database user (optional)

hi ber nat e. connect i on. passwor d database user password (optional)

Table 4.2. Hibernate Datasource Properties

Here's an example hi ber nat e. properti es file for an application server provided JNDI
datasource:

hi ber nat e. connecti on. dat asource = java:/conp/ env/jdbc/test
hi bernat e. transaction.factory_class =\

org. hi bernate.transacti on. JTATransacti onFact ory
hi ber nat e. t ransact i on. manager _| ookup_cl ass =\

org. hi bernate.transacti on. JBossTransact i onManager Lookup
hi ber nat e. di al ect = org. hi bernate. di al ect. Post greSQ.Di al ect

37

Chapter 4. Configuration

JDBC connections obtained from a JNDI datasource will automatically participate in the
container-managed transactions of the application server.

Arbitrary connection properties may be given by prepending "hi ber nat e. connnecti on" to the
property name. For example, you may specify a char Set using
hi ber nat e. connecti on. char Set .

You may define your own plugin strategy for obtaining JDBC connections by implementing the
interface or g. hi ber nat e. connect i on. Connecti onProvi der . You may select a custom
implementation by setting hi ber nat e. connecti on. provi der _cl ass.

4. Optional configuration properties

There are a number of other properties that control the behaviour of Hibernate at runtime. All
are optional and have reasonable default values.

Warning: some of these properties are "system-level" only. System-level properties can be set
only viaj ava - Dproperty=val ue or hi ber nat e. properti es. They may not be set by the other
techniques described above.

Property name Purpose

hi ber nat e. di al ect The classname of a Hibernate Di al ect which
allows Hibernate to generate SQL optimized
for a particular relational database.

eg.ful | . cl assnane. of . Di al ect

hi ber nat e. show _sq|l Write all SQL statements to console. This is
an alternative to setting the log category
or g. hi bernat e. SQL to debug.

eg.true|fal se

hi ber nat e. f or mat _sq| Pretty print the SQL in the log and console.

eg.true|fal se

hi ber nat e. def aul t _schena Qualify unqualified tablenames with the given
schema/tablespace in generated SQL.
€g.SCHEMA_NANE

hi ber nat e. def aul t _cat al og Qualify unqualified tablenames with the given
catalog in generated SQL.
eg.CATALOG_NAME

hi ber nat e. sessi on_factory_nane The Sessi onFact or y will be automatically
bound to this name in JNDI after it has been
created.

eg.j ndi / conposi t e/ nane

38

Optional configuration properties

Property name Purpose

hi ber nat e. max_f et ch_dept h Set a maximum "depth" for the outer join fetch
tree for single-ended associations
(one-to-one, many-to-one). A 0 disables
default outer join fetching.

eg. recommended values between 0 and 3

hi bernat e. def aul t _batch_fetch_si ze Set a default size for Hibernate batch fetching
of associations.

eg. recommended values 4, 8, 16

hi bernate. default _entity_node Set a default mode for entity representation
for all sessions opened from this
Sessi onFactory

dynami c- map, dom4j , poj o

hi ber nat e. or der _updat es Force Hibernate to order SQL updates by the
primary key value of the items being updated.
This will result in fewer transaction deadlocks
in highly concurrent systems.

eg.true|false

hi ber nat e. generate_statistics If enabled, Hibernate will collect statistics
useful for performance tuning.

eg.true|false

hi bernat e. use_i dentifer_rol | back If enabled, generated identifier properties will
be reset to default values when objects are
deleted.

eg.true|false

hi ber nat e. use_sql _comment s If turned on, Hibernate will generate
comments inside the SQL, for easier
debugging, defaults to f al se.

eg.true|false

Table 4.3. Hibernate Configuration Properties

Property name Purpose

hi bernate. j dbc. fetch_size A non-zero value determines the JDBC fetch
size (calls St at enent . set Fet chSi ze()).

hi ber nat e. j dbc. bat ch_si ze A non-zero value enables use of JDBC2
batch updates by Hibernate.

39

Chapter 4. Configuration

Property name Purpose

eg. recommended values between 5 and 30

hi bernat e. j dbc. bat ch_ver si oned_dat a Set this property to t r ue if your JDBC driver
returns correct row counts from
execut eBat ch() (it is usually safe to turn this
option on). Hibernate will then use batched
DML for automatically versioned data.
Defaults to f al se.

eg.true|false

hi bernate.jdbc.factory_cl ass Select a custom Bat cher . Most applications
will not need this configuration property.

eg.cl assnane. of . Bat cher

hi bernat e. j dbc. use_scrol | abl e_resul t set Enables use of JDBC2 scrollable resultsets by
Hibernate. This property is only necessary
when using user supplied JDBC connections,
Hibernate uses connection metadata
otherwise.

eg.true|false

hi bernate. jdbc. use_streanms_for_binary Use streams when writing/reading bi nary or
seri al i zabl e types to/from JDBC
(system-level property).

eg.true|fal se

hi ber nat e. j dbc. use_get _gener at ed_keys Enable use of JDBC3
Pr epar edSt at erent . get Gener at edKeys()
to retrieve natively generated keys after
insert. Requires JDBC3+ driver and JRE1.4+,
set to false if your driver has problems with
the Hibernate identifier generators. By default,
tries to determine the driver capabilites using
connection metadata.

eg.true|fal se

hi ber nat e. connecti on. provi der_cl ass The classname of a custom
Connect i onProvi der which provides JDBC
connections to Hibernate.

eg.cl assnane. of . Connecti onProvi der

hi ber nat e. connecti on. i sol ation Set the JDBC transaction isolation level.
Check j ava. sqgl . Connect i on for meaningful
values but note that most databases do not
support all isolation levels.

40

Optional configuration properties

Property name Purpose

hi ber nat e. connecti on. aut oconm t

hi ber nat e. connecti on. rel ease_nobde

hi ber nat e. connecti on. <pr opert yNane>

hi ber nat e. j ndi . <pr oper t yNane>

eg.l, 2, 4, 8

Enables autocommit for JDBC pooled
connections (not recommended).

eg.true|false

Specify when Hibernate should release JDBC
connections. By default, a JDBC connection is
held until the session is explicitly closed or
disconnected. For an application server JTA
datasource, you should use

af t er _st at enent to aggressively release
connections after every JDBC call. For a
non-JTA connection, it often makes sense to
release the connection at the end of each
transaction, by using af t er _t ransacti on.
aut o will choose af t er _st at ement for the
JTA and CMT transaction strategies and
after_transacti on for the JDBC transaction
strategy.

eg.aut o (default) | on_cl ose |
after_transaction |after_statenment

Note that this setting only affects Sessi on s
returned from

Sessi onFact ory. openSessi on. For Sessi on
s obtained through

Sessi onFact ory. get Cur r ent Sessi on, the
Cur r ent Sessi onCont ext implementation
configured for use controls the connection
release mode for those Sessi on s. See
Section 5, “Contextual Sessions”.

Pass the JDBC property pr oper t yNane to
Dri ver Manager . get Connection().

Pass the property pr oper t yNane to the JNDI
I nitial ContextFactory.

Table 4.4. Hibernate JDBC and Connection Properties

Property name Purpose

hi ber nat e. cache. provi der_cl ass

The classname of a custom CachePr ovi der.

eg.cl assnane. of . CachePr ovi der

41

Chapter 4. Configuration

Property name Purpose

hi ber nat e. cache. use_mi ni mal _puts Optimize second-level cache operation to
minimize writes, at the cost of more frequent
reads. This setting is most useful for clustered
caches and, in Hibernate3, is enabled by
default for clustered cache implementations.

eg.true| fal se

hi ber nat e. cache. use_query_cache Enable the query cache, individual queries
still have to be set cachable.

eg.true|fal se

hi ber nat e. cache. use_second_I| evel _cache May be used to completely disable the
second level cache, which is enabled by
default for classes which specify a <cache>

mapping.
eg.true|fal se

hi ber nat e. cache. query_cache_factory The classname of a custom Quer yCache
interface, defaults to the built-in
St andar dQuer yCache.

eg.cl assnane. of . QueryCache

hi ber nat e. cache. regi on_prefix A prefix to use for second-level cache region
names.

eg.prefix

hi ber nat e. cache. use_structured_entries Forces Hibernate to store data in the
second-level cache in a more human-friendly
format.

eg.true|fal se

Table 4.5. Hibernate Cache Properties

Property name Purpose

hi bernat e. transaction. factory_cl ass The classname of a Tr ansact i onFact ory to
use with Hibernate Tr ansact i on API
(defaults to JDBCTr ansact i onFact or y).

eg.cl assnane. of . Transacti onFactory

jta.UserTransaction A INDI name used by
JTATr ansact i onFact ory to obtain the JTA
User Tr ansact i on from the application server.

42

Optional configuration properties

Property name Purpose

€g.j ndi / conposi t e/ nane

hi ber nat e. transacti on. manager _| ookup_cl adwe classname of a
Transact i onManager Lookup - required when
JVM-level caching is enabled or when using
hilo generator in a JTA environment.

eg.cl assnane. of . Transact i onManager Lookup

hi bernat e. transacti on. f| ush_bef or e_conplltenhabled, the session will be automatically
flushed during the before completion phase of
the transaction. Built-in and automatic session
context management is preferred, see
Section 5, “Contextual Sessions”.

eg.true|fal se

hi bernat e. transacti on. aut o_cl ose_sessi orf enabled, the session will be automatically
closed during the after completion phase of
the transaction. Built-in and utomatic session
context management is preferred, see
Section 5, “Contextual Sessions”.

eg.true|false

Table 4.6. Hibernate Transaction Properties

Property name Purpose

hi ber nat e. current _sessi on_cont ext _cl ass Supply a (custom) strategy for the scoping of
the "current" Sessi on. See Section 5,
“Contextual Sessions” for more information
about the built-in strategies.

eg.jta|thread | managed | cust om C ass

hi ber nat e. query. factory_cl ass Chooses the HQL parser implementation.

eg.org. hi bernate. hgl . ast. ASTQueryTr ansl at or Fact ory
or
org. hi bernate. hql . cl assi c. d assi cQueryTransl at or Fact or\

hi ber nat e. query. substitutions Mapping from tokens in Hibernate queries to
SQL tokens (tokens might be function or
literal names, for example).

eg.hqgl Li teral =SQ._LI TERAL,
hgl Funct i on=SQ.FUNC

hi ber nat e. hbn2dd! . aut o Automatically validate or export schema DDL

43

Chapter 4. Configuration

Property name Purpose

to the database when the Sessi onFactory is
created. With cr eat e- dr op, the database
schema will be dropped when the

Sessi onFact ory is closed explicitly.

eg.val i date |update |create |
create-drop

hi bernate. cglib.use reflection_optin zerEnables use of CGLIB instead of runtime

reflection (System-level property). Reflection
can sometimes be useful when
troubleshooting, note that Hibernate always
requires CGLIB even if you turn off the
optimizer. You can not set this property in

hi ber nat e. cf g. xm .

eg.true|fal se

Table 4.7. Miscellaneous Properties

4.1. SQL Dialects

You should always set the hi ber nat e. di al ect property to the correct

org. hi bernate. di al ect. Di al ect subclass for your database. If you specify a dialect,
Hibernate will use sensible defaults for some of the other properties listed above, saving you the
effort of specifying them manually.

DB2

DB2 AS/400

DB2 OS390
PostgreSQL

MySQL

MySQL with InnoDB
MySQL with MyISAM
Oracle (any version)
Oracle 9i

Oracle 10g

Sybase

Sybase Anywhere
Microsoft SQL Server

Dialect

RDBMS

org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.

org.

hi ber nat e.
hi ber nat e.
hi ber nat e.
hi ber nat e.
hi ber nat e.
hi ber nat e.
hi ber nat e.
hi ber nat e.
hi ber nat e.
hi ber nat e.
hi ber nat e.
hi ber nat e.

hi ber nat e.

di
di
di
di
di
di
di
di
di
di
di
di
di

al ect . DB2Di al ect

al ect. DB2400Di al ect
al ect. DB2390Di al ect
al ect . Post greSQLDi al ect
al ect. \ySQLDi al ect
al ect. M\ySQLI nnoDBDi al ect
al ect . M\ySQLMyl SAMDI al ect
al ect. Oracl eDi al ect
al ect. Oracl e9i Di al ect
al ect. Oracl e10gDi al ect
al ect. SybaseDi al ect
al ect. SybaseAnywher eDi al ect

al ect. SQ.Server D al ect

44

Outer Join Fetching

RDBMS Dialect

SAP DB org. hi bernate. di al ect. SAPDBDI al ect
Informix or g. hi bernate. di al ect. | nform xDi al ect
HypersonicSQL org. hi bernate. di al ect. HSQLDi al ect
Ingres org. hi bernate. di al ect. | ngresDi al ect
Progress org. hi bernate. di al ect. ProgressDi al ect
Mckoi SQL or g. hi bernate. di al ect. Mckoi Di al ect
Interbase org. hi bernate. di al ect. | nterbaseDi al ect
Pointbase or g. hi ber nat e. di al ect. Poi nt baseDi al ect
FrontBase or g. hi bernnate. di al ect. Front baseDi al ect
Firebird or g. hi bernate. di al ect. Fi rebi rdDi al ect

Table 4.8. Hibernate SQL Dialects (hi ber nat e. di al ect)

4.2. Outer Join Fetching

If your database supports ANSI, Oracle or Sybase style outer joins, outer join fetching will often
increase performance by limiting the number of round trips to and from the database (at the cost
of possibly more work performed by the database itself). Outer join fetching allows a whole
graph of objects connected by many-to-one, one-to-many, many-to-many and one-to-one
associations to be retrieved in a single SQL SELECT.

Outer join fetching may be disabled globally by setting the property
hi ber nat e. max_f et ch_dept h to 0. A setting of 1 or higher enables outer join fetching for
one-to-one and many-to-one associations which have been mapped with f et ch="j oi n".

See Section 1, “Fetching strategies” for more information.
4.3. Binary Streams

Oracle limits the size of byt e arrays that may be passed to/from its JDBC driver. If you wish to
use large instances of bi nary or seri al i zabl e type, you should enable
hi ber nat e. j dbc. use_streans_f or _bi nary. This is a system-level setting only.

4.4. Second-level and query cache

The properties prefixed by hi ber nat e. cache allow you to use a process or cluster scoped
second-level cache system with Hibernate. See the Section 2, “The Second Level Cache” for
more details.

4.5. Query Language Substitution

You may define new Hibernate query tokens using hi ber nat e. query. substi t uti ons. For

45

Chapter 4. Configuration

example:

hi ber nat e. query. substitutions true=1, false=0

would cause the tokens t rue and f al se to be translated to integer literals in the generated
SQL.

hi ber nat e. query. substituti ons toLower case=LOAER

would allow you to rename the SQL LOWER function.

4.6. Hibernate statistics

If you enable hi ber nat e. gener at e_st ati sti cs, Hibernate will expose a number of metrics
that are useful when tuning a running system via Sessi onFact ory. get Stati stics().
Hibernate can even be configured to expose these statistics via JMX. Read the Javadoc of the
interfaces in or g. hi ber nat e. st at s for more information.

5. Logging
Hibernate logs various events using Apache commons-logging.

The commons-logging service will direct output to either Apache Log4j (if you include

| og4j . j ar in your classpath) or JDK1.4 logging (if running under JDK1.4 or above). You may
download Log4j from http://j akarta. apache. org. To use Log4j you will need to place a

| og4j . properti es file in your classpath, an example properties file is distributed with
Hibernate in the src/ directory.

We strongly recommend that you familiarize yourself with Hibernate's log messages. A lot of
work has been put into making the Hibernate log as detailed as possible, without making it
unreadable. It is an essential troubleshooting device. The most interesting log categories are
the following:

Category Function
org. hi bernate. SQL Log all SQL DML statements as they are executed
org. hi bernate. type Log all JIDBC parameters

or g. hi bernat e. t ool . hbriddaly all SQL DDL statements as they are executed

org. hi bernate. pretty | Log the state of all entities (max 20 entities) associated with the
session at flush time

or g. hi ber nat e. cache Log all second-level cache activity

or g. hi ber nat e. t r ansact|iloyg transaction related activity

org. hi bernate. j dbc Log all JIDBC resource acquisition

or g. hi bernat e. hql . ast . A3y HQL and SQL ASTs during query parsing

org. hi bernate. secure | Log all JAAS authorization requests

46

Implementing a NamingStrategy

Category Function

org. hi bernate Log everything (a lot of information, but very useful for
troubleshooting)

Table 4.9. Hibernate Log Categories

When developing applications with Hibernate, you should almost always work with debug
enabled for the category or g. hi ber nat e. SQL, or, alternatively, the property
hi ber nat e. show_sqgl enabled.

6. Implementing a NamingStrategy

The interface or g. hi ber nat e. cf g. Nami ngSt r at egy allows you to specify a "naming standard"
for database objects and schema elements.

You may provide rules for automatically generating database identifiers from Java identifiers or
for processing "logical" column and table names given in the mapping file into "physical" table
and column names. This feature helps reduce the verbosity of the mapping document,
eliminating repetitive noise (TBL_ prefixes, for example). The default strategy used by Hibernate
is quite minimal.

You may specify a different strategy by calling Confi gurati on. set Nami ngSt r at egy() before
adding mappings:

Sessi onFactory sf = new Configuration()
. set Nam ngSt r at egy (| npr ovedNami ngSt r at egy. | NSTANCE)
.addFil e("1tem hbm xm ")
.addFi | e("Bi d. hbm xm ")
. bui | dSessi onFactory();

or g. hi bernate. cf g. | nprovedNani ngSt r at egy is a built-in strategy that might be a useful
starting point for some applications.

7. XML configuration file

An alternative approach to configuration is to specify a full configuration in a file named
hi ber nat e. cf g. xnl . This file can be used as a replacement for the hi ber nat e. properties
file or, if both are present, to override properties.

The XML configuration file is by default expected to be in the root o your CLASSPATH. Here is an
example:

<?xm version='"1.0" encodi ng="utf-8" ?>
<! DOCTYPE hi ber nat e- confi gurati on PUBLIC
"-// Hi bernat e/ H bernate Configuration DTD//EN"
"http://hibernate. sourcef orge. net/ hi bernat e-confi gurati on-3.0.dtd">

47

Chapter 4. Configuration

<hi ber nat e- confi gurati on>

<l-- a SessionFactory instance |listed as /jndi/nane -->
<sessi on-factory
nanme="j ava: hi ber nat e/ Sessi onFact ory" >

<l-- properties -->
<property

name="connect i on. dat asour ce" >j ava: / conp/ env/ j dbc/ MyDB</ pr operty>
<property

name="di al ect ">or g. hi ber nat e. di al ect . M\ySQLDi al ect </ property>
<property nane="show_sql " >f al se</ property>
<property nane="transaction.factory_cl ass">
or g. hi bernate. transacti on. JTATr ansact i onFact ory
</ property>
<property
name="j t a. User Tr ansact i on" >j ava: conp/ User Tr ansact i on</ pr operty>

<!-- mapping files -->
<mappi ng resour ce="or g/ hi bernate/aucti on/Item hbm xm "/ >
<mappi ng resour ce="or g/ hi bernat e/ aucti on/ Bi d. hbm xm "/ >

<l-- cache settings -->

<cl ass-cache cl ass="org. hi bernate. auction.ltenl' usage="read-wite"/>

<cl ass-cache cl ass="org. hi bernnat e. aucti on. Bi d* usage="read-onl y"/>

<col | ecti on-cache col | ecti on="org. hi bernat e. aucti on.|tem bi ds"
usage="read-wite"/>

</ sessi on-factory>

</ hi ber nat e- confi gurati on>

As you can see, the advantage of this approach is the externalization of the mapping file names
to configuration. The hi ber nat e. cf g. xn is also more convenient once you have to tune the
Hibernate cache. Note that is your choice to use either hi ber nat e. properties or

hi ber nat e. cf g. xnl , both are equivalent, except for the above mentioned benefits of using the
XML syntax.

With the XML configuration, starting Hibernate is then as simple as

Sessi onFactory sf = new Configuration().configure().buil dSessionFactory();

You can pick a different XML configuration file using

Sessi onFactory sf = new Confi guration()
.configure("catdb.cfg.xm")
. bui | dSessi onFactory();

8. J2EE Application Server integration

48

Transaction strategy configuration

Hibernate has the following integration points for J2EE infrastructure:

« Container-managed datasources: Hibernate can use JDBC connections managed by the
container and provided through JNDI. Usually, a JTA compatible Tr ansact i onManager and a
Resour ceManager take care of transaction management (CMT), esp. distributed transaction
handling across several datasources. You may of course also demarcate transaction
boundaries programatically (BMT) or you might want to use the optional Hibernate
Transact i on API for this to keep your code portable.

« Automatic JNDI binding: Hibernate can bind its Sessi onFact ory to JNDI after startup.

» JTA Session binding: The Hibernate Sessi on may be automatically bound to the scope of
JTA transactions. Simply lookup the Sessi onFact ory from JNDI and get the current Sessi on.
Let Hibernate take care of flushing and closing the Sessi on when your JTA transaction
completes. Transaction demarcation is either declarative (CMT) or programmatic
(BMT/UserTransaction).

« JMX deployment: If you have a JMX capable application server (e.g. JBoss AS), you can
chose to deploy Hibernate as a managed MBean. This saves you the one line startup code to
build your Sessi onFact ory from a Confi gur at i on. The container will startup your
H ber nat eSer vi ce, and ideally also take care of service dependencies (Datasource has to
be available before Hibernate starts, etc).

Depending on your environment, you might have to set the configuration option
hi ber nat e. connecti on. aggr essi ve_r el ease to true if your application server shows
"connection containment" exceptions.

8.1. Transaction strategy configuration

The Hibernate Sessi on APl is independent of any transaction demarcation system in your
architecture. If you let Hibernate use JDBC directly, through a connection pool, you may begin
and end your transactions by calling the JDBC API. If you run in a J2EE application server, you
might want to use bean-managed transactions and call the JTA API and User Tr ansact i on
when needed.

To keep your code portable between these two (and other) environments we recommend the
optional Hibernate Tr ansact i on API, which wraps and hides the underlying system. You have
to specify a factory class for Tr ansact i on instances by setting the Hibernate configuration
property hi bernate. transacti on. factory_cl ass.

There are three standard (built-in) choices:

49

Chapter 4. Configuration

org. hi bernate.transacti on. JDBCTr ansacti onFactory
delegates to database (JDBC) transactions (default)

org. hi bernate.transacti on. JTATransacti onFact ory
delegates to container-managed transaction if an existing transaction is underway in this
context (e.g. EJB session bean method), otherwise a new transaction is started and
bean-managed transaction are used.

org. hi bernate.transacti on. CMI'Tr ansact i onFact ory
delegates to container-managed JTA transactions

You may also define your own transaction strategies (for a CORBA transaction service, for
example).

Some features in Hibernate (i.e. the second level cache, Contextual Sessions with JTA, etc.)
require access to the JTA Tr ansact i onManager in a managed environment. In an application
server you have to specify how Hibernate should obtain a reference to the

Transact i onManager , since J2EE does not standardize a single mechanism:

Transaction Factory Application Server
org. hi bernate.transacti on. JBossTransacti onManager Lookup JBoss

org. hi bernate. transacti on. Wbl ogi cTr ansact i onManager Lookup Weblogic

org. hi bernate. transacti on. WebSpher eTr ansact i onManager Lookup ~ WebSphere

org. hi bernate. transacti on. WebSpher eExt endedJTATr ansact i onLookWebSphere 6

org. hi bernate. transacti on. Ori onTransacti onManager Lookup Orion
org. hi bernate.transacti on. Resi nTransacti onManager Lookup Resin
org. hi bernate. transacti on. JOTMIr ansact i onManager Lookup JOTM
org. hi bernate.transacti on. JOnASTr ansact i onManager Lookup JONnAS
org. hi bernate. transacti on. JRun4Tr ansact i onManager Lookup JRun4
org. hi bernate. transacti on. BESTr ansact i onManager Lookup Borland ES

Table 4.10. JTA TransactionManagers

8.2. INDI-bound SessionFactory

A INDI bound Hibernate Sessi onFact ory can simplify the lookup of the factory and the
creation of new Sessi on s. Note that this is not related to a JNDI bound Dat asour ce, both
simply use the same registry!

If you wish to have the Sessi onFact ory bound to a JNDI namespace, specify a name (eg.
j ava: hi ber nat e/ Sessi onFact or y) using the property hi ber nat e. sessi on_f act ory_nane. If
this property is omitted, the Sessi onFact ory will not be bound to JNDI. (This is especially

50

Current Session context management with

useful in environments with a read-only JNDI default implementation, e.g. Tomcat.)

When binding the Sessi onFact ory to JNDI, Hibernate will use the values of
hi bernate.jndi.url, hibernate.jndi.class to instantiate an initial context. If they are not
specified, the default I ni ti al Cont ext will be used.

Hibernate will automatically place the Sessi onFact ory in JNDI after you call

cf g. bui | dSessi onFact ory() . This means you will at least have this call in some startup code
(or utility class) in your application, unless you use JMX deployment with the

Hi ber nat eSer vi ce (discussed later).

If you use a JNDI Sessi onFact ory, an EJB or any other class may obtain the Sessi onFact ory
using a JNDI lookup.

We recommend that you bind the Sessi onFact ory to JNDI in a managend environment and
use a st at i ¢ singleton otherwise. To shield your application code from these details, we also
recommend to hide the actual lookup code for a Sessi onFact ory in a helper class, such as
Hi bernatelti | . get Sessi onFact ory() . Note that such a class is also a convenient way to
startup Hibernate - see chapter 1.

8.3. Current Session context management with JTA

The easiest way to handle Sessi on s and transactions is Hibernates automatic "current"

Sessi on management. See the discussion of Section 5, “Contextual Sessions” current
sessions. Using the "j t a" session context, if there is no Hibernate Sessi on associated with the
current JTA transaction, one will be started and associated with that JTA transaction the first
time you call sessi onFact ory. get Curr ent Sessi on() . The Sessi on s retrieved via

get Current Sessi on() in"jta" context will be set to automatically flush before the transaction
completes, close after the transaction completes, and aggressively release JDBC connections
after each statement. This allows the Sessi on s to be managed by the lifecycle of the JTA
transaction to which it is associated, keeping user code clean of such management concerns.
Your code can either use JTA programmatically through User Tr ansact i on, or (recommended
for portable code) use the Hibernate Tr ansact i on API to set transaction boundaries. If you run
in an EJB container, declarative transaction demarcation with CMT is preferred.

8.4. IMX deployment

The line cf g. bui | dSessi onFact ory() still has to be executed somewhere to get a
Sessi onFact ory into JNDI. You can do this either in a st at i c initializer block (like the one in
Hi ber natelti |) or you deploy Hibernate as a managed service.

Hibernate is distributed with or g. hi ber nat e. j nx. Hi ber nat eSer vi ce for deployment on an
application server with JMX capabilities, such as JBoss AS. The actual deployment and
configuration is vendor specific. Here is an example j boss-servi ce. xm for JBoss 4.0.x:

<?xm version="1.0"?>
<server >

<nmbean code="or g. hi ber nat e. j nx. Hi ber nat eSer vi ce"
nanme="j boss. j ca: servi ce=Hi ber nat eFact or y, nane=Hi ber nat eFact or y" >

51

Chapter 4. Configuration

<l-- Required services -->
<depends>j boss. j ca: servi ce=RARDepl oyer </ depends>
<depends>j boss. j ca: servi ce=Local TxCM nanme=Hsql DS</ depends>

<I-- Bind the Hibernate service to JNDI -->
<attribute nane="Jndi Nane" >j ava: / hi ber nat e/ Sessi onFact ory</attri but e>

<!-- Datasource settings -->
<attribute nane="Dat asource">j ava: Hsql DS</ attri but e>
<attri bute nane="Di al ect">org. hi bernat e. di al ect. HSQLDi al ect </ attri but e>

<I-- Transaction integration -->
<attribute nane="Transacti onStrategy">

or g. hi bernate. transacti on. JTATransacti onFactory</attri bute>
<attribute nane="Transacti onManager LookupSt r at egy" >

org. hi bernate. transacti on. JBossTransact i onManager Lookup</ attri but e>
<attribute name="Fl ushBef or eConpl eti onEnabl ed" >t rue</attri but e>
<attribute nanme="Aut oCl oseSessi onEnabl ed">true</attri bute>

<!-- Fetching options -->
<attribute nanme="Maxi muntet chDept h">5</attri but e>

<!-- Second-|evel caching -->
<attribute nane="SecondLevel CacheEnabl ed">true</attri bute>
<attribute
name=" CachePr ovi der Cl ass" >or g. hi ber nat e. cache. EhCachePr ovi der </ attri but e>
<attribute nane="QueryCacheEnabl ed">true</attri but e>

<l'-- Logging -->
<attribute nanme="ShowSqgl Enabl ed">true</attri bute>

<l-- Mpping files -->
<attribute
name=" MapResour ces" >aucti on/|tem hbm xm , aucti on/ Cat egory. hbm xm </ attri but e>

</ nbean>

</ server >

This file is deployed in a directory called META- | NF and packaged in a JAR file with the
extension . sar (service archive). You also need to package Hibernate, its required third-party
libraries, your compiled persistent classes, as well as your mapping files in the same archive.
Your enterprise beans (usually session beans) may be kept in their own JAR file, but you may
include this EJB JAR file in the main service archive to get a single (hot-)deployable unit.
Consult the JBoss AS documentation for more information about JMX service and EJB
deployment.

52

Chapter 5.

Persistent Classes

Persistent classes are classes in an application that implement the entities of the business
problem (e.g. Customer and Order in an E-commerce application). Not all instances of a
persistent class are considered to be in the persistent state - an instance may instead be
transient or detached.

Hibernate works best if these classes follow some simple rules, also known as the Plain Old
Java Object (POJO) programming model. However, none of these rules are hard requirements.
Indeed, Hibernate3 assumes very little about the nature of your persistent objects. You may
express a domain model in other ways: using trees of Map instances, for example.

1. A simple POJO example
Most Java applications require a persistent class representing felines.

package eg;
i mport java.util.Set;
i mport java.util.Date;

public class Cat {
private Long id; // identifier

private Date birthdate;
private Col or col or;
private char sex;
private float weight;
private int litterld;

private Cat not her;
private Set kittens = new HashSet ();

private void setld(Long id) {

this.id=id;

}

public Long getld() {
return id;

}

voi d setBirthdate(Date date) {
bi rthdate = date;

}

public Date getBirthdate() {
return birthdate;

}

voi d set Wi ght (fl oat wei ght) {
thi s. wei ght = wei ght;

}

public float getWight() {
return wei ght;

}

53

Chapter 5. Persistent Classes

public Col or getColor() {
return col or;

}
voi d set Col or (Col or col or) {

this.color = color;

}

voi d set Sex(char sex) {
t hi s. sex=sex;

}
public char getSex() {

return sex;

}

void setLitterld(int id) {
this.litterld = id;

}

public int getLitterld() {
return litterld;

}

voi d set Mbt her (Cat not her) {
t hi s. not her = not her;

}
public Cat getMther() {

return not her;

}
voi d setKittens(Set kittens) {

this.kittens = kittens;

}
public Set getKittens() {

return kittens;

}

// addKitten not needed by Hi bernate
public void addKitten(Cat kitten) {
kitten.set Mother(this);
kitten.setLitterld(kittens.size());
kittens. add(kitten);

}

There are four main rules to follow here:

1.1. Implement a no-argument constructor

Cat has a no-argument constructor. All persistent classes must have a default constructor
(which may be non-public) so that Hibernate can instantiate them using

Const ruct or. newl nst ance() . We strongly recommend having a default constructor with at
least package visibility for runtime proxy generation in Hibernate.

1.2. Provide an identifier property (optional)

54

Prefer non-final classes (optional)

Cat has a property called i d. This property maps to the primary key column of a database table.
The property might have been called anything, and its type might have been any primitive type,
any primitive "wrapper" type, j ava. | ang. String orjava. util . Date. (If your legacy database
table has composite keys, you can even use a user-defined class with properties of these types
- see the section on composite identifiers later.)

The identifier property is strictly optional. You can leave them off and let Hibernate keep track of
object identifiers internally. We do not recommend this, however.

In fact, some functionality is available only to classes which declare an identifier property:

« Transitive reattachment for detached objects (cascade update or cascade merge) - see
Section 11, “Transitive persistence”

* Session. saveO Updat e()

e Session. merge()

We recommend you declare consistently-named identifier properties on persistent classes. We
further recommend that you use a nullable (ie. non-primitive) type.

1.3. Prefer non-final classes (optional)

A central feature of Hibernate, proxies, depends upon the persistent class being either non-final,
or the implementation of an interface that declares all public methods.

You can persist fi nal classes that do not implement an interface with Hibernate, but you won't
be able to use proxies for lazy association fetching - which will limit your options for
performance tuning.

You should also avoid declaring publ i ¢ final methods on the non-final classes. If you want to
use a class with a publ i ¢ fi nal method, you must explicitly disable proying by setting
| azy="fal se".

1.4. Declare accessors and mutators for persistent fields
(optional)

Cat declares accessor methods for all its persistent fields. Many other ORM tools directly
persist instance variables. We believe it is better to provide an indirection between the relational
schema and internal data structures of the class. By default, Hibernate persists JavaBeans style

properties, and recognizes method names of the form get Foo, i sFoo and set Foo. You may
switch to direct field access for particular properties, if needed.

Properties need not be declared public - Hibernate can persist a property with a default,
protected or privat e get/ set pair.

2. Implementing inheritance

A subclass must also observe the first and second rules. It inherits its identifier property from the

55

Chapter 5. Persistent Classes

superclass, Cat .

package eg;

public class DonmesticCat extends Cat {
private String nane;

public String getName() {
return nane;

}

protected void setName(String nane) ({
t hi s. name=nane;

}

3. Implementing equals() and hashCode()

You have to override the equal s() and hashCode() methods if you

« intend to put instances of persistent classes in a Set (the recommended way to represent
many-valued associations) and
« intend to use reattachment of detached instances

Hibernate guarantees equivalence of persistent identity (database row) and Java identity only
inside a particular session scope. So as soon as we mix instances retrieved in different
sessions, we must implement equal s() and hashCode() if we wish to have meaningful
semantics for Set s.

The most obvious way is to implement equal s() /hashCode() by comparing the identifier value
of both objects. If the value is the same, both must be the same database row, they are
therefore equal (if both are added to a Set , we will only have one element in the Set).
Unfortunately, we can't use that approach with generated identifiers! Hibernate will only assign
identifier values to objects that are persistent, a newly created instance will not have any
identifier value! Furthermore, if an instance is unsaved and currently in a Set , saving it will
assign an identifier value to the object. If equal s() and hashCode() are based on the identifier
value, the hash code would change, breaking the contract of the Set . See the Hibernate
website for a full discussion of this problem. Note that this is not a Hibernate issue, but normal
Java semantics of object identity and equality.

We recommend implementing equal s() and hashCode() using Business key equality.
Business key equality means that the equal s() method compares only the properties that form
the business key, a key that would identify our instance in the real world (a natural candidate
key):

public class Cat {

publ i ¢ bool ean equal s(Obj ect other) {
if (this == other) return true;

56

Dynamic models

if (!'(other instanceof Cat)) return false;
final Cat cat = (Cat) other;

if (lcat.getLitterld().equals(getLitterld())) return false
if (!cat.getMther().equals(getMther())) return fal se;

return true;

public int hashCode() {
int result;
result = get Mother().hashCode();
result =29 * result + getLitterld();
return result;

Note that a business key does not have to be as solid as a database primary key candidate
(see Section 1.3, “Considering object identity”). Immutable or unique properties are usually good
candidates for a business key.

4. Dynamic models

Note that the following features are currently considered experimental and may change in the
near future.

Persistent entities don't necessarily have to be represented as POJO classes or as JavaBean
objects at runtime. Hibernate also supports dynamic models (using Map s of Map s at runtime)
and the representation of entities as DOM4J trees. With this approach, you don't write persistent
classes, only mapping files.

By default, Hibernate works in normal POJO mode. You may set a default entity representation
mode for a particular Sessi onFact ory using the def aul t _enti ty_node configuration option
(see Table 4.3, “Hibernate Configuration Properties”.

The following examples demonstrates the representation using Map s. First, in the mapping file,
an entity-nane has to be declared instead of (or in addition to) a class name:

<hi ber nat e- mappi ng>
<cl ass entity-nane="Cust oner" >

<id name="jd"

type="1 ong"

col um="1D">

<gener at or cl ass="sequence"/>
</id>

<property nanme="nane"
col umm=" NAME"

57

Chapter 5. Persistent Classes

type="string"/>

<property nane="address"
col uim=" ADDRESS"
type="string"/>

<many-t o- one nane="or gani zati on"
col umm=" ORGANI ZATI ON_I D"
cl ass="Organi zati on"/ >

<bag nane="orders"
i nverse="true"
| azy="f al se"
cascade="al | ">
<key col um="CUSTOMER | D"/ >
<one-to-many class="Order"/>
</ bag>

</cl ass>

</ hi ber nat e- mappi ng>

Note that even though associations are declared using target class names, the target type of an
associations may also be a dynamic entity instead of a POJO.

After setting the default entity mode to dynani c- map for the Sessi onFact ory, we can at runtime
work with Map s of Map s:

Session s = openSession();
Transaction tx = s. begi nTransaction();
Session s = openSession();

/] Create a custoner
Map david = new HashMap();
davi d. put ("name", "David");

/'l Create an organi zation
Map foobar = new HashMap();
f oobar . put ("name", "Foobar Inc.");

/1 Link both
davi d. put ("organi zati on", foobar);

/| Save both
s. save("Custoner", david);
s.save("Organi zati on", foobar);

tx.commt();
s.cl ose();

The advantages of a dynamic mapping are quick turnaround time for prototyping without the
need for entity class implementation. However, you lose compile-time type checking and will

58

Tuplizers

very likely deal with many exceptions at runtime. Thanks to the Hibernate mapping, the
database schema can easily be normalized and sound, allowing to add a proper domain model
implementation on top later on.

Entity representation modes can also be set on a per Sessi on basis:

Sessi on dynami cSessi on = poj oSessi on. get Sessi on(Enti t yMode. VAP) ;

/] Create a custoner

Map david = new HashMap();

davi d. put ("name", "David");

dynami cSessi on. save(" Custoner", david);

dynam cSessi on. f| ush();
dynami cSessi on. cl ose()

/1 Continue on pojoSession

Please note that the call to get Sessi on() using an Enti t yMobde is on the Sessi on API, not the
Sessi onFact ory. That way, the new Sessi on shares the underlying JDBC connection,
transaction, and other context information. This means you don't have tocall f | ush() and

cl ose() on the secondary Sessi on, and also leave the transaction and connection handling to
the primary unit of work.

More information about the XML representation capabilities can be found in Chapter 19, XML
Mapping.

5. Tuplizers

org. hi bernate. tupl e. Tupli zer, and its sub-interfaces, are responsible for managing a
particular representation of a piece of data, given that representation's

or g. hi bernate. Enti t yMbde. If a given piece of data is thought of as a data structure, then a
tuplizer is the thing which knows how to create such a data structure and how to extract values
from and inject values into such a data structure. For example, for the POJO entity mode, the
correpsonding tuplizer knows how create the POJO through its constructor and how to access
the POJO properties using the defined property accessors. There are two high-level types of
Tuplizers, represented by the or g. hi bernate. tuple.entity. EntityTuplizer and

or g. hi ber nat e. t upl e. conponent . Conponent Tupl i zer interfaces. Enti tyTupl i zer s are
responsible for managing the above mentioned contracts in regards to entities, while
Conponent Tupl i zer s do the same for components.

Users may also plug in their own tuplizers. Perhaps you require that a j ava. util . Map
implementation other than j ava. uti | . HashMap be used while in the dynamic-map entity-mode;
or perhaps you need to define a different proxy generation strategy than the one used by
default. Both would be achieved by defining a custom tuplizer implementation. Tuplizers
definitions are attached to the entity or component mapping they are meant to manage. Going
back to the example of our customer entity:

<hi ber nat e- mappi ng>

59

Chapter 5. Persistent Classes

<cl ass entity-nane="Custoner" >
<I--
Override the dynam c-map entity-node
tuplizer for the custoner entity
o=
<tuplizer entity-nmde="dynan c-map"
cl ass="Cust omVapTupl i zer |l npl "/ >

<id name="id" type="long" colum="I|D"'>
<generat or cl ass="sequence"/>
</id>
<I-- other properties -->
</ cl ass>
</ hi ber nat e- nappi ng>

public class CustomMvapTupli zer!| npl
ext ends org. hi bernate. tuple.entity. Dynam cMapEntityTuplizer {

[/ override the buildlnstantiator() nethod to plug in our custom nmap...

protected final Instantiator buildlnstantiator(
or g. hi ber nat e. mappi ng. Per si st ent Cl ass nmappi ngl nfo) {
return new CustonmVapl nstanti ator(mappi nglnfo);

}

private static final class CustomMVaplnstanti ator
ext ends org. hi bernate. tupl e. Dynam cMapl nstantitor {
/1 override the generateMap() nethod to return our custom map...
protected final Map generateMap() {
return new Customvap();

}
}

60

Chapter 6.

Basic O/R Mapping

1. Mapping declaration

Object/relational mappings are usually defined in an XML document. The mapping document is
designed to be readable and hand-editable. The mapping language is Java-centric, meaning
that mappings are constructed around persistent class declarations, not table declarations.

Note that, even though many Hibernate users choose to write the XML by hand, a number of
tools exist to generate the mapping document, including XDoclet, Middlegen and AndroMDA.

Lets kick off with an example mapping:

<?xm version="1.0"?>
<I DOCTYPE hi ber nat e- mappi ng PUBLI C
"-// H bernat e/ H bernate Mappi ng DTD 3. 0//EN'
"http://hibernate. sourceforge. net/ hi ber nat e- mappi ng- 3. 0. dt d" >

<hi ber nat e- mappi ng package="eg">

<cl ass nane="Cat"
t abl e="cat s"
di scri m nat or-val ue="C'>

<id name="id">
<generator class="native"/>
</id>

<di scri m nat or col um="subcl ass"
type="character"/>

<property nane="wei ght"/>

<property nanme="bi rthdate"
type="dat e"
not - nul I ="true"
updat e="f al se"/ >

<property nane="col or"
type="eg. t ypes. Col or User Type"
not - nul I ="true"
updat e="f al se"/ >

<property nane="sex"
not - nul I ="t rue"
updat e="f al se"/ >

<property name="litterld"
colum="litterld"
updat e="f al se"/ >

<many-t o- one name="not her"
col um="not her _i d"
updat e="f al se"/ >

61

Chapter 6. Basic O/R Mapping

<set name="kittens"
i nverse="true"
order-by="litter _id">
<key col um="not her _i d"/ >
<one-to-many class="Cat"/>
</ set>

<subcl ass nane="Donesti cCat"
di scri m nat or-val ue="D">

<property nanme="nane"
type="string"/>

</ subcl ass>
</ cl ass>

<cl ass nanme="Dog" >
<!-- mapping for Dog could go here -->
</ cl ass>

</ hi ber nat e- nappi ng>

We will now discuss the content of the mapping document. We will only describe the document
elements and attributes that are used by Hibernate at runtime. The mapping document also
contains some extra optional attributes and elements that affect the database schemas
exported by the schema export tool. (For example the not - nul | attribute.)

1.1. Doctype

All XML mappings should declare the doctype shown. The actual DTD may be found at the URL
above, in the directory hi ber nat e- x. x. x/ src/ or g/ hi bernate orin hi bernate3.jar.
Hibernate will always look for the DTD in its classpath first. If you experience lookups of the
DTD using an Internet connection, check your DTD declaration against the contents of your
claspath.

1.1.1. EntityResolver

As mentioned previously, Hibernate will first attempt to resolve DTDs in its classpath. The
manner in which it does this is by registering a custom or g. xm . sax. Enti t yResol ver
implementation with the SAXReader it uses to read in the xml files. This custom

Entit yResol ver recognizes two different systemld namespaces.

« ahi bernat e nanmespace is recognized whenever the resolver encounteres a systemld
starting with ht t p: // hi ber nat e. sour cef or ge. net / ; the resolver attempts to resolve these
entities via the classlaoder which loaded the Hibernate classes.

e auser namespace is recognized whenever the resolver encounteres a systemld using a

62

hibernate-mapping

cl asspat h: // URL protocol; the resolver will attempt to resolve these entities via (1) the
current thread context classloader and (2) the classloader which loaded the Hibernate
classes.

An example of utilizing user namespacing:

<?xm version="1.0"7?>
<I DOCTYPE hi ber nat e- mappi ng PUBLI C
"-// H bernat e/ H bernate Mappi ng DTD 3. 0//EN'
"http://hibernate. sourceforge. net/ hi ber nat e- mappi ng- 3. 0. dt d" [
<IENTITY types SYSTEM "cl asspat h://your/ domai n/types. xm ">
1>

<hi ber nat e- mappi ng package="your. domai n" >
<cl ass nanme="MWEntity">
<id name="id" type="ny-custontid-type">

</id>
</ cl ass>
& types;
</ hi ber nat e- mappi ng>

Where t ypes. xnl is a resource in the your . donai n package and contains a custom
Section 2.3, “Custom value types” typedef.

1.2. hibernate-mapping

This element has several optional attributes. The schema and cat al og attributes specify that
tables referred to in this mapping belong to the named schema and/or catalog. If specified,
tablenames will be qualified by the given schema and catalog names. If missing, tablenames
will be unqualified. The def aul t - cascade attribute specifies what cascade style should be
assumed for properties and collections which do not specify a cascade attribute. The

aut o-i nport attribute lets us use unqualified class names in the query language, by default.

<hi ber nat e- nappi ng
schema="schemaNane"
cat al og="cat al ogNane"
def aul t - cascade="cascade_styl e"
defaul t-access="fi el d| property| Cl assNane"
default-lazy="true| fal se"
aut o-i nport="true| fal se"
package="package. nane"

/>

schena (optional): The name of a database schema.
cat al og (optional): The name of a database catalog.

def aul t - cascade (optional - defaults to none): A default cascade style.

63

Chapter 6. Basic O/R Mapping

def aul t - access (optional - defaults to pr operty): The strategy Hibernate should use for
accessing all properties. Can be a custom implementation of Pr opert yAccessor.

def aul t - | azy (optional - defaults to t r ue): The default value for unspecifed | azy attributes of
class and collection mappings.

aut o-i nport (optional - defaults to t r ue): Specifies whether we can use unqualified class
names (of classes in this mapping) in the query language.

package (optional): Specifies a package prefix to assume for unqualified class names in the
mapping document.

If you have two persistent classes with the same (unqualified) name, you should set
aut o-i npor t ="f al se". Hibernate will throw an exception if you attempt to assign two classes
to the same "imported” name.

Note that the hi ber nat e- mappi ng element allows you to nest several persistent <cl ass>
mappings, as shown above. It is however good practice (and expected by some tools) to map
only a single persistent class (or a single class hierarchy) in one mapping file and name it after
the persistent superclass, e.g. Cat . hbm xni , Dog. hbm xni , or if using inheritance,

Ani mal . hbm xm .

1.3. class

You may declare a persistent class using the cl ass element:

<cl ass
name="Cl assNane"
t abl e="t abl eNane"
di scri m nat or-val ue="di scri m nat or _val ue"
mut abl e="true| f al se"
schena="owner "
cat al og="cat al og"
pr oxy="Proxyl nt erface"
dynami c- updat e="true| f al se"
dynani c-insert="true| fal se"
sel ect - bef or e- updat e="true| f al se"
pol yrmor phi sme"inplicit|explicit"
where="arbitrary sql where condition"
persi st er="Persi sterC ass"
bat ch-si ze="N"
optim stic-lock="none|version|dirty|all"
| azy="true|fal se"
entity-nane="EntityName"
check="arbitrary sql check condition"
rowi d="row d"
subsel ect =" SQL expressi on"
abstract="true|f al se"
node="el ement - nane"

/>

64

class

name (optional): The fully qualified Java class name of the persistent class (or interface). If this
attribute is missing, it is assumed that the mapping is for a non-POJO entity.

t abl e (optional - defaults to the unqualified class name): The name of its database table.

di scri mi nat or - val ue (optional - defaults to the class name): A value that distiguishes
individual subclasses, used for polymorphic behaviour. Acceptable values include nul I and not
nul | .

mut abl e (optional, defaults to t r ue): Specifies that instances of the class are (not) mutable.

schema (optional): Override the schema name specified by the root <hi ber nat e- mappi ng>
element.

cat al og (optional): Override the catalog name specified by the root <hi ber nat e- nappi ng>
element.

pr oxy (optional): Specifies an interface to use for lazy initializing proxies. You may specify the
name of the class itself.

dynani c- updat e (optional, defaults to f al se): Specifies that UPDATE SQL should be generated
at runtime and contain only those columns whose values have changed.

dynanmi c-i nsert (optional, defaults to f al se): Specifies that | NSERT SQL should be generated
at runtime and contain only the columns whose values are not null.

sel ect - bef or e- updat e (optional, defaults to f al se): Specifies that Hibernate should never
perform an SQL UPDATE unless it is certain that an object is actually modified. In certain cases
(actually, only when a transient object has been associated with a new session using

updat e()), this means that Hibernate will perform an extra SQL SELECT to determine if an
UPDATE is actually required.

pol ynor phi sm(optional, defaults to i npl i ci t): Determines whether implicit or explicit query
polymorphism is used.

wher e (optional) specify an arbitrary SQL WHERE condition to be used when retrieving objects of
this class

per si st er (optional): Specifies a custom C assPersi ster.

bat ch- si ze (optional, defaults to 1) specify a "batch size" for fetching instances of this class by
identifier.

opti mistic-1ock (optional, defaults to ver si on): Determines the optimistic locking strategy.
I azy (optional): Lazy fetching may be completely disabled by setting | azy="f al se".

entity-name (optional, defaults to the class name): Hibernate3 allows a class to be mapped
multiple times (to different tables, potentially), and allows entity mappings that are represented
by Maps or XML at the Java level. In these cases, you should provide an explicit arbitrary name
for the entity. See Section 4, “Dynamic models” and Chapter 19, XML Mapping for more

65

Chapter 6. Basic O/R Mapping

information.

check (optional): A SQL expression used to generate a multi-row check constraint for automatic
schema generation.

row d (optional): Hibernate can use so called ROWIDs on databases which support. E.g. on
Oracle, Hibernate can use the r owi d extra column for fast updates if you set this option to
rowi d. A ROWID is an implementation detail and represents the physical location of a stored
tuple.

subsel ect (optional): Maps an immutable and read-only entity to a database subselect. Useful
if you want to have a view instead of a base table, but don't. See below for more information.

abstract (optional): Used to mark abstract superclasses in <uni on- subcl ass> hierarchies.

It is perfectly acceptable for the named persistent class to be an interface. You would then
declare implementing classes of that interface using the <subcl ass> element. You may persist
any static inner class. You should specify the class name using the standard form ie.

eg. Foo$Bar .

Immutable classes, mut abl e="f al se", may not be updated or deleted by the application. This
allows Hibernate to make some minor performance optimizations.

The optional pr oxy attribute enables lazy initialization of persistent instances of the class.
Hibernate will initially return CGLIB proxies which implement the named interface. The actual
persistent object will be loaded when a method of the proxy is invoked. See "Proxies for Lazy
Initialization" below.

Implicit polymorphism means that instances of the class will be returned by a query that names
any superclass or implemented interface or the class and that instances of any subclass of the
class will be returned by a query that names the class itself. Explicit polymorphism means that
class instances will be returned only by queries that explicitly name that class and that queries
that name the class will return only instances of subclasses mapped inside this <cl ass>
declaration as a <subcl ass> or <j oi ned- subcl ass>. For most purposes the default,

pol ynor phi sme"inplicit", is appropriate. Explicit polymorphism is useful when two different
classes are mapped to the same table (this allows a "lightweight" class that contains a subset of
the table columns).

The per si st er attribute lets you customize the persistence strategy used for the class. You
may, for example, specify your own subclass of or g. hi ber nat e. persi ster. EntityPersister
or you might even provide a completely new implementation of the interface

or g. hi ber nat e. persi st er. C assPer si st er that implements persistence via, for example,
stored procedure calls, serialization to flat files or LDAP. See

or g. hi bernat e. t est . Cust onPer si st er for a simple example (of "persistence” to a

Hasht abl e).

Note that the dynani c- updat e and dynani c-i nsert settings are not inherited by subclasses
and so may also be specified on the <subcl ass> or <j oi ned- subcl ass> elements. These
settings may increase performance in some cases, but might actually decrease performance in
others. Use judiciously.

66

Use of sel ect - bef or e- updat e will usually decrease performance. It is very useful to prevent a
database update trigger being called unnecessarily if you reattach a graph of detached
instances to a Sessi on.

If you enable dynani c- updat e, you will have a choice of optimistic locking strategies:

 ver si on check the version/timestamp columns
e al | check all columns
 di rty check the changed columns, allowing some concurrent updates

* none do not use optimistic locking

We very strongly recommend that you use version/timestamp columns for optimistic locking with
Hibernate. This is the optimal strategy with respect to performance and is the only strategy that
correctly handles modifications made to detached instances (ie. when Sessi on. ner ge() is
used).

There is no difference between a view and a base table for a Hibernate mapping, as expected
this is transparent at the database level (note that some DBMS don't support views properly,
especially with updates). Sometimes you want to use a view, but can't create one in the
database (ie. with a legacy schema). In this case, you can map an immutable and read-only
entity to a given SQL subselect expression:

<cl ass nanme="Summary" >

<subsel ect >
sel ect item name, max(bi d.amunt), count(*)
fromitem
join bid on bid.itemid =itemid
group by item nane

</ subsel ect >

<synchroni ze tabl e="itent/>

<synchroni ze tabl e="bid"/>

<id name="name"/>

</ cl ass>
Declare the tables to synchronize this entity with, ensuring that auto-flush happens correctly,

and that queries against the derived entity do not return stale data. The <subsel ect > is
available as both as an attribute and a nested mapping element.

1.4.id

Mapped classes must declare the primary key column of the database table. Most classes will
also have a JavaBeans-style property holding the unique identifier of an instance. The <i d>
element defines the mapping from that property to the primary key column.

<id

67

Chapter 6. Basic O/R Mapping

nanme="pr opert yNane"

type="t ypenane"

col utm="col um_nane"

unsaved- val ue="nul | | any| none| undefi ned| i d_val ue"
access="fi el d| property| d assNane" >

node="el ement - nane| @ttri but e-nane| el enent/ @ttribute|."

<generat or cl ass="generat ord ass"/>
</id>

nane (optional): The name of the identifier property.
t ype (optional): A name that indicates the Hibernate type.
col unm (optional - defaults to the property name): The name of the primary key column.

unsaved- val ue (optional - defaults to a "sensible" value): An identifier property value that
indicates that an instance is newly instantiated (unsaved), distinguishing it from detached
instances that were saved or loaded in a previous session.

access (optional - defaults to pr oper t y): The strategy Hibernate should use for accessing the
property value.

If the name attribute is missing, it is assumed that the class has no identifier property.
The unsaved- val ue attribute is almost never needed in Hibernate3.

There is an alternative <conposi t e- i d> declaration to allow access to legacy data with
composite keys. We strongly discourage its use for anything else.

1.4.1. Generator

The optional <gener at or > child element names a Java class used to generate unique
identifiers for instances of the persistent class. If any parameters are required to configure or
initialize the generator instance, they are passed using the <par an» element.

<id name="id" type="long" colum="cat_id">
<generat or cl ass="org. hi bernate.id. Tabl eH LoGener at or " >
<par am nane="t abl e" >ui d_t abl e</ par an>
<par am nane="col um" >next _hi _val ue_col um</ par an»
</ gener at or >
</id>

All generators implement the interface or g. hi bernate.id.ldentifierGenerator. Thisisa
very simple interface; some applications may choose to provide their own specialized
implementations. However, Hibernate provides a range of built-in implementations. There are
shortcut names for the built-in generators:

i ncrenent

68

generates identifiers of type | ong, short ori nt that are unique only when no other process
is inserting data into the same table. Do not use in a cluster.

identity
supports identity columns in DB2, MySQL, MS SQL Server, Sybase and HypersonicSQL.
The returned identifier is of type | ong, short orint.

sequence
uses a sequence in DB2, PostgreSQL, Oracle, SAP DB, McKaoi or a generator in Interbase.
The returned identifier is of type | ong, short ori nt

hilo
uses a hi/lo algorithm to efficiently generate identifiers of type | ong, short ori nt, given a
table and column (by default hi ber nat e_uni que_key and next _hi respectively) as a
source of hi values. The hi/lo algorithm generates identifiers that are unique only for a
particular database.

seghil o
uses a hi/lo algorithm to efficiently generate identifiers of type | ong, short ori nt, given a
named database sequence.

uui d
uses a 128-bit UUID algorithm to generate identifiers of type string, unique within a network
(the IP address is used). The UUID is encoded as a string of hexadecimal digits of length
32.

guid
uses a database-generated GUID string on MS SQL Server and MySQL.

native
picks i denti ty, sequence or hi | o depending upon the capabilities of the underlying
database.

assi gned
lets the application to assign an identifier to the object before save() is called. This is the
default strategy if no <gener at or > element is specified.

sel ect
retrieves a primary key assigned by a database trigger by selecting the row by some unique
key and retrieving the primary key value.

foreign
uses the identifier of another associated object. Usually used in conjunction with a
<one-t 0- one> primary key association.

sequence-identity
a specialized sequence generation strategy which utilizes a database sequence for the
actual value generation, but combines this with JDBC3 getGeneratedKeys to actually return
the generated identifier value as part of the insert statement execution. This strategy is only
known to be supported on Oracle 10g drivers targetted for JDK 1.4. Note comments on

69

Chapter 6. Basic O/R Mapping

these insert statements are disabled due to a bug in the Oracle drivers.

1.4.2. Hi/lo algorithm

The hi | 0 and seqghi | o generators provide two alternate implementations of the hi/lo algorithm,
a favorite approach to identifier generation. The first implementation requires a "special”
database table to hold the next available "hi" value. The second uses an Oracle-style sequence
(where supported).

<id name="id" type="long" colum="cat _id">
<generator class="hilo">
<par am nane="t abl e" >hi _val ue</ par an»
<par am nanme="col um" >next _val ue</ par an>
<par am nanme="nmax_| 0" >100</ par an>
</ gener at or >
</id>

<id name="id" type="long" colum="cat_id">
<generator class="seghil 0">
<par am name="sequence" >hi _val ue</ par an>
<par am nanme="nax_| 0" >100</ par an®
</ gener at or >
</id>

Unfortunately, you can't use hi | o when supplying your own Connect i on to Hibernate. When
Hibernate is using an application server datasource to obtain connections enlisted with JTA, you
must properly configure the hi ber nat e. transact i on. nanager _| ookup_cl ass.

1.4.3. UUID algorithm

The UUID contains: IP address, startup time of the JVM (accurate to a quarter second), system
time and a counter value (unique within the JVM). It's not possible to obtain a MAC address or
memory address from Java code, so this is the best we can do without using JNI.

1.4.4. |dentity columns and sequences

For databases which support identity columns (DB2, MySQL, Sybase, MS SQL), you may use
i denti ty key generation. For databases that support sequences (DB2, Oracle, PostgreSQL,
Interbase, McKoi, SAP DB) you may use sequence style key generation. Both these strategies
require two SQL queries to insert a new object.

<id nanme="id" type="long" col um="person_id">
<generat or cl ass="sequence">
<par am nane="sequence" >per son_i d_sequence</ par an>
</ gener at or >
</id>

<id name="id" type="long" col um="person_id" unsaved-val ue="0">

70

composite-id

<generator class="identity"/>
</id>

For cross-platform development, the nat i ve strategy will choose from the i dentity, sequence

and hi | o strategies, dependant upon the capabilities of the underlying database.

1.4.5. Assigned identifiers

If you want the application to assign identifiers (as opposed to having Hibernate generate them),
you may use the assi gned generator. This special generator will use the identifier value already

assigned to the object's identifier property. This generator is used when the primary key is a
natural key instead of a surrogate key. This is the default behavior if you do no specify a
<gener at or > element.

Choosing the assi gned generator makes Hibernate use unsaved- val ue="undef i ned", forcing

Hibernate to go to the database to determine if an instance is transient or detached, unless
there is a version or timestamp property, or you define I nt er cept or. i sUnsaved() .

1.4.6. Primary keys assigned by triggers

For legacy schemas only (Hibernate does not generate DDL with triggers).

<id nanme="id" type="long" col um="person_id">
<generator class="sel ect">
<par am nane="key" >soci al Securi t yNunber </ par an»
</ gener at or >
</id>

In the above example, there is a unique valued property named soci al Securi t yNunber
defined by the class, as a natural key, and a surrogate key named per son_i d whose value is
generated by a trigger.

1.5. composite-id

<composite-id
nanme="pr opert yNane"
cl ass="Cl assNane"
mapped="true| fal se"
access="fi el d| property| d assNane" >
node="el ement - nane| . "

<key- property name="propertyNane" type="typenane"
col um="col um_nane"/ >

<key- many-t o- one nane="propertyNanme cl ass="C assNane"
col um="col um_name"/ >

</ conposi te-id>

71

Chapter 6. Basic O/R Mapping

For a table with a composite key, you may map multiple properties of the class as identifier
properties. The <conposi t e-i d> element accepts <key- pr oper t y> property mappings and
<key- many-t 0- one> mappings as child elements.

<conposite-id>
<key- property nane="nedi car eNunber"/ >
<key- property nane="dependent"/>

</ conposi te-id>

Your persistent class must override equal s() and hashCode() to implement composite
identifier equality. It must also implements Seri al i zabl e.

Unfortunately, this approach to composite identifiers means that a persistent object is its own
identifier. There is no convenient "handle" other than the object itself. You must instantiate an
instance of the persistent class itself and populate its identifier properties before you can

| oad() the persistent state associated with a composite key. We call this approach an
embedded composite identifier, and discourage it for serious applications.

A second approach is what we call a mapped composite identifier, where the identifier
properties named inside the <conposi t e- i d> element are duplicated on both the persistent
class and a separate identifier class.

<conposite-id class="Medi carel d" napped="true">
<key- property nane="nedi car eNunber"/ >
<key- property nane="dependent"/>

</ conposi te-id>

In this example, both the composite identifier class, Medi car el d, and the entity class itself have
properties named nmedi car eNunber and dependent . The identifier class must override

equal s() and hashCode() and implement. Seri al i zabl e. The disadvantage of this approach
is quite obvious - code duplication.

The following attributes are used to specify a mapped composite identifier:

« mapped (optional, defaults to f al se): indicates that a mapped composite identifier is used,
and that the contained property mappings refer to both the entity class and the composite
identifier class.

 cl ass (optional, but required for a mapped composite identifier): The class used as a
composite identifier.

We will describe a third, even more convenient approach where the composite identifier is
implemented as a component class in Section 4, “Components as composite identifiers”. The
attributes described below apply only to this alternative approach:

« nane (optional, required for this approach): A property of component type that holds the
composite identifier (see chapter 9).
» access (optional - defaults to pr opert y): The strategy Hibernate should use for accessing the

72

discriminator

property value.
 cl ass (optional - defaults to the property type determined by reflection): The component class
used as a composite identifier (see next section).

This third approach, an identifier component is the one we recommend for almost all
applications.

1.6. discriminator

The <di scri mi nat or > element is required for polymorphic persistence using the
table-per-class-hierarchy mapping strategy and declares a discriminator column of the table.
The discriminator column contains marker values that tell the persistence layer what subclass to
instantiate for a particular row. A restricted set of types may be used: stri ng, char act er,

i nt eger, byte, short, bool ean, yes_no, true_f al se.

<di scri m nat or
col um="di scri m nat or _col um"
type="di scri m nat or _type"
force="true| fal se"
insert="true|fal se"
formul a="arbitrary sqgl expression"

col unn (optional - defaults to cl ass) the name of the discriminator column.
t ype (optional - defaults to st ri ng) a name that indicates the Hibernate type

f or ce (optional - defaults to f al se) "force" Hibernate to specify allowed discriminator values
even when retrieving all instances of the root class.

i nsert (optional - defaults to t r ue) set this to f al se if your discriminator column is also part of
a mapped composite identifier. (Tells Hibernate to not include the column in SQL | NSERT s.)

f or mul a (optional) an arbitrary SQL expression that is executed when a type has to be
evaluated. Allows content-based discrimination.

Actual values of the discriminator column are specified by the di scri ni nat or - val ue attribute
of the <cl ass> and <subcl ass> elements.

The f or ce attribute is (only) useful if the table contains rows with "extra" discriminator values
that are not mapped to a persistent class. This will not usually be the case.

Using the f or nul a attribute you can declare an arbitrary SQL expression that will be used to
evaluate the type of a row:

<di scri m nat or
formul a="case when CLASS TYPE in (‘a', 'b', 'c') then 0 else 1 end"
type="integer"/>

73

Chapter 6. Basic O/R Mapping

1.7. version (optional)

The <ver si on> element is optional and indicates that the table contains versioned data. This is
particularly useful if you plan to use long transactions (see below).

<ver si on

col utm="ver si on_col um"

nanme="pr opert yNane"

type="t ypenane"

access="fi el d| property| C assNane"

unsaved-val ue="nul | | negati ve| undefi ned"

gener at ed="never | al ways"

i nsert="true|fal se"

node="el ement - name| @ttri bute-nane| el ement/ @ttribute|."
/>

col um (optional - defaults to the property name): The name of the column holding the version
number.

nane: The name of a property of the persistent class.
t ype (optional - defaults to i nt eger): The type of the version number.

access (optional - defaults to pr oper t y): The strategy Hibernate should use for accessing the
property value.

unsaved- val ue (optional - defaults to undef i ned): A version property value that indicates that
an instance is newly instantiated (unsaved), distinguishing it from detached instances that were
saved or loaded in a previous session. (undef i ned specifies that the identifier property value
should be used.)

gener at ed (optional - defaults to never): Specifies that this version property value is actually
generated by the database. See the discussion of Section 6, “Generated Properties” generated
properties.

i nsert (optional - defaults to t r ue): Specifies whether the version column should be included in
SQL insert statements. May be set to f al se if and only if the database column is defined with a
default value of 0.

Version numbers may be of Hibernate type | ong, i nt eger, short, ti mest anp or cal endar.

A version or timestamp property should never be null for a detached instance, so Hibernate will
detact any instance with a null version or timestamp as transient, no matter what other
unsaved- val ue strategies are specified. Declaring a nullable version or timestamp property is
an easy way to avoid any problems with transitive reattachment in Hibernate, especially useful
for people using assigned identifiers or composite keys!

1.8. timestamp (optional)

The optional <t i nest anp> element indicates that the table contains timestamped data. This is

74

property

intended as an alternative to versioning. Timestamps are by nature a less safe implementation
of optimistic locking. However, sometimes the application might use the timestamps in other
ways.

<ti mest anp

col um="ti mest anp_col um"

nanme="pr opert yNanme"

access="fi el d| property| d assNane"

unsaved- val ue="nul | | undef i ned"

sour ce="vnj db"

gener at ed="never | al ways"

node="el ement - name| @t tri but e- nane| el enent/ @ttribute|."
/>

col unm (optional - defaults to the property name): The name of a column holding the timestamp.

nane: The name of a JavaBeans style property of Java type Dat e or Ti nest anp of the persistent
class.

access (optional - defaults to pr oper t y): The strategy Hibernate should use for accessing the
property value.

unsaved- val ue (optional - defaults to nul |): A version property value that indicates that an
instance is newly instantiated (unsaved), distinguishing it from detached instances that were
saved or loaded in a previous session. (undef i ned specifies that the identifier property value
should be used.)

sour ce (optional - defaults to vm): From where should Hibernate retrieve the timestamp value?
From the database, or from the current JVM? Database-based timestamps incur an overhead
because Hibernate must hit the database in order to determine the "next value", but will be safer
for use in clustered environments. Note also, that not all Di al ect s are known to support
retrieving of the database's current timestamp, while others might be unsafe for usage in locking
due to lack of precision (Oracle 8 for example).

gener at ed (optional - defaults to never): Specifies that this timestamp property value is actually
generated by the database. See the discussion of Section 6, “Generated Properties” generated
properties.

Note that <t i mest anp> is equivalent to <ver si on type="ti mest anp”>. And <ti nest anp
sour ce="db" > is equivalent to <ver si on type="dbti nest anp">

1.9. property

The <pr opert y> element declares a persistent, JavaBean style property of the class.

<property
nanme="pr opert yNane"
col um="col utMm_nane"
type="t ypenane"
updat e="true| f al se"
insert="true|fal se"

75

Chapter 6. Basic O/R Mapping

formul a="arbitrary SQ expression"
access="fi el d| property| d assNane"
| azy="true|fal se"
uni que="true| f al se"
not-nul I ="true| fal se"
optimstic-lock="true|fal se"
gener at ed="never | i nsert| al ways"
node="el ement - nanme| @ttri but e- nane| el enent/ @ttribute|."
i ndex="i ndex_nane"
uni que_key="uni que_key_i d"
| engt h="L"
preci si on="P"
scal e="S"

/>

nane: the name of the property, with an initial lowercase letter.

col unm (optional - defaults to the property name): the name of the mapped database table
column. This may also be specified by nested <col uim> element(s).

t ype (optional): a name that indicates the Hibernate type.

update, insert (optional - defaults to t r ue) : specifies that the mapped columns should be
included in SQL UPDATE and/or | NSERT statements. Setting both to f al se allows a pure
"derived" property whose value is initialized from some other property that maps to the same
colum(s) or by a trigger or other application.

f or mul a (optional): an SQL expression that defines the value for a computed property.
Computed properties do not have a column mapping of their own.

access (optional - defaults to pr opert y): The strategy Hibernate should use for accessing the
property value.

| azy (optional - defaults to f al se): Specifies that this property should be fetched lazily when the
instance variable is first accessed (requires build-time bytecode instrumentation).

uni que (optional): Enable the DDL generation of a unique constraint for the columns. Also,
allow this to be the target of a property-ref.

not - nul | (optional): Enable the DDL generation of a nullability constraint for the columns.

opti m stic-1ock (optional - defaults to t r ue): Specifies that updates to this property do or do
not require acquisition of the optimistic lock. In other words, determines if a version increment
should occur when this property is dirty.

gener at ed (optional - defaults to never): Specifies that this property value is actually generated
by the database. See the discussion of Section 6, “Generated Properties” generated properties.

typename could be:

1. The name of a Hibernate basic type (eg. i nteger, string, character, date,

76

many-to-one

timestanp, float, binary, serializable, object, blob).
2. The name of a Java class with a default basic type (eg.int, float, char,
java.lang. String, java.util.Date, java.lang.Integer, java.sqgl.d ob).
3. The name of a serializable Java class.
4. The class name of a custom type (eg. comi | | fl ow. t ype. MyCust onType).

If you do not specify a type, Hibernate will use reflection upon the named property to take a
guess at the correct Hibernate type. Hibernate will try to interpret the name of the return class of
the property getter using rules 2, 3, 4 in that order. However, this is not always enough. In
certain cases you will still need the t ype attribute. (For example, to distinguish between

Hi ber nat e. DATE and Hi ber nat e. TI MESTAMP, or to specify a custom type.)

The access attribute lets you control how Hibernate will access the property at runtime. By
default, Hibernate will call the property get/set pair. If you specify access="fi el d", Hibernate
will bypass the get/set pair and access the field directly, using reflection. You may specify your
own strategy for property access by naming a class that implements the interface

org. hi bernate. property. PropertyAccessor.

An especially powerful feature are derived properties. These properties are by definition
read-only, the property value is computed at load time. You declare the computation as a SQL
expression, this translates to a SELECT clause subquery in the SQL query that loads an
instance:

<property nane="total Price"

formul a="(SELECT SUM (li.quantity*p.price) FROM Lineltem|i, Product p
VWHERE | i . productld = p.productld
AND |i.custonmerld = custonerld

AND | i . order Number = order Number)"/>

Note that you can reference the entities own table by not declaring an alias on a particular
column (cust orer | d in the given example). Also note that you can use the nested <f or mul a>
mapping element if you don't like to use the attribute.

1.10. many-to-one

An ordinary association to another persistent class is declared using a many-t o- one element.
The relational model is a many-to-one association: a foreign key in one table is referencing the
primary key column(s) of the target table.

<many-t o- one
name="pr opert yNanme"
col um="col um_nane"
cl ass="Cl assNane"
cascade="cascade_styl e"
fetch="j oi n| sel ect”
updat e="true| f al se"
i nsert="true|fal se"
property-ref="propertyNaneFromAssoci at edCl ass"

77

Chapter 6. Basic O/R Mapping

access="fiel d| property| d assNane"
uni que="true| f al se"
not - nul I ="true| f al se"
optim stic-1lock="true|fal se"
| azy="pr oxy| no- pr oxy| f al se"
not - f ound="i gnor e| excepti on"
entity-nane="EntityNane"
formul a="arbitrary SQ expression"
node="el ement - name| @t tri but e- nane| el enent/ @ttribute|."
enmbed- xm ="true| f al se"
i ndex="i ndex_nange"
uni que_key="uni que_key_i d"
f or ei gn- key="f orei gn_key_nane"

/>

nane: The name of the property.

col umm (optional): The name of the foreign key column. This may also be specified by nested
<col um> element(s).

cl ass (optional - defaults to the property type determined by reflection): The name of the
associated class.

cascade (optional): Specifies which operations should be cascaded from the parent object to
the associated object.

f et ch (optional - defaults to sel ect): Chooses between outer-join fetching or sequential select
fetching.

update, insert (optional - defaults to t r ue) specifies that the mapped columns should be
included in SQL UPDATE and/or | NSERT statements. Setting both to f al se allows a pure
"derived" association whose value is initialized from some other property that maps to the same
colum(s) or by a trigger or other application.

property-ref: (optional) The name of a property of the associated class that is joined to this
foreign key. If not specified, the primary key of the associated class is used.

access (optional - defaults to pr oper t y): The strategy Hibernate should use for accessing the
property value.

uni que (optional): Enable the DDL generation of a unique constraint for the foreign-key column.
Also, allow this to be the target of a pr oper t y-r ef . This makes the association multiplicity
effectively one to one.

not - nul | (optional): Enable the DDL generation of a nullability constraint for the foreign key
columns.

opti mistic-1ock (optional - defaults to t r ue): Specifies that updates to this property do or do
not require acquisition of the optimistic lock. In other words, dertermines if a version increment
should occur when this property is dirty.

78

many-to-one

| azy (optional - defaults to pr oxy): By default, single point associations are proxied.

| azy="no- proxy" specifies that the property should be fetched lazily when the instance
variable is first accessed (requires build-time bytecode instrumentation). | azy="f al se"
specifies that the association will always be eagerly fetched.

not - f ound (optional - defaults to except i on): Specifies how foreign keys that reference missing
rows will be handled: i gnor e will treat a missing row as a null association.

enti ty-name (optional): The entity name of the associated class.
f or mul a (optional): an SQL expression that defines the value for a computed foreign key.

Setting a value of the cascade attribute to any meaningful value other than none will propagate
certain operations to the associated object. The meaningful values are the names of Hibernate's
basic operations, persi st, nerge, del ete, save-update, evict, replicate, |ock,
refresh, as well as the special values del et e- or phan and al | and comma-separated
combinations of operation names, for example, cascade="per si st, nmer ge, evi ct" or
cascade="al | , del et e- or phan". See Section 11, “Transitive persistence” for a full explanation.
Note that single valued associations (many-to-one and one-to-one associations) do not support
orphan delete.

A typical many- t o- one declaration looks as simple as this:

<many-t o- one nanme="product" class="Product” col um="PRODUCT I D"/ >

The property-ref attribute should only be used for mapping legacy data where a foreign key
refers to a unique key of the associated table other than the primary key. This is an ugly
relational model. For example, suppose the Product class had a unique serial number, that is
not the primary key. (The uni que attribute controls Hibernate's DDL generation with the
SchemaExport tool.)

<property nane="serial Nunmber" uni que="true" type="string"
col um="SERI AL_NUMBER"/ >

Then the mapping for Or der | t emmight use:

<many-t o- one name="product" property-ref="serial Nunber"
col urm=" PRODUCT_SERI AL_NUMBER"/ >
This is certainly not encouraged, however.

If the referenced unique key comprises multiple properties of the associated entity, you should
map the referenced properties inside a named <pr oper ti es> element.

If the referenced unique key is the property of a component, you may specify a property path:

<many-t o- one name="owner" property-ref="identity.ssn" col um="0OAER SSN'/ >

79

Chapter 6. Basic O/R Mapping

1.11. one-to-one

A one-to-one association to another persistent class is declared using a one-t o- one element.

<one-t o0-one
nanme="pr opert yNanme"
cl ass="C assNane"
cascade="cascade_styl e"
constrai ned="true| fal se"
fetch="j oi n| sel ect"
property-ref="propertyNaneFromAssoci at edCl ass"
access="fi el d| property| G assNane"
formul a="any SQL expression"
| azy="pr oxy| no- pr oxy| f al se"
entity-name="EntityNanme"
node="el ement - name| @ttri bute-nane| el ement/ @ttribute|."
enmbed- xm ="true| f al se"
f or ei gn- key="f orei gn_key_nane"

/>

nane: The name of the property.

cl ass (optional - defaults to the property type determined by reflection): The name of the
associated class.

cascade (optional) specifies which operations should be cascaded from the parent object to the
associated object.

const r ai ned (optional) specifies that a foreign key constraint on the primary key of the mapped
table references the table of the associated class. This option affects the order in which save()
and del et e() are cascaded, and determines whether the association may be proxied (it is also
used by the schema export tool).

f et ch (optional - defaults to sel ect): Chooses between outer-join fetching or sequential select
fetching.

property-ref: (optional) The name of a property of the associated class that is joined to the
primary key of this class. If not specified, the primary key of the associated class is used.

access (optional - defaults to pr oper t y): The strategy Hibernate should use for accessing the
property value.

f or nul a (optional): Almost all one to one associations map to the primary key of the owning
entity. In the rare case that this is not the case, you may specify a some other column, columns
or expression to join on using an SQL formula. (See or g. hi ber nat e. t est . onet oonef or mul a
for an example.)

| azy (optional - defaults to pr oxy): By default, single point associations are proxied.

80

one-to-one

| azy="no- proxy" specifies that the property should be fetched lazily when the instance
variable is first accessed (requires build-time bytecode instrumentation). | azy="f al se"
specifies that the association will always be eagerly fetched. Note that if const r ai ned="f al se",
proxying is impossible and Hibernate will eager fetch the association!

enti ty-name (optional): The entity name of the associated class.

There are two varieties of one-to-one association:

e primary key associations

* unique foreign key associations

Primary key associations don't need an extra table column; if two rows are related by the
association then the two table rows share the same primary key value. So if you want two
objects to be related by a primary key association, you must make sure that they are assigned
the same identifier value!

For a primary key association, add the following mappings to Enpl oyee and Per son,
respectively.

<one-t o- one name="person" class="Person"/>

<one-t o- one name="enpl oyee" cl ass="Enpl oyee" constrai ned="true"/>

Now we must ensure that the primary keys of related rows in the PERSON and EMPLOYEE
tables are equal. We use a special Hibernate identifier generation strategy called f or ei gn:

<cl ass nanme="person" tabl e=" PERSON" >
<id nanme="id" col um="PERSON | D'>
<generator class="foreign">
<par am nane="property" >enpl oyee</ par an>
</ gener at or >
</id>

<one-t o- one nanme="enpl oyee"
cl ass="Enpl oyee"
constrai ned="true"/>
</ cl ass>

A newly saved instance of Per son is then assigned the same primary key value as the
Enpl oyee instance refered with the enpl oyee property of that Per son.

Alternatively, a foreign key with a unique constraint, from Enpl oyee to Per son, may be
expressed as:

<many-t o- one name="person" class="Person" col um="PERSON | D' uni que="true"/>

81

Chapter 6. Basic O/R Mapping

And this association may be made bidirectional by adding the following to the Per son mapping:

<one-to-one name"enpl oyee" cl ass="Enpl oyee" property-ref="person"/>

1.12. natural-id

<natural -id nutabl e="true|fal se"/>
<property ... [>
<many-to-one ... />

</natural -id>

Even though we recommend the use of surrogate keys as primary keys, you should still try to
identify natural keys for all entities. A natural key is a property or combination of properties that
is unique and non-null. If it is also immutable, even better. Map the properties of the natural key
inside the <nat ur al - i d> element. Hibernate will generate the necessary unique key and
nullability constraints, and your mapping will be more self-documenting.

We strongly recommend that you implement equal s() and hashCode() to compare the natural
key properties of the entity.

This mapping is not intended for use with entities with natural primary keys.

« mut abl e (optional, defaults to f al se): By default, natural identifier properties as assumed to
be immutable (constant).

1.13. component, dynamic-component

The <conponent > element maps properties of a child object to columns of the table of a parent
class. Components may, in turn, declare their own properties, components or collections. See
"Components" below.

<component
nanme="pr opert yNane"
cl ass="cl assNane"
insert="true|fal se"
updat e="true| f al se"
access="fiel d| property| d assNane"
| azy="true|fal se"
optimstic-lock="true|fal se"
uni que="true| f al se"
node="el ement - nane| . "

<property />
<many-to-one />

</ conponent >

82

properties

name: The name of the property.

cl ass (optional - defaults to the property type determined by reflection): The name of the
component (child) class.

i nsert: Do the mapped columns appear in SQL | NSERT s?
updat e: Do the mapped columns appear in SQL UPDATE s?

access (optional - defaults to pr oper t y): The strategy Hibernate should use for accessing the
property value.

| azy (optional - defaults to f al se): Specifies that this component should be fetched lazily when
the instance variable is first accessed (requires build-time bytecode instrumentation).

opti mi stic-1ock (optional - defaults to t r ue): Specifies that updates to this component do or
do not require acquisition of the optimistic lock. In other words, determines if a version
increment should occur when this property is dirty.

uni que (optional - defaults to f al se): Specifies that a unique constraint exists upon all mapped
columns of the component.

The child <pr oper t y> tags map properties of the child class to table columns.

The <conponent > element allows a <par ent > subelement that maps a property of the
component class as a reference back to the containing entity.

The <dynani c- conponent > element allows a Map to be mapped as a component, where the
property names refer to keys of the map, see Section 5, “Dynamic components”.

1.14. properties

The <properti es> element allows the definition of a named, logical grouping of properties of a
class. The most important use of the construct is that it allows a combination of properties to be
the target of a property-ref. Itis also a convenient way to define a multi-column unique
constraint.

<properties
nanme="1| ogi cal Nanme"
insert="true|fal se"
updat e="true| f al se"
optimstic-lock="true|fal se"
uni que="true| f al se"

<property />
<many-to-one />

</ properties>

nane: The logical name of the grouping - not an actual property name.

83

Chapter 6. Basic O/R Mapping

i nsert: Do the mapped columns appear in SQL | NSERT s?
updat e: Do the mapped columns appear in SQL UPDATE s?

opti mistic-1ock (optional - defaults to t r ue): Specifies that updates to these properties do or
do not require acquisition of the optimistic lock. In other words, determines if a version
increment should occur when these properties are dirty.

uni que (optional - defaults to f al se): Specifies that a unique constraint exists upon all mapped
columns of the component.

For example, if we have the following <pr oper t i es> mapping:

<cl ass nane="Person">
<i d nanme="per sonNunber"/>

<properti es name="nane"
uni que="true" update="fal se">
<property nane="first Name"/>
<property nane="initial"/>
<property nane="I| ast Nane"/ >
</ properties>
</ cl ass>

Then we might have some legacy data association which refers to this unique key of the Per son
table, instead of to the primary key:

<many-t 0- one nane="person"
cl ass="Person" property-ref="name">
<col um name="first Name"/ >
<col um nane="initial"/>
<col um name="1 ast Nane"/ >
</ many-t o- one>

We don't recommend the use of this kind of thing outside the context of mapping legacy data.

1.15. subclass

Finally, polymorphic persistence requires the declaration of each subclass of the root persistent
class. For the table-per-class-hierarchy mapping strategy, the <subcl ass> declaration is used.

<subcl ass
name="Cl assNanme"
di scri m nat or-val ue="di scri m nat or _val ue"
pr oxy="Pr oxyl nt er f ace"
| azy="true|fal se”
dynami c- updat e="true| f al se"
dynami c-i nsert="true|fal se"
entity-name="EntityNane"
node="el ement - nane"
ext ends="Super cl assNanme" >

84

joined-subclass

<property />

</ subcl ass>

nane: The fully qualified class name of the subclass.

di scri mi nat or - val ue (optional - defaults to the class name): A value that distiguishes
individual subclasses.

pr oxy (optional): Specifies a class or interface to use for lazy initializing proxies.
| azy (optional, defaults to t r ue): Setting | azy="f al se" disables the use of lazy fetching.

Each subclass should declare its own persistent properties and subclasses. <ver si on> and

<i d> properties are assumed to be inherited from the root class. Each subclass in a heirarchy
must define a unique di scri ni nat or - val ue. If none is specified, the fully qualified Java class
name is used.

For information about inheritance mappings, see Chapter 10, Inheritance Mapping.

1.16. joined-subclass

Alternatively, each subclass may be mapped to its own table (table-per-subclass mapping
strategy). Inherited state is retrieved by joining with the table of the superclass. We use the
<j oi ned- subcl ass> element.

<j oi ned- subcl ass
name="Cl assNane"
t abl e="t abl enane"
proxy="Proxyl nt erface"
| azy="true|fal se"
dynani c- updat e="true| f al se"
dynam c-i nsert="true|fal se"
schema="schema"
cat al og="cat al og"
ext ends=" Super cl assNange"
per si st er =" C assNane"
subsel ect =" SQL expressi on"
entity-name="EntityNanme"
node="el enent - nane" >

<key >
<property />

</ j oi ned- subcl ass>

nane: The fully qualified class name of the subclass.

85

Chapter 6. Basic O/R Mapping

t abl e: The name of the subclass table.
pr oxy (optional): Specifies a class or interface to use for lazy initializing proxies.
| azy (optional, defaults to t r ue): Setting | azy="f al se" disables the use of lazy fetching.

No discriminator column is required for this mapping strategy. Each subclass must, however,
declare a table column holding the object identifier using the <key> element. The mapping at
the start of the chapter would be re-written as:

<?xm version="1.0""?>

<! DOCTYPE hi ber nat e- mappi ng PUBLI C
"-// Hi bernat e/ H bernate Mappi ng DTD// EN'
"http://hibernate. sourceforge. net/ hi ber nat e- mappi ng- 3. 0. dt d" >

<hi ber nat e- mappi ng package="eg">
<cl ass nanme="Cat" tabl e="CATS">

<id name="id" colum="uid" type="I|ong">
<generator class="hilo"/>

</id>

<property nane="birthdate" type="date"/>
<property nane="col or" not-null="true"/>
<property nane="sex" not-null="true"/>

<property nane="wei ght"/>
<many-t o- one nanme="nmate"/>
<set name="kittens">
<key col utm="MOTHER"/ >
<one-to-many cl ass="Cat"/>
</ set>
<j oi ned- subcl ass nane="Donesti cCat" tabl e="DOVESTI C_CATS" >
<key col um="CAT"/>
<property nane="nane" type="string"/>
</ j oi ned- subcl ass>
</ cl ass>

<cl ass nane="eg. Dog" >
<!'-- mapping for Dog could go here -->
</ cl ass>

</ hi ber nat e- mappi ng>

For information about inheritance mappings, see Chapter 10, Inheritance Mapping.

1.17. union-subclass

A third option is to map only the concrete classes of an inheritance hierarchy to tables, (the
table-per-concrete-class strategy) where each table defines all persistent state of the class,
including inherited state. In Hibernate, it is not absolutely necessary to explicitly map such
inheritance hierarchies. You can simply map each class with a separate <cl ass> declaration.
However, if you wish use polymorphic associations (e.g. an association to the superclass of
your hierarchy), you need to use the <uni on- subcl ass> mapping.

86

join

<uni on- subcl ass

</ uni on-

nanme: The fully qualified class name of the subclass.

nanme="Cl assNane"
t abl e="t abl enane"
pr oxy="Pr oxyl nt er f ace"
| azy="true|fal se"

dynam c- updat e="true| f al se"
dynanmi c-insert="true| fal se"

schema="schem"

cat al og="cat al og"

ext ends=" Super cl assNane"
abstract ="true|fal se"

per si st er =" C assNane"
subsel ect =" SQL expressi on"
entity-name="EntityNanme"
node="el enent - nane" >

<property />

subcl ass>

t abl e: The name of the subclass table.

pr oxy (optional): Specifies a class or interface to use for lazy initializing proxies.
| azy (optional, defaults to t r ue): Setting | azy="f al se" disables the use of lazy fetching.
No discriminator column or key column is required for this mapping strategy.

For information about inheritance mappings, see Chapter 10, Inheritance Mapping.

1.18. join

Using the <j oi n> element, it is possible to map properties of one class to several tables, when

there's a 1-to-1 relationship between the tables.

<j oi n

</j oi n>

t abl e="t abl enane"
schena="owner "

cat al og="cat al og"
fetch="j oi n| sel ect”

i nverse="true| fal se"
opti onal ="true|fal se">

<key ... />

<property ... />

t abl e: The name of the joined table.

87

Chapter 6. Basic O/R Mapping

schema (optional): Override the schema name specified by the root <hi ber nat e- mappi ng>
element.

cat al og (optional): Override the catalog name specified by the root <hi ber nat e- nappi ng>
element.

f et ch (optional - defaults to j oi n): If set to j oi n, the default, Hibernate will use an inner join to
retrieve a <j oi n> defined by a class or its superclasses and an outer join for a <j oi n> defined
by a subclass. If set to sel ect then Hibernate will use a sequential select for a <j oi n> defined
on a subclass, which will be issued only if a row turns out to represent an instance of the
subclass. Inner joins will still be used to retrieve a <j oi n> defined by the class and its
superclasses.

i nver se (optional - defaults to f al se): If enabled, Hibernate will not try to insert or update the
properties defined by this join.

optional (optional - defaults to f al se): If enabled, Hibernate will insert a row only if the
properties defined by this join are non-null and will always use an outer join to retrieve the
properties.

For example, the address information for a person can be mapped to a separate table (while
preserving value type semantics for all properties):

<cl ass nane="Person"
t abl e=" PERSON' >

<id name="id" col um="PERSON_|ID'>...</id>

<j oi n tabl e=" ADDRESS" >
<key col um="ADDRESS | D"/ >
<property nane="address"/>
<property nane="zip"/>
<property name="country"/>
</joi n>

This feature is often only useful for legacy data models, we recommend fewer tables than
classes and a fine-grained domain model. However, it is useful for switching between
inheritance mapping strategies in a single hierarchy, as explained later.

1.19. key

We've seen the <key> element crop up a few times now. It appears anywhere the parent
mapping element defines a join to a new table, and defines the foreign key in the joined table,
that references the primary key of the original table.

<key
col um="col umnane"
on-del et e="noact i on| cascade"
property-ref="propertyNane"

88

column and formula elements

not-nul I ="true| fal se"

updat e="true| f al se"

uni que="true| fal se"
/>

col umm (optional): The name of the foreign key column. This may also be specified by nested
<col urm> element(s).

on- del et e (optional, defaults to noact i on): Specifies whether the foreign key constraint has
database-level cascade delete enabled.

property-ref (optional): Specifies that the foreign key refers to columns that are not the
primary key of the orginal table. (Provided for legacy data.)

not - nul | (optional): Specifies that the foreign key columns are not nullable (this is implied
whenever the foreign key is also part of the primary key).

updat e (optional): Specifies that the foreign key should never be updated (this is implied
whenever the foreign key is also part of the primary key).

uni que (optional): Specifies that the foreign key should have a unique constraint (this is implied
whenever the foreign key is also the primary key).

We recommend that for systems where delete performance is important, all keys should be
defined on- del et e="cascade", and Hibernate will use a database-level ON CASCADE DELETE
constraint, instead of many individual DELETE statements. Be aware that this feature bypasses
Hibernate's usual optimistic locking strategy for versioned data.

The not - nul I and updat e attributes are useful when mapping a unidirectional one to many
association. If you map a unidirectional one to many to a non-nullable foreign key, you must
declare the key column using <key not-nul | ="true">.

1.20. column and formula elements

Any mapping element which accepts a col urm attribute will alternatively accept a <col unm>
subelement. Likewise, <f or nul a> is an alternative to the f or nul a attribute.

<col um
nanme="col um_nane"
| engt h="N"
pr eci si on="N'
scal e="N'
not-nul I ="true|fal se"
uni que="true| f al se"
uni que- key="rmnul ti col um_uni que_key_nane"
i ndex="i ndex_nange"
sql -type="sql _type_nanme"
check="SQL expression"
def aul t =" SQL expression"/>

89

Chapter 6. Basic O/R Mapping

<f ornul a>SQL expr essi on</ f or nul a>

col umm and f or mul a attributes may even be combined within the same property or association
mapping to express, for example, exotic join conditions.

<many-t o- one name="honmeAddress" cl ass="Address"
i nsert="fal se" update="fal se">
<col um nanme="person_i d" not-null="true" |ength="10"/>
<formul a>' MAI LI NG </f or mul a>
</ many-t o- one>

1.21. import

Suppose your application has two persistent classes with the same name, and you don't want to
specify the fully qualified (package) name in Hibernate queries. Classes may be "imported"
explicitly, rather than relying upon aut o-i nport ="t rue". You may even import classes and
interfaces that are not explicitly mapped.

<i nport class="java.lang. Object" renane="Universe"/>

<i mport
cl ass="C assNane"
r enane="Short Nang"
/>

cl ass: The fully qualified class name of of any Java class.

r ename (optional - defaults to the unqualified class name): A name that may be used in the
query language.

1.22. any

There is one further type of property mapping. The <any> mapping element defines a
polymorphic association to classes from multiple tables. This type of mapping always requires
more than one column. The first column holds the type of the associated entity. The remaining
columns hold the identifier. It is impossible to specify a foreign key constraint for this kind of
association, so this is most certainly not meant as the usual way of mapping (polymorphic)
associations. You should use this only in very special cases (eg. audit logs, user session data,
etc).

The et a- t ype attribute lets the application specify a custom type that maps database column
values to persistent classes which have identifier properties of the type specified by i d-t ype.
You must specify the mapping from values of the meta-type to class names.

<any nane="bei ng" id-type="long" neta-type="string">

90

Hibernate Types

<net a- val ue val ue="TBL_ANI MAL" cl ass="Ani mal "/ >
<net a- val ue val ue="TBL_HUMAN' cl ass="Human"/ >
<met a-val ue val ue="TBL_ALI EN' cl ass="Ali en"/>
<col um nane="t abl e _nane"/>
<col um nane="id"/>

</ any>

<any
name="pr opert yNanme"
i d-type="idtypenane"
met a- t ype="net at ypenanme"
cascade="cascade_styl e"
access="fi el d| property| C assNane"
optim stic-lock="true|fal se"

<neta-value ... />
<neta-value ... />

<colum />
<colum />

name: the property name.

i d-type: the identifier type.

met a- t ype (optional - defaults to st ri ng): Any type that is allowed for a discriminator mapping.
cascade (optional- defaults to none): the cascade style.

access (optional - defaults to pr oper t y): The strategy Hibernate should use for accessing the
property value.

opti mi stic-1ock (optional - defaults to t r ue): Specifies that updates to this property do or do
not require acquisition of the optimistic lock. In other words, define if a version increment should
occur if this property is dirty.

2. Hibernate Types

2.1. Entities and values

To understand the behaviour of various Java language-level objects with respect to the
persistence service, we need to classify them into two groups:

An entity exists independently of any other objects holding references to the entity. Contrast this
with the usual Java model where an unreferenced object is garbage collected. Entities must be
explicitly saved and deleted (except that saves and deletions may be cascaded from a parent
entity to its children). This is different from the ODMG model of object persistence by reachablity

91

Chapter 6. Basic O/R Mapping

- and corresponds more closely to how application objects are usually used in large systems.
Entities support circular and shared references. They may also be versioned.

An entity's persistent state consists of references to other entities and instances of value types.
Values are primitives, collections (not what's inside a collection), components and certain
immutable objects. Unlike entities, values (in particular collections and components) are
persisted and deleted by reachability. Since value objects (and primitives) are persisted and
deleted along with their containing entity they may not be independently versioned. Values have
no independent identity, so they cannot be shared by two entities or collections.

Up until now, we've been using the term "persistent class" to refer to entities. We will continue to
do that. Strictly speaking, however, not all user-defined classes with persistent state are entities.
A component is a user defined class with value semantics. A Java property of type

java. |l ang. Stri ng also has value semantics. Given this definition, we can say that all types
(classes) provided by the JDK have value type semantics in Java, while user-defined types may
be mapped with entity or value type semantics. This decision is up to the application developer.
A good hint for an entity class in a domain model are shared references to a single instance of
that class, while composition or aggregation usually translates to a value type.

We'll revisit both concepts throughout the documentation.

The challenge is to map the Java type system (and the developers' definition of entities and
value types) to the SQL/database type system. The bridge between both systems is provided by
Hibernate: for entities we use <cl ass>, <subcl ass> and so on. For value types we use

<pr oper t y>, <conmponent >, etc, usually with a t ype attribute. The value of this attribute is the
name of a Hibernate mapping type. Hibernate provides many mappings (for standard JDK value
types) out of the box. You can write your own mapping types and implement your custom
conversion strategies as well, as you'll see later.

All built-in Hibernate types except collections support null semantics.

2.2. Basic value types

The built-in basic mapping types may be roughly categorized into

i nteger, long, short, float, double, character, byte, bool ean, yes_no
true_fal se
Type mappings from Java primitives or wrapper classes to appropriate (vendor-specific)
SQL column types. bool ean, yes_no and true_f al se are all alternative encodings for a
Java bool ean orj ava. | ang. Bool ean.

string
A type mapping from j ava. | ang. St ri ng to VARCHAR (or Oracle VARCHAR?).

date, tine, tinmestanp
Type mappings from j ava. uti | . Dat e and its subclasses to SQL types DATE, TI ME and
TI MESTAMP (or equivalent).

cal endar, cal endar_date

92

Custom value types

Type mappings from j ava. uti |l . Cal endar to SQL types TI MESTAMP and DATE (or
equivalent).

bi g_deci mal, big_integer
Type mappings from j ava. mat h. Bi gDeci mal and j ava. mat h. Bi gl nt eger to NUMERI C (or
Oracle NUMBER).

| ocal e, tinezone, currency
Type mappings from j ava. util . Local e, java. util. Ti neZone andj ava. util . Currency
to VARCHAR (or Oracle VARCHAR?). Instances of Local e and Cur r ency are mapped to their
ISO codes. Instances of Ti neZone are mapped to their I D.

cl ass
A type mapping from j ava. | ang. d ass to VARCHAR (or Oracle VARCHAR?). A Cl ass IS
mapped to its fully qualified name.

bi nary
Maps byte arrays to an appropriate SQL binary type.

t ext
Maps long Java strings to a SQL CLOB or TEXT type.

serializable
Maps serializable Java types to an appropriate SQL binary type. You may also indicate the
Hibernate type seri al i zabl e with the name of a serializable Java class or interface that
does not default to a basic type.

cl ob, blob
Type mappings for the JDBC classes j ava. sql . C ob and j ava. sql . Bl ob. These types
may be inconvenient for some applications, since the blob or clob object may not be reused
outside of a transaction. (Furthermore, driver support is patchy and inconsistent.)

immdate, immtinme, inmtinmestanp, imm.cal endar, inm cal endar_date,

i mm serializable, immbinary
Type mappings for what are usually considered mutable Java types, where Hibernate
makes certain optimizations appropriate only for immutable Java types, and the application
treats the object as immutable. For example, you should not call Dat e. set Ti me() for an
instance mapped as i nm ti mest anp. To change the value of the property, and have that
change made persistent, the application must assign a new (nonidentical) object to the

property.

Unique identifiers of entities and collections may be of any basic type except bi nary, bl ob and
cl ob. (Composite identifiers are also allowed, see below.)

The basic value types have corresponding Type constants defined on
or g. hi ber nat e. Hi ber nat e. For example, H ber nat e. STRI NG represents the st ri ng type.

2.3. Custom value types

93

Chapter 6. Basic O/R Mapping

It is relatively easy for developers to create their own value types. For example, you might want
to persist properties of type j ava. | ang. Bi gl nt eger to VARCHAR columns. Hibernate does not
provide a built-in type for this. But custom types are not limited to mapping a property (or
collection element) to a single table column. So, for example, you might have a Java property
get Name() /set Name() of type j ava. | ang. Stri ng that is persisted to the columns FI RST_NAME,
I NI TI AL, SURNAME

To implement a custom type, implement either or g. hi ber nat e. User Type or

or g. hi ber nat e. Conposi t eUser Type and declare properties using the fully qualified classname
of the type. Check out or g. hi ber nat e. t est. Doubl eSt ri ngType to see the kind of things that
are possible.

<property nane="twoStrings" type="org. hibernate.test.Doubl eStringType">
<col um name="first_string"/>
<col um nane="second_string"/>

</ property>

Notice the use of <col uim> tags to map a property to multiple columns.

The Conposi t eUser Type, EnhancedUser Type, User Col | ecti onType, and User Ver si onType
interfaces provide support for more specialized uses.

You may even supply parameters to a User Type in the mapping file. To do this, your User Type
must implement the or g. hi ber nat e. usert ype. Par anet eri zedType interface. To supply
parameters to your custom type, you can use the <t ype> element in your mapping files.

<property nane="priority">
<t ype nanme="com myconpany. usertypes. Def aul t Val uel nt eger Type" >
<par am nanme="def aul t " >0</ par an>
</type>
</ property>

The User Type can now retrieve the value for the parameter named def aul t from the
Properti es object passed to it.

If you use a certain User Type very often, it may be useful to define a shorter name for it. You
can do this using the <t ypedef > element. Typedefs assignh a name to a custom type, and may
also contain a list of default parameter values if the type is parameterized.

<t ypedef cl ass="com nyconpany. usertypes. Def aul t Val uel nt eger Type"
name="defaul t _zero">

<par am nane="def aul t " >0</ par an>
</typedef >

<property nane="priority" type="default_zero"/>

94

Mapping a class more than once

It is also possible to override the parameters supplied in a typedef on a case-by-case basis by
using type parameters on the property mapping.

Even though Hibernate's rich range of built-in types and support for components means you will
very rarely need to use a custom type, it is nevertheless considered good form to use custom
types for (non-entity) classes that occur frequently in your application. For example, a

Monet ar yAnount class is a good candidate for a Conposi t eUser Type, even though it could
easily be mapped as a component. One motivation for this is abstraction. With a custom type,
your mapping documents would be future-proofed against possible changes in your way of
representing monetary values.

3. Mapping a class more than once

It is possible to provide more than one mapping for a particular persistent class. In this case you
must specify an entity name do disambiguate between instances of the two mapped entities.
(By default, the entity name is the same as the class name.) Hibernate lets you specify the
entity name when working with persistent objects, when writing queries, or when mapping
associations to the named entity.

<cl ass nanme="Contract" tabl e="Contracts"
entity-name="Current Contract">

<set name="history" inverse="true"
order - by="effecti veEndDat e desc">
<key col um="current Contractld"/>
<one-to-many entity-nanme="Historical Contract"/>
</ set >
</ cl ass>

<cl ass name="Contract" tabl e="ContractHi story"
entity-nanme="Hi storical Contract">

<many-t o- one name="current Contract"
col um="current Contract | d"
entity-nane="CurrentContract"/>
</ cl ass>

Notice how associations are now specified using ent i t y- nanme instead of cl ass.

4. SQL quoted identifiers

You may force Hibernate to quote an identifier in the generated SQL by enclosing the table or
column name in backticks in the mapping document. Hibernate will use the correct quotation
style for the SQL Di al ect (usually double quotes, but brackets for SQL Server and backticks
for MySQL).

<cl ass nanme="Lineltent table=""Line Item">
<id name="id" colum=""Item|ld "/><generator class="assigned"/></id>
<property nane="item\unber" colum=""Item# "/>

95

Chapter 6. Basic O/R Mapping

</cl ass>

5. Metadata alternatives

XML isn't for everyone, and so there are some alternative ways to define O/R mapping
metadata in Hibernate.

5.1. Using XDoclet markup

Many Hibernate users prefer to embed mapping information directly in sourcecode using
XDoclet @i ber nat e. t ags. We will not cover this approach in this document, since strictly it is
considered part of XDoclet. However, we include the following example of the Cat class with
XDoclet mappings.

package eg;
i mport java.util.Set;
i mport java.util.Date;

/**

* @i ber nat e. cl ass

* tabl e="CATS"

*/

public class Cat {
private Long id; // identifier
private Date birthdate;
private Cat nother;
private Set kittens
private Col or col or;
private char sex;
private float weight;

/*
* @i bernate.id
* generator-class="native"
* colum="CAT_I D'

=

public Long getld() {
return id;

}

private void setld(Long id) {
this.id=id;

}

/**

* @i ber nat e. many-t o- one

* col um="PARENT_I| D'

“

public Cat getMother() {
return not her;

}

voi d set Mbt her (Cat not her) {
thi s. not her = not her;

96

Using XDoclet markup

}

/**
* (@i bernat e. property
* col utm=" Bl RTH_DATE"
*/
public Date getBirthdate() {
return birthdat e;
}
voi d setBirthdate(Date date) {
bi rt hdate = date;

}
/**
* (@i bernat e. property
* col um="WEl GHT"
=
public float getWight() {
return weight;
}
voi d set Wi ght (fl oat wei ght) {
thi s. wei ght = wei ght;
}

/**
* @i bernate. property
* col um="COLOR'
* not-null="true"
*/
public Col or getColor() {
return col or;
}
voi d set Col or (Col or col or) {
this.color = color;

}
/**
* @i ber nat e. set
* inverse="true"
* order-by="BlI RTH DATE"
* @i bernate. col |l ecti on-key
* col um="PARENT_I| D'
* (@i bernate. col | ection-one-to-nany
*/
public Set getKittens() {
return kittens;
}
voi d setKittens(Set kittens) {
this.kittens = kittens;
}
// addKitten not needed by Hi bernate
public void addKitten(Cat kitten) {
kittens. add(kitten);

}

/**

* @i bernate. property
* col um="SEX"
* not-null="true"

97

Chapter 6. Basic O/R Mapping

* update="fal se"

*/

public char getSex() {
return sex;

}

voi d set Sex(char sex) {
t hi s. sex=sex;

}

See the Hibernate web site for more examples of XDoclet and Hibernate.

5.2. Using JDK 5.0 Annotations

JDK 5.0 introduced XDoclet-style annotations at the language level, type-safe and checked at
compile time. This mechnism is more powerful than XDoclet annotations and better supported
by tools and IDEs. IntelliJ IDEA, for example, supports auto-completion and syntax highlighting
of JDK 5.0 annotations. The new revision of the EJB specification (JSR-220) uses JDK 5.0
annotations as the primary metadata mechanism for entity beans. Hibernate3 implements the
Entit yManager of JSR-220 (the persistence API), support for mapping metadata is available
via the Hibernate Annotations package, as a separate download. Both EJB3 (JSR-220) and
Hibernate3 metadata is supported.

This is an example of a POJO class annotated as an EJB entity bean:

@ntity(access = AccessType. Fl ELD)
public class Customer inplenents Serializable {

@d;
Long i d;

String firstName;
String | ast Nane;
Dat e birthday;

@r ansi ent
| nt eger age;

@nbedded
private Address honeAddress;

@neToMany(cascade=CascadeType. ALL)
@ oi nCol um(nane="CUSTOMVER | D")
Set <Order > orders;

/| Getter/setter and business net hods

Note that support for JDK 5.0 Annotations (and JSR-220) is still work in progress and not
completed. Please refer to the Hibernate Annotations module for more details.

98

Auxiliary Database Objects

6. Generated Properties

Generated properties are properties which have their values generated by the database.
Typically, Hibernate applications needed to r ef r esh objects which contain any properties for
which the database was generating values. Marking properties as generated, however, lets the
application delegate this responsibility to Hibernate. Essentially, whenever Hibernate issues an
SQL INSERT or UPDATE for an entity which has defined generated properties, it immediately
issues a select afterwards to retrieve the generated values.

Properties marked as generated must additionally be non-insertable and non-updateable. Only
Section 1.7, “version (optional)” versions, Section 1.8, “timestamp (optional)” timestamps, and
Section 1.9, “property” simple properties can be marked as generated.

never (the default) - means that the given property value is not generated within the database.

i nsert - states that the given property value is generated on insert, but is not regenerated on
subsequent updates. Things like created-date would fall into this category. Note that even
thought Section 1.7, “version (optional)” version and Section 1.8, “timestamp (optional)”
timestamp properties can be marked as generated, this option is not available there...

al ways - states that the property value is generated both on insert and on update.

7. Auxiliary Database Objects

Allows CREATE and DROP of arbitrary database objects, in conjunction with Hibernate's
schema evolution tools, to provide the ability to fully define a user schema within the Hibernate
mapping files. Although designed specifically for creating and dropping things like triggers or
stored procedures, really any SQL command that can be run via a

java. sgl . St at enent . execut e() method is valid here (ALTERs, INSERTS, etc). There are
essentially two modes for defining auxiliary database objects...

The first mode is to explicitly list the CREATE and DROP commands out in the mapping file:

<hi ber nat e- mappi ng>

<dat abase- obj ect >
<cr eat e>CREATE TRI GGER ny_trigger ...</create>
<dr op>DROP TRI GGER ny_tri gger </ drop>
</ dat abase- obj ect >
</ hi ber nat e- mappi ng>

The second mode is to supply a custom class which knows how to construct the CREATE and
DROP commands. This custom class must implement the
or g. hi ber nat e. mappi ng. Auxi | i ar yDat abaseQbj ect interface.

<hi ber nat e- mappi ng>

<dat abase- obj ect >
<definition class="MTriggerDefinition"/>
</ dat abase- obj ect >

99

Chapter 6. Basic O/R Mapping

</ hi ber nat e- nappi ng>

Additionally, these database objects can be optionally scoped such that they only apply when
certain dialects are used.

<hi ber nat e- mappi ng>

<dat abase- obj ect >
<definition class="MTriggerDefinition"/>
<di al ect - scope name="org. hi bernate. di al ect. Cracl e9Di al ect"/>
<di al ect - scope nanme="org. hi bernate. di al ect. Oracl eDi al ect"/ >
</ dat abase- obj ect >
</ hi ber nat e- nappi ng>

100

Chapter 7.

Collection Mapping

1. Persistent collections

Hibernate requires that persistent collection-valued fields be declared as an interface type, for

example:

public class Product {
private String serial Nunmber;
private Set parts = new HashSet () ;

public Set getParts() { return parts; }

voi d setParts(Set parts) { this.parts = parts; }

public String getSerial Nunber() { return serial Nunber; }
voi d set Seri al Nunber (String sn) { serial Nunber = sn; }

The actual interface might be j ava. util. Set,java.util.Collection,java.util.List,

java.util.Mp,java.util.SortedSet,java.util.SortedMap or ... anything you like! (Where

"anything you like" means you will have to write an implementation of
or g. hi bernat e. usertype. User Col | ecti onType.)

Notice how we initialized the instance variable with an instance of HashSet . This is the best way
to initialize collection valued properties of newly instantiated (non-persistent) instances. When
you make the instance persistent - by calling per si st (), for example - Hibernate will actually
replace the HashSet with an instance of Hibernate's own implementation of Set . Watch out for

errors like this:

Cat cat = new DonesticCat();
Cat kitten = new DonesticCat();

Set kittens = new HashSet ();

kittens. add(kitten);

cat.setKittens(kittens);

sessi on. persi st(cat);

kittens = cat.getKittens(); // Ckay, kittens collection is a Set
(HashSet) cat.getKittens(); // Error!

The persistent collections injected by Hibernate behave like HashMap, HashSet , Tr eeMap,
TreeSet or Arrayli st, depending upon the interface type.

Collections instances have the usual behavior of value types. They are automatically persisted

when referenced by a persistent object and automatically deleted when unreferenced. If a
collection is passed from one persistent object to another, its elements might be moved from

one table to another. Two entities may not share a reference to the same collection instance.

Due to the underlying relational model, collection-valued properties do not support null value
semantics; Hibernate does not distinguish between a null collection reference and an empty
collection.

101

Chapter 7. Collection Mapping

You shouldn't have to worry much about any of this. Use persistent collections the same way
you use ordinary Java collections. Just make sure you understand the semantics of bidirectional
associations (discussed later).

2. Collection mappings

The Hibernate mapping element used for mapping a collection depends upon the type of the
interface. For example, a <set > element is used for mapping properties of type Set .

<cl ass nane="Product" >
<id nanme="seri al Nunber" col umm="product Seri al Number"/ >
<set nanme="parts">

<key col um="product Seri al Nunber" not-nul | ="true"/>
<one-to-many class="Part"/>
</ set>
</ cl ass>

Apart from <set >, there is also <l i st >, <map>, <bag>, <array>and <prinitive-array>
mapping elements. The <map> element is representative:

<map
nane="pr opert yNane"
t abl e="t abl e_nane"
schema="schenma_nane"
| azy="true| extralfal se"
i nverse="true| fal se"
cascade="al | | none| save- updat e| del et e| al | - del et e- or phan| del et e- or phan"
sort ="unsort ed| nat ural | conpar at or C ass"
or der - by="col um_nanme asc| desc"
where="arbitrary sql where condition"
fetch="j oi n| sel ect| subsel ect"
bat ch-si ze="N"
access="fi el d| property| d assNane"
optimstic-lock="true|fal se"
mut abl e="true| f al se"
node="el ement - nane| . "
enbed- xm ="true| f al se"

>
<key [>
<map-key />
<elenent />
</ map>

nane the collection property name

t abl e (optional - defaults to property name) the name of the collection table (not used for
one-to-many associations)

schema (optional) the name of a table schema to override the schema declared on the root
element

102

Collection foreign keys

| azy (optional - defaults to t r ue) may be used to disable lazy fetching and specify that the
association is always eagerly fetched, or to enable "extra-lazy" fetching where most operations
do not initialize the collection (suitable for very large collections)

i nver se (optional - defaults to f al se) mark this collection as the "inverse" end of a bidirectional
association

cascade (optional - defaults to none) enable operations to cascade to child entities
sort (optional) specify a sorted collection with nat ur al sort order, or a given comparator class

or der - by (optional, JDK1.4 only) specify a table column (or columns) that define the iteration
order of the Map, Set or bag, together with an optional asc or desc

wher e (optional) specify an arbitrary SQL WHERE condition to be used when retrieving or
removing the collection (useful if the collection should contain only a subset of the available
data)

f et ch (optional, defaults to sel ect) Choose between outer-join fetching, fetching by sequential
select, and fetching by sequential subselect.

bat ch- si ze (optional, defaults to 1) specify a "batch size" for lazily fetching instances of this
collection.

access (optional - defaults to pr opert y): The strategy Hibernate should use for accessing the
collection property value.

opti m stic-1ock (optional - defaults to t r ue): Species that changes to the state of the
collection results in increment of the owning entity's version. (For one to many associations, it is
often reasonable to disable this setting.)

mut abl e (optional - defaults to t r ue): A value of f al se specifies that the elements of the
collection never change (a minor performance optimization in some cases).

2.1. Collection foreign keys

Collection instances are distinguished in the database by the foreign key of the entity that owns
the collection. This foreign key is referred to as the collection key column (or columns) of the
collection table. The collection key column is mapped by the <key> element.

There may be a nullability constraint on the foreign key column. For most collections, this is
implied. For unidirectional one to many associations, the foreign key column is nullable by
default, so you might need to specify not - nul | ="t rue".

<key col um="product Seri al Nunber" not-null="true"/>

The foreign key constraint may use ON DELETE CASCADE.

<key col um="pr oduct Seri al Nunber" on-del et e="cascade"/ >

103

Chapter 7. Collection Mapping

See the previous chapter for a full definition of the <key> element.

2.2. Collection elements

Collections may contain almost any other Hibernate type, including all basic types, custom
types, components, and of course, references to other entities. This is an important distinction:
an object in a collection might be handled with "value" semantics (its lifecycle fully depends on
the collection owner) or it might be a reference to another entity, with its own lifecycle. In the
latter case, only the "link" between the two objects is considered to be state held by the
collection.

The contained type is referred to as the collection element type. Collection elements are
mapped by <el enent > or <conposi t e- el enent >, or in the case of entity references, with
<one-t o- many> or <many-t o- many>. The first two map elements with value semantics, the next
two are used to map entity associations.

2.3. Indexed collections

All collection mappings, except those with set and bag semantics, need an index column in the
collection table - a column that maps to an array index, or Li st index, or Map key. The index of
a Map may be of any basic type, mapped with <map- key>, it may be an entity reference mapped
with <map- key- many-t o- many>, or it may be a composite type, mapped with

<conposi t e- map- key>. The index of an array or list is always of type i nt eger and is mapped
using the <l i st -i ndex> element. The mapped column contains sequential integers (hnumbered
from zero, by default).

<list-index
col um="col um_nane"
base="0| 1]..."/>

col um_name (required): The name of the column holding the collection index values.

base (optional, defaults to 0): The value of the index column that corresponds to the first
element of the list or array.

<map- key
col uim="col um_nane"
formul a="any SQL expression”
type="t ype_name"
node=" @t tri but e- nane"
| engt h="N"'/>

col umm (optional): The name of the column holding the collection index values.

f or mul a (optional): A SQL formula used to evaluate the key of the map.

104

Collections of values and many-to-many

t ype (reguired): The type of the map keys.

<map- key- nany-t o- many
col um="col um_nane"
formul a="any SQL expression”
cl ass="Cl assNane"

/>

col unm (optional): The name of the foreign key column for the collection index values.
f or mul a (optional): A SQL formula used to evaluate the foreign key of the map key.

cl ass (required): The entity class used as the map key.

If your table doesn't have an index column, and you still wish to use Li st as the property type,
you should map the property as a Hibernate <bag>. A bag does not retain its order when it is
retrieved from the database, but it may be optionally sorted or ordered.

There are quite a range of mappings that can be generated for collections, covering many
common relational models. We suggest you experiment with the schema generation tool to get
a feeling for how various mapping declarations translate to database tables.

2.4. Collections of values and many-to-many associations

Any collection of values or many-to-many association requires a dedicated collection table with
a foreign key column or columns, collection element column or columns and possibly an index
column or columns.

For a collection of values, we use the <el enent > tag.

<el enment
col um="col um_nane"
formul a="any SQL expression"
type="t ypenane"

| engt h="L"

pr eci si on="P"

scal e="S"

not-nul I ="true| fal se"

uni que="true| fal se"
node="el ement - nane"
/>
col umm (optional): The name of the column holding the collection element values.
f or mul a (optional): An SQL formula used to evaluate the element.

t ype (required): The type of the collection element.

A many-to-many association is specified using the <many- t o- many> element.

105

Chapter 7. Collection Mapping

<many-t o- many
col um="col um_nane"
formul a="any SQL expression"
cl ass="Cl assNane"
fetch="sel ect|j oi n"
uni que="true| f al se"
not - f ound="1i gnor e| excepti on"
entity-nane="EntityName"
property-ref="propertyNaneFromAssoci at edCl ass"
node="el ement - nanme"
enbed- xm ="true| f al se"

/>

col umm (optional): The name of the element foreign key column.
f or mul a (optional): An SQL formula used to evaluate the element foreign key value.
cl ass (required): The name of the associated class.

f et ch (optional - defaults to j oi n): enables outer-join or sequential select fetching for this
association. This is a special case; for full eager fetching (in a single SELECT) of an entity and its
many-to-many relationships to other entities, you would enable j oi n fetching not only of the
collection itself, but also with this attribute on the <many- t o- many> nested element.

uni que (optional): Enable the DDL generation of a unique constraint for the foreign-key column.
This makes the association multiplicity effectively one to many.

not - f ound (optional - defaults to except i on): Specifies how foreign keys that reference missing
rows will be handled: i gnor e will treat a missing row as a null association.

entity-name (optional): The entity name of the associated class, as an alternative to cl ass.

property-ref: (optional) The name of a property of the associated class that is joined to this
foreign key. If not specified, the primary key of the associated class is used.

Some examples, first, a set of strings:

<set nane="nanes" tabl e="person_nanes">

<key col um="person_id"/>

<el ement col um="person_nane" type="string"/>
</ set>

A bag containing integers (with an iteration order determined by the or der - by attribute):

<bag nanme="si zes"
tabl e="item si zes"
order - by="si ze asc">
<key colum="item.id"/>
<el enent col um="si ze" type="integer"/>
</ bag>

106

associations

An array of entities - in this case, a many to many association:

<array name="addresses"
t abl e=" Per sonAddr ess"
cascade="persist">
<key col um="personld"/>
<list-index colum="sortO der"/>
<many-t o- many col unm="addr essl d" cl ass="Address"/>
</ array>

A map from string indices to dates:

<map name="hol i days"
t abl e="hol i days"
schema="dbo"
order - by="hol nane asc">
<key col um="id"/>
<map- key col um="hol _nanme" type="string"/>
<el ement col um="hol _date" type="date"/>
</ map>

A list of components (discussed in the next chapter):

<l i st name="car Conponent s"
t abl e=" Car Conponent s" >
<key col um="carld"/>
<list-index colum="sortO der"/>
<conposi te-el enent cl ass="Car Conponent ">
<property nane="price"/>
<property nane="type"/>
<property nane="seri al Nunber" col um="seri al Nun'/>
</ conposi t e- el enent >
</list>

2.5. One-to-many associations

A one to many association links the tables of two classes via a foreign key, with no intervening
collection table. This mapping loses certain semantics of normal Java collections:

« An instance of the contained entity class may not belong to more than one instance of the
collection

« An instance of the contained entity class may not appear at more than one value of the
collection index

An association from Pr oduct to Part requires existence of a foreign key column and possibly
an index column to the Part table. A <one-t o- many> tag indicates that this is a one to many
association.

107

Chapter 7. Collection Mapping

<one-t o- many
cl ass="Cl assNane"
not - f ound="1i gnor e| excepti on"
entity-nane="EntityName"
node="el ement - nane"
enmbed- xm ="true| fal se"
/>

cl ass (required): The name of the associated class.

not - f ound (optional - defaults to except i on): Specifies how cached identifiers that reference
missing rows will be handled: i gnor e will treat a missing row as a null association.

entity-name (optional): The entity name of the associated class, as an alternative to cl ass.

Notice that the <one-t o- many> element does not need to declare any columns. Nor is it
necessary to specify the t abl e name anywhere.

Very important note: If the foreign key column of a <one- t o- many> association is declared NOT
NULL, you must declare the <key> mapping not - nul | ="t rue" or use a bidirectional association
with the collection mapping marked i nver se="t r ue". See the discussion of bidirectional
associations later in this chapter.

This example shows a map of Par t entities by name (where part Nane is a persistent property
of Part). Notice the use of a formula-based index.

<map nanme="parts"
cascade="al | ">
<key col um="productld" not-null="true"/>
<map- key fornul a="part Nane"/ >
<one-to-many class="Part"/>
</ map>

3. Advanced collection mappings

3.1. Sorted collections

Hibernate supports collections implementing j ava. uti | . Sort edMap and
java.util.SortedSet.You must specify a comparator in the mapping file:

<set nanme="al i ases"
tabl e="person_al i ases”
sort="natural ">
<key col um="person"/>
<el ement col um="nane" type="string"/>
</ set>

<map name="hol i days" sort="ny. cust om Hol i dayConpar at or " >
<key col um="year id"/>
<map- key col um="hol _nane" type="string"/>

108

Bidirectional associations

<el ement col um="hol _date" type="date"/>
</ map>

Allowed values of the sort attribute are unsort ed, nat ural and the name of a class
implementing j ava. uti| . Conpar at or .

Sorted collections actually behave like j ava. uti | . TreeSet orjava. util. TreeMap.

If you want the database itself to order the collection elements use the or der - by attribute of
set, bag or map mappings. This solution is only available under JDK 1.4 or higher (it is
implemented using Li nkedHashSet or Li nkedHashMap). This performs the ordering in the SQL
query, not in memory.

<set nanme="al i ases" tabl e="person_al i ases" order-by="| ower(nane) asc">
<key col um="person"/>
<el enent col um="nane" type="string"/>

</ set >

<map nane="hol i days" order-by="hol _date, hol _nane">
<key col um="year_id"/>
<map- key col um="hol _nanme" type="string"/>
<el ement col um="hol _date type="date"/>

</ map>

Note that the value of the or der - by attribute is an SQL ordering, not a HQL ordering!

Associations may even be sorted by some arbitrary criteria at runtime using a collection
filter().

sortedUsers = s.createFilter(group.getUsers(), "order by this.name"

). list();

3.2. Bidirectional associations

A bidirectional association allows navigation from both "ends" of the association. Two kinds of
bidirectional association are supported:

one-to-many
set or bag valued at one end, single-valued at the other

many-to-many
set or bag valued at both ends

You may specify a bidirectional many-to-many association simply by mapping two
many-to-many associations to the same database table and declaring one end as inverse
(which one is your choice, but it can not be an indexed collection).

109

Chapter 7. Collection Mapping

Here's an example of a bidirectional many-to-many association; each category can have many
items and each item can be in many categories:

<cl ass name="Cat egory" >
<id nanme="id" col um="CATEGORY | D'/ >

<bag nane="itens" tabl e="CATEGORY_| TEM >
<key col um="CATEGORY_I D'/ >
<many-to- many cl ass="Itent colum="1TEM ID"'/>
</ bag>
</ cl ass>

<cl ass name="Iten' >
<id nane="id" col um="CATEGORY | D'/ >

<!-- inverse end -->
<bag name="cat egori es" tabl e="CATEGORY_| TEM' i nverse="true">
<key colum="I1TEM | D'/ >
<many-t o- many cl ass="Category" col um="CATEGORY_|I D'/ >
</ bag>
</cl ass>

Changes made only to the inverse end of the association are not persisted. This means that
Hibernate has two representations in memory for every bidirectional association, one link from A
to B and another link from B to A. This is easier to understand if you think about the Java object
model and how we create a many-to-many relationship in Java:

category.getltens().add(iten); /1 The category now "knows" about
the rel ationship
i tem get Cat egori es() . add(category); /! The item now "knows" about the

rel ati onship

session. persist(item; /1l The relationship won't be saved!
sessi on. per si st (cat egory) ; /'l The relationship will be saved

The non-inverse side is used to save the in-memory representation to the database.

You may define a bidirectional one-to-many association by mapping a one-to-many association
to the same table column(s) as a many-to-one association and declaring the many-valued end
i nverse="true".

<cl ass name="Parent">
<id name="id" colum="parent _id"/>

<set nane="children" inverse="true">
<key col um="parent _id"/>
<one-to-many class="Child"/>
</ set >
</ cl ass>

110

Bidirectional associations with indexed

<cl ass nane="Chil d">
<id name="id" colum="child_id"/>

<many-t o- one nanme="parent"
cl ass="Parent"
col um="parent _i d"
not-nul I ="true"/>
</ cl ass>

Mapping one end of an association with i nver se="t rue" doesn't affect the operation of
cascades, these are orthogonal concepts!

3.3. Bidirectional associations with indexed collections

A bidirectional association where one end is represented as a <l i st > or <map> requires special
consideration. If there is a property of the child class which maps to the index column, no
problem, we can continue using i nver se="true" on the collection mapping:

<cl ass nane="Parent">
<id name="id" col um="parent id"/>

<map nanme="chil dren" inverse="true">
<key col um="parent _id"/>
<map- key col um="nane"
type="string"/>
<one-to-many class="Child"/>
</ map>
</ cl ass>

<cl ass nanme="Chi |l d">
<id nanme="id" colum="child_id"/>

<property nane="nanme"
not-nul I ="true"/>
<many-t o- one nane="parent"
cl ass="Parent"
col um="parent _i d"
not-nul I ="true"/>
</ cl ass>

But, if there is no such property on the child class, we can't think of the association as truly
bidirectional (there is information available at one end of the association that is not available at
the other end). In this case, we can't map the collection i nver se="t rue". Instead, we could use

the following mapping:

<cl ass nane="Parent">
<id name="id" col um="parent id"/>

<map nane="chil dren">
<key col um="parent _id"
not-nul I ="true"/>

111

Chapter 7. Collection Mapping

<map- key col um="nane"
type="string"/>
<one-to-many class="Child"/>
</ map>
</ cl ass>

<cl ass nanme="Chi |l d">
<id nanme="id" colum="child_ id"/>

<many-t o- one nanme="parent"
cl ass="Parent"
col um="parent _i d"
i nsert="fal se"
updat e="f al se"
not-nul I ="true"/>
</ cl ass>

Note that in this mapping, the collection-valued end of the association is responsible for updates
to the foreign key. TODO: Does this really result in some unnecessary update statements?

3.4. Ternary associations

There are three possible approaches to mapping a ternary association. One is to use a Map with
an association as its index:

<map nanme="contracts">
<key col um="enpl oyer _i d" not-nul | ="true"/>
<map- key- many-t o- many col uim="enpl oyee_i d" cl ass="Enpl oyee"/>
<one-to-many cl ass="Contract"/>

</ map>

<map nanme="connecti ons">
<key col um="i ncom ng_node_i d"/>
<map- key- many-t o- many col utm="out goi ng_node_i d" cl ass="Node"/ >
<many-t o- many col utm="connection_i d" cl ass="Connection"/>

</ map>

A second approach is to simply remodel the association as an entity class. This is the approach
we use most commonly.

A final alternative is to use composite elements, which we will discuss later.
3.5. Using an <idbag>

If you've fully embraced our view that composite keys are a bad thing and that entities should
have synthetic identifiers (surrogate keys), then you might find it a bit odd that the many to
many associations and collections of values that we've shown so far all map to tables with
composite keys! Now, this point is quite arguable; a pure association table doesn't seem to

112

collections

benefit much from a surrogate key (though a collection of composite values might).
Nevertheless, Hibernate provides a feature that allows you to map many to many associations
and collections of values to a table with a surrogate key.

The <i dbag> element lets you map a Li st (or Col | ecti on) with bag semantics.

<i dbag nane="I| overs" tabl e="LOVERS">
<col l ection-id colum="1D" type="|ong">
<gener at or cl ass="sequence"/>
</col |l ection-id>
<key col um="PERSONL"/ >
<many-t o- many col utm="PERSON2" cl ass="Person" fetch="join"/>
</i dbag>

As you can see, an <i dbag> has a synthetic id generator, just like an entity class! A different
surrogate key is assigned to each collection row. Hibernate does not provide any mechanism to
discover the surrogate key value of a particular row, however.

Note that the update performance of an <i dbag> is much better than a regular <bag>! Hibernate
can locate individual rows efficiently and update or delete them individually, just like a list, map
or set.

In the current implementation, the nat i ve identifier generation strategy is not supported for
<i dbag> collection identifiers.

4. Collection examples
The previous sections are pretty confusing. So lets look at an example. This class:

package eg;
i nport java.util. Set;

public class Parent {
private long id;
private Set children;

public long getld() { return id; }
private void setld(long id) { this.id=id; }

private Set getChildren() { return children; }
private void setChildren(Set children) { this.children=children; }

has a collection of Chi | d instances. If each child has at most one parent, the most natural
mapping is a one-to-many association:

<hi ber nat e- mappi ng>

113

Chapter 7. Collection Mapping

<cl ass nane="Parent">
<id name="id">
<gener at or cl ass="sequence"/>
</id>
<set name="chil dren">
<key col um="parent _id"/>
<one-to-many class="Child"/>
</ set >
</ cl ass>

<cl ass nanme="Chil d">
<id name="id">
<gener at or cl ass="sequence"/>
</id>
<property nane="nane"/>
</ cl ass>

</ hi ber nat e- nappi ng>

This maps to the following table definitions:

create table parent (id bigint not null primry key)

create table child (id bigint not null primry key, nane varchar (255)
parent _id bigint)

alter table child add constraint childf kO (parent_id) references parent

If the parent is required, use a bidirectional one-to-many association:

<hi ber nat e- mappi ng>

<cl ass nane="Parent">
<id name="id">
<gener at or cl ass="sequence"/>
</id>
<set name="children" inverse="true">
<key col um="parent_id"/>
<one-to-many class="Child"/>
</ set>
</ cl ass>

<cl ass nanme="Chi |l d">
<id name="id">
<gener at or cl ass="sequence"/>
</id>
<property nane="nane"/>
<many-t o- one name="parent" class="Parent" col um="parent _id"
not-nul I ="true"/>
</ cl ass>

</ hi ber nat e- nappi ng>

114

Collection examples

Notice the NOT NULL constraint:

create table parent (id bigint not null primry key)
create table child (id bigint not nul
primary key,
nane var char (255),
parent _id bigint not null)
alter table child add constraint childf kO (parent_id) references parent

Alternatively, if you absolutely insist that this association should be unidirectional, you can
declare the NOT NULL constraint on the <key> mapping:

<hi ber nat e- mappi ng>

<cl ass name="Parent">
<id nanme="id">
<gener at or cl ass="sequence"/>

</id>
<set nane="chil dren">
<key colum="parent _id" not-null="true"/>
<one-to-many class="Child"/>
</set>
</ cl ass>

<cl ass nane="Chi |l d">
<id name="id">
<gener at or cl ass="sequence"/>
</id>
<property name="name"/>
</ cl ass>

</ hi ber nat e- nappi ng>

On the other hand, if a child might have multiple parents, a many-to-many association is
appropriate:

<hi ber nat e- mappi ng>

<cl ass nane="Parent">
<id name="id">
<gener at or cl ass="sequence"/>
</id>
<set name="chil dren" tabl e="chil dset">
<key col um="parent _id"/>
<many-to- many cl ass="Child" colum="child_id"/>
</ set >
</ cl ass>

<cl ass nanme="Chil d">
<id name="id">
<gener at or cl ass="sequence"/>
</id>
<property nane="nane"/>

115

Chapter 7. Collection Mapping

</cl ass>

</ hi ber nat e- mappi ng>

Table definitions:

create table parent (id bigint not null primry key)
create table child (id bigint not null primry key, nanme varchar (255))
create table childset (parent_id bigint not null
child_id bigint not null
primary key (parent_id, child_id))
alter table childset add constraint chil dsetfkO (parent_id) references
par ent
alter table childset add constraint childsetfkl (child_id) references child

For more examples and a complete walk-through a parent/child relationship mapping, see
Chapter 22, Example: Parent/Child.

Even more exotic association mappings are possible, we will catalog all possibilities in the next
chapter.

116

Chapter 8.

Association Mappings

1. Introduction

Association mappings are the often most difficult thing to get right. In this section we'll go
through the canonical cases one by one, starting with unidirectional mappings, and then
considering the bidirectional cases. We'll use Per son and Addr ess in all the examples.

We'll classify associations by whether or not they map to an intervening join table, and by
multiplicity.

Nullable foreign keys are not considered good practice in traditional data modelling, so all our
examples use not null foreign keys. This is not a requirement of Hibernate, and the mappings
will all work if you drop the nullability constraints.

2. Unidirectional associations

2.1. many to one
A unidirectional many-to-one association is the most common kind of unidirectional association.

<cl ass nane="Person">
<id name="id" col um="personld">
<generator class="native"/>
</id>
<many-t o- one nanme="address"
col um="addr essl d"
not-nul I ="true"/>
</ cl ass>

<cl ass nane="Addr ess" >
<id nanme="id" col um="addressl d">
<generator class="native"/>
</id>
</ cl ass>

create table Person (personld bigint not null primary key, addressld bigint
not null)
create table Address (addressld bigint not null primary key)

2.2.0neto one

A unidirectional one-to-one association on a foreign key is almost identical. The only difference
is the column unique constraint.

<cl ass nane="Person">

117

Chapter 8. Association Mappings

<id nanme="id" col um="personld">
<generator class="native"/>

</id>

<many-t o- one name="address"
col um="addr essl| d"
uni que="true"
not-nul I ="true"/>

</ cl ass>

<cl ass nane="Address" >
<id nanme="id" col um="addressld">
<generator class="native"/>
</id>
</ cl ass>

create table Person (personld bigint not null prinmry key, addressld bigint
not

nul | uni que)
create tabl e Address (addressld bigint not null prinmary key)

A unidirectional one-to-one association on a primary key usually uses a special id generator.
(Notice that we've reversed the direction of the association in this example.)

<cl ass nane="Per son">
<id nanme="id" col unm="personl d">
<generator class="native"/>
</id>
</ cl ass>

<cl ass name="Address" >
<id name="id" col um="personld">
<generator class="foreign">
<par am name="property" >per son</ par anr
</ gener at or >
</id>
<one-t o- one name="person" constrai ned="true"/>
</ cl ass>

create table Person (personld bigint not null primry key)
create table Address (personld bigint not null primry key)

2.3. one to many

A unidirectional one-to-many association on a foreign key is a very unusual case, and is not
really recommended.

118

Unidirectional associations with join tables

<cl ass nane="Person">
<id nane="id" col unm="personld">
<generator class="native"/>
</id>
<set name="addresses">
<key col um="personl d"
not-nul | ="true"/>
<one-to-many cl ass="Address"/>
</ set >
</ cl ass>

<cl ass nane="Address" >
<id nanme="id" col um="addressld">
<generator class="native"/>
</id>
</cl ass>

create table Person (personld bigint not null primary key)
create tabl e Address (addressld bigint not null primry key, personld
bi gint not null)

We think it's better to use a join table for this kind of association.
3. Unidirectional associations with join tables

3.1. one to many

A unidirectional one-to-many association on a join table is much preferred. Notice that by
specifying uni que="true", we have changed the multiplicity from many-to-many to
one-to-many.

<cl ass nane="Person">
<id nane="id" col unm="personld">
<generator class="native"/>
</id>
<set name="addresses" tabl e="PersonAddress" >
<key col um="personld"/>
<many-t o- many col utm="addr essl d"
uni que="true"
cl ass="Address"/ >
</set>
</ cl ass>

<cl ass nanme="Addr ess" >
<id nanme="id" col unm="addressl d">
<generator class="native"/>
</id>
</ cl ass>

119

Chapter 8. Association Mappings

create table Person (personld bigint not null primry key)

create tabl e PersonAddress (personld not null, addressld bigint
not null primry key)

create tabl e Address (addressld bigint not null primary key)

3.2. many to one

A unidirectional many-to-one association on a join table is quite common when the association
is optional.

<cl ass nane="Person">
<id name="id" col um="personld">
<generator class="native"/>
</id>
<j oi n tabl e="Per sonAddr ess"
opti onal ="true">
<key col um="personld" uni que="true"/>
<many-t o- one nane="address"
col um="addr essl d"
not-nul I ="true"/>
</joi n>
</ cl ass>

<cl ass nane="Address" >
<id nanme="id" col um="addressld">
<generator class="native"/>
</id>
</ cl ass>

create table Person (personld bigint not null primry key)

create tabl e PersonAddress (personld bigint not null primary key, addressld
bi gint not null)

create table Address (addressld bigint not null primry key)

3.3.0ne to one

A unidirectional one-to-one association on a join table is extremely unusual, but possible.

<cl ass nane="Per son">

<id nanme="id" col utm="personld">
<generator class="native"/>

</id>

<j oi n t abl e="Per sonAddr ess"
optional ="true">
<key col um="personl d"

uni que="true"/>

120

many to many

<many-t o- one nane="address"
col um="addr essl| d"
not - nul I ="true"
uni que="true"/>
</j oi n>
</ cl ass>

<cl ass nanme="Addr ess" >
<id nanme="id" col um="addressld">
<generator class="native"/>
</id>
</cl ass>

create table Person (personld bigint not null primry key)

create tabl e PersonAddress (personld bigint not null primary key, addressld

bi gi nt
not null uni que)
create tabl e Address (addressld bigint not null primary key)

3.4. many to many
Finally, we have a unidirectional many-to-many association.

<cl ass nane="Per son">
<id nanme="id" col um="personld">
<generator class="native"/>
</id>
<set nanme="addresses" tabl e="PersonAddress">
<key col um="personld"/>
<many-t o- many col uimm="addr essl d"
cl ass="Address"/ >
</set>
</ cl ass>

<cl ass nanme="Addr ess" >
<id nanme="id" col um="addressld">
<generator class="native"/>
</id>
</cl ass>

create table Person (personld bigint not null primry key)
create tabl e PersonAddress (personld bigint not null, addressld bigint
nul |,
primary key (personld, addressld))
create tabl e Address (addressld bigint not null primry key)

not

121

Chapter 8. Association Mappings

4. Bidirectional associations

4.1. one to many / many to one

A bidirectional many-to-one association is the most common kind of association. (This is the
standard parent/child relationship.)

<cl ass nane="Person">
<id name="id" col um="personld">
<generator class="native"/>
</id>
<many-t o- one nanme="address"
col um="addr essl d"
not-nul | ="true"/>
</ cl ass>

<cl ass nanme="Addr ess" >
<id nane="id" col um="addressld">
<generator class="native"/>
</id>
<set nane="peopl e" inverse="true">
<key col um="addressl d"/>
<one-to-many cl ass="Person"/>
</ set >
</ cl ass>

create table Person (personld bigint not null primary key, addressld bigint
not null)
create table Address (addressld bigint not null primary key)

If you use a Li st (or other indexed collection) you need to set the key column of the foreign key
tonot nul |, and let Hibernate manage the association from the collections side to maintain the
index of each element (making the other side virtually inverse by setting updat e="f al se" and
insert="fal se"):

<cl ass nane="Person">
<id nane="id"/>

<many-t o- one nane="addr ess"
col um="addr essl d"
not - nul | ="true"
i nsert="fal se"
updat e="f al se"/ >
</cl ass>

<cl ass nanme="Addr ess" >
<id nane="id"/>

<li st name="peopl e">
<key col um="addressld" not-nul | ="true"/>

122

one to one

<list-index col um="peopl el dx"/>
<one-to-many cl ass="Person"/>
</[list>
</ cl ass>

It is important that you define not - nul | ="t rue" on the <key> element of the collection mapping
if the underlying foreign key column is NOT NULL. Don't only declare not - nul | ="t rue" on a
possible nested <col uim> element, but on the <key> element.

4.2. one to one
A bidirectional one-to-one association on a foreign key is quite common.

<cl ass nane="Person">
<id name="id" col um="personld">
<generator class="native"/>
</id>
<many-t o- one nane="address"
col um="addr essl d"
uni que="true"
not-nul I ="true"/>
</ cl ass>

<cl ass nane="Addr ess" >
<id name="id" col um="addressld">
<generator class="native"/>
</id>
<one-t o- one name="person"
property-ref="address"/>
</ cl ass>

create table Person (personld bigint not null primry key, addressld bigint
not null uni que)
create tabl e Address (addressld bigint not null prinmary key)

A bidirectional one-to-one association on a primary key uses the special id generator.

<cl ass name="Person">
<id name="id" col um="personld">
<generator class="native"/>
</id>
<one-t o- one nane="address"/>
</ cl ass>

<cl ass nanme="Addr ess" >
<id nanme="id" col unm="personld">
<generator class="foreign">
<par am nane="pr operty" >per son</ par an

123

Chapter 8. Association Mappings

</ gener at or >
</id>
<one-t o0- one nane="person"
constrai ned="true"/ >
</ cl ass>

create table Person (personld bigint not null primry key)
create table Address (personld bigint not null primry key)

5. Bidirectional associations with join tables

5.1. one to many / many to one

A bidirectional one-to-many association on a join table. Note that the i nver se="true" can go
on either end of the association, on the collection, or on the join.

<cl ass nane="Person">
<id nanme="id" col unm="personl d">
<generator class="native"/>
</id>
<set nanme="addresses"
t abl e=" Per sonAddr ess" >
<key col um="personld"/>
<many-t o- many col unm="addr essl d"
uni que="true"
cl ass="Addr ess"/ >
</set>
</ cl ass>

<cl ass nane="Address" >
<id name="id" col um="addressld">
<generator class="native"/>
</id>
<j oi n tabl e="Per sonAddr ess"
i nverse="true"
opti onal ="true">
<key col um="addressl d"/>
<many-t o- one nanme="person"
col um="per sonl d"
not-nul I ="true"/>
</joi n>
</ cl ass>

create table Person (personld bigint not null primry key)

create tabl e PersonAddress (personld bigint not null, addressld bigint not
null primary key)

create table Address (addressld bigint not null primary key)

124

one to one

5.2. one to one

A bidirectional one-to-one association on a join table is extremely unusual, but possible.

<cl ass nane="Person">
<id nanme="id" col unm="personld">
<generator class="native"/>
</id>
<j oi n tabl e="Per sonAddr ess"
opti onal ="true">
<key col um="personl d"
uni que="true"/>
<many-t o- one nanme="address"
col um="addr essl| d"
not - nul I ="true"
uni que="true"/>
</joi n>
</ cl ass>

<cl ass nane="Addr ess" >
<id name="id" col uim="addressld">
<generator class="native"/>
</id>
<j oi n tabl e="Per sonAddr ess"
opti onal ="true"
i nverse="true">
<key col um="addressl d"
uni que="true"/>
<many-t o- one nanme="person"
col uim="per sonl d"
not - nul I ="t rue"
uni que="true"/>
</j oi n>
</ cl ass>

create tabl e Person (personld bigint not null primry key)
create tabl e PersonAddress (personld bigint not null primary key, addresslid
bi gi nt
not null uni que)
create tabl e Address (addressld bigint not null primary key)

5.3. many to many

Finally, we have a bidirectional many-to-many association.

<cl ass nane="Person">

125

Chapter 8. Association Mappings

<id nanme="id" col um="personld">
<generator class="native"/>
</id>
<set nanme="addresses" tabl e="Per sonAddress" >
<key col um="personld"/>
<many-t o- many col unm="addr essl d"
cl ass="Address"/ >
</ set >
</ cl ass>

<cl ass nanme="Addr ess" >
<id nane="id" col um="addressld">
<generator class="native"/>
</id>
<set nane="peopl e" inverse="true" tabl e="PersonAddress">
<key col um="addressl d"/>
<many-t o- many col utm="per sonl d"
cl ass="Person"/ >
</ set>
</ cl ass>

create table Person (personld bigint not null primry key)
create tabl e PersonAddress (personld bigint not null, addressld bigint not
null, primry key
(personld, addresslid))
create table Address (addressld bigint not null primry key)

6. More complex association mappings

More complex association joins are extremely rare. Hibernate makes it possible to handle more
complex situations using SQL fragments embedded in the mapping document. For example, if a
table with historical account information data defines account Nunber , ef f ect i veEndDat e and
ef fecti veSt art Dat e columns, mapped as follows:

<properties name="current Account Key" >
<property nane="account Nunber" type="string" not-null="true"/>
<property nane="current Account" type="bool ean">
<f or mul a>case when effectiveEndDate is null then 1 else O
end</ f or nul a>
</ property>
</ properties>
<property nane="effecti veEndDat e" type="date"/>
<property nane="effectiveStateDate" type="date" not-null="true"/>

Then we can map an association to the current instance (the one with null ef f ect i veEndDat e)
using:

<many-t o- one name="current Account | nf 0"

126

More complex association mappings

property-ref="current Account Key"
cl ass="Account | nf 0" >
<col um nane="account Number "/ >
<fornul a>'1'</forml a>
</ many-t o- one>

In a more complex example, imagine that the association between Enpl oyee and

Or gani zat i on is maintained in an Enpl oynent table full of historical employment data. Then an
association to the employee's most recent employer (the one with the most recent st ar t Dat e)
might be mapped this way:

<j oi n>
<key col um="enpl oyeel d"/ >
<subsel ect >
sel ect enpl oyeeld, orgld
from Enpl oynent s
group by orgld
havi ng startDate = max(start Date)
</ subsel ect >
<many-t o- one name="nost Recent Enpl oyer
cl ass="Organi zati on"
col um="orgld"/>

</joi n>

You can get quite creative with this functionality, but it is usually more practical to handle these
kinds of cases using HQL or a criteria query.

127

128

Chapter 9.

Component Mapping

The notion of a component is re-used in several different contexts, for different purposes,
throughout Hibernate.

1. Dependent objects

A component is a contained object that is persisted as a value type, not an entity reference. The
term "component" refers to the object-oriented notion of composition (not to architecture-level
components). For example, you might model a person like this:

public class Person {
private java.util.Date birthday;
private Name nane;
private String key;
public String getKey() {
return key;

}

private void setKey(String key) {
t hi s. key=key;

}

public java.util.Date getBirthday() ({
return birthday;

}

public void setBirthday(java.util.Date birthday) {
this.birthday = birthday;

}

publ i c Nanme get Nane() {
return nane;

}

public void set Nane(Name nane) {
t hi s. name = nane;

public class Name {

char initial;

String first;

String |ast;

public String getFirst() {
return first;

}

void setFirst(String first) {
this.first = first;

}

public String getlLast() {
return | ast;

}

voi d setLast(String last) {
this.last = Ilast;

129

Chapter 9. Component Mapping

}
public char getlnitial () {
return initial

}

void setlnitial (char initial) {
this.initial = initial

}

Now Nane may be persisted as a component of Per son. Notice that Nane defines getter and
setter methods for its persistent properties, but doesn't need to declare any interfaces or
identifier properties.

Our Hibernate mapping would look like:

<cl ass nane="eg. Person" tabl e="person">
<i d name="Key" col um="pid" type="string">
<generator class="uuid"/>

</id>
<property nane="birthday" type="date"/>
<component nane="Nanme" class="eg. Name"> <!-- class attribute optiona

<property nane="initial"/>
<property nane="first"/>
<property nane="|ast"/>
</ conponent >
</ cl ass>

The person table would have the columns pi d, bi rt hday, initial,first and| ast.

Like all value types, components do not support shared references. In other words, two persons
could have the same name, but the two person objects would contain two independent name
ojects, only "the same" by value. The null value semantics of a component are ad hoc. When
reloading the containing object, Hibernate will assume that if all component columns are null,
then the entire component is null. This should be okay for most purposes.

The properties of a component may be of any Hibernate type (collections, many-to-one
associations, other components, etc). Nested components should not be considered an exotic
usage. Hibernate is intended to support a very fine-grained object model.

The <conponent > element allows a <par ent > subelement that maps a property of the
component class as a reference back to the containing entity.

<cl ass nanme="eg. Person" tabl e="person">

<i d nanme="Key" colum="pid" type="string">
<generator class="uuid"/>

</id>

<property nane="birthday" type="date"/>

<conmponent nane="Nane" cl ass="eg. Nane" uni que="true">
<parent nane="nanedPerson"/> <!-- reference back to the Person -->
<property nane="initial"/>

130

Collections of dependent objects

<property nane="first"/>
<property nane="|ast"/>
</ conponent >
</ cl ass>

2. Collections of dependent objects

Collections of components are supported (eg. an array of type Nane). Declare your component
collection by replacing the <el ement > tag with a <conposi t e- el enent > tag.

<set nanme="soneNanes" tabl e="sone_nanes" |azy="true">
<key col um="id"/>
<conposi te-el enent cl ass="eg. Nane"> <!-- class attribute required -->
<property nane="initial"/>
<property nane="first"/>
<property nane="|ast"/>
</ conposi t e- el enent >
</ set >

Note: if you define a Set of composite elements, it is very important to implement equal s() and
hashCode() correctly.

Composite elements may contain components but not collections. If your composite element
itself contains components, use the <nest ed- conposi t e- el ement > tag. This is a pretty exotic
case - a collection of components which themselves have components. By this stage you
should be asking yourself if a one-to-many association is more appropriate. Try remodelling the
composite element as an entity - but note that even though the Java model is the same, the
relational model and persistence semantics are still slightly different.

Please note that a composite element mapping doesn't support null-able properties if you're
using a <set >. Hibernate has to use each columns value to identify a record when deleting
objects (there is no separate primary key column in the composite element table), which is not
possible with null values. You have to either use only not-null properties in a composite-element
or choose a <l i st >, <map>, <bag> or <i dbag>.

A special case of a composite element is a composite element with a nested <many-t o- one>

element. A mapping like this allows you to map extra columns of a many-to-many association
table to the composite element class. The following is a many-to-many association from O der
to I t emwhere pur chaseDat e, pri ce and quant i ty are properties of the association:

<cl ass name="eg. Order" >

<set nane="purchasedltens" tabl e="purchase_itens" |azy="true">
<key col um="order _id">
<conposi te-el ement cl ass="eg. Purchase">
<property nane="purchaseDate"/>
<property nane="price"/>
<property nane="quantity"/>
<many-to-one nanme="itent class="eg.ltenm'/> <!-- class attribute

131

Chapter 9. Component Mapping

is optional -->
</ conposi t e- el ement >
</ set>
</ cl ass>

Of course, there can't be a reference to the purchae on the other side, for bidirectional
association navigation. Remember that components are value types and don't allow shared
references. A single Pur chase can be in the set of an Or der, but it can't be referenced by the
I t emat the same time.

Even ternary (or quaternary, etc) associations are possible:

<cl ass name="eg. Order" >

<set name="purchasedltens" tabl e="purchase_itens" |azy="true">
<key col um="order _id">
<conposi te-el ement cl ass="eg. OrderLine">
<many-t o- one nanme="pur chaseDetail s cl ass="eg. Purchase"/>
<many-to-one nanme="itenl' class="eg.ltenl/>
</ conposi t e- el emrent >
</ set>
</ cl ass>

Composite elements may appear in queries using the same syntax as associations to other
entities.

3. Components as Map indices

The <conposi t e- map- key> element lets you map a component class as the key of a Map. Make
sure you override hashCode() and equal s() correctly on the component class.

4. Components as composite identifiers

You may use a component as an identifier of an entity class. Your component class must satisfy
certain requirements:

e It mustimplement j ava.io. Seri al i zabl e.
It must re-implement equal s() and hashCode(), consistently with the database's notion of
composite key equality.

Note: in Hibernate3, the second requirement is not an absolutely hard requirement of Hibernate.
But do it anyway.

You can't use an I denti fi er Gener at or to generate composite keys. Instead the application
must assign its own identifiers.

Use the <conposi t e- i d> tag (with nested <key- pr opert y> elements) in place of the usual

132

Components as composite identifiers

<i d> declaration. For example, the O der Li ne class has a primary key that depends upon the
(composite) primary key of Or der .

<cl ass nane="OrderLi ne">

<conposite-id nane="id" class="OrderLineld">
<key-property name="lineld"/>
<key- property nane="orderld"/>
<key- property nanme="custonerld"/>

</ conposi te-id>

<property nane="nane"/>

<many-t o-one nanme="order" class="Order"
i nsert="fal se" update="fal se">
<col um nane="orderld"/>
<col um nane="cust onerl| d"/>
</ many-t o- one>

</ cl ass>

Now, any foreign keys referencing the Or der Li ne table are also composite. You must declare
this in your mappings for other classes. An association to Or der Li ne would be mapped like this:

<many-t o-one nanme="orderLi ne" class="OrderlLine">
<l-- the "class" attribute is optional, as usual -->
<col um nane="lineld"/>
<col um nanme="order|d"/>
<col um nane="cust oner|d"/>
</ many-t o- one>

(Note that the <col unm> tag is an alternative to the col umm attribute everywhere.)

A nany- t o- many association to Or der Li ne also uses the composite foreign key:

<set name="undel i ver edOr der Li nes" >
<key col um nanme="war ehousel d"/>
<many-t o- many cl ass="Or der Li ne">
<col um nanme="I|inel d"/>
<col um nane="orderl d"/>
<col um nane="custonerl| d"/>
</ many-t o- many>
</set>

The collection of Or der Li ne s in Or der would use:

<set name="orderLines" inverse="true">
<key>
<col um nane="order|d"/>
<col um nanme="cust oner|d"/>
</ key>

133

Chapter 9. Component Mapping

<one-to-many cl ass="OrderLi ne"/>
</set>

(The <one-t o- many> element, as usual, declares no columns.)

If Or der Li ne itself owns a collection, it also has a composite foreign key.

<cl ass nane="OrderLi ne">

<l ist name="deliveryAttenpts">

<key> <I-- a collection inherits the conposite key type -->
<col um name="1inel d"/>
<col um name="orderld"/>
<col um nane="custoner | d"/>

</ key>

<list-index colum="attenptld" base="1"/>

<conposi te-el ement class="DeliveryAttenpt">

</ conposi t e- el ement >
</ set>
</ cl ass>

5. Dynamic components
You may even map a property of type Map:

<dynami c- conponent name="userAttri butes">
<property nane="foo" colum="FOO' type="string"/>
<property nane="bar" col um="BAR"' type="integer"/>
<many-t o- one nanme="baz" cl ass="Baz" colum="BAZ ID'/>
</ dynani c- conponent >

The semantics of a <dynani c- conponent > mapping are identical to <conponent >. The
advantage of this kind of mapping is the ability to determine the actual properties of the bean at
deployment time, just by editing the mapping document. Runtime manipulation of the mapping
document is also possible, using a DOM parser. Even better, you can access (and change)
Hibernate's configuration-time metamodel via the Conf i gur ati on object.

134

Chapter 10.

Inheritance Mapping

1. The Three Strategies

Hibernate supports the three basic inheritance mapping strategies:

« table per class hierarchy
« table per subclass

« table per concrete class
In addition, Hibernate supports a fourth, slightly different kind of polymorphism:
* implicit polymorphism

It is possible to use different mapping strategies for different branches of the same inheritance
hierarchy, and then make use of implicit polymorphism to achieve polymorphism across the
whole hierarchy. However, Hibernate does not support mixing <subcl ass>, and

<j oi ned- subcl ass> and <uni on- subcl ass> mappings under the same root <cl ass> element.
It is possible to mix together the table per hierarchy and table per subclass strategies, under the
the same <cl ass> element, by combining the <subcl ass> and <j oi n> elements (see below).

It is possible to define subcl ass, uni on- subcl ass, and j oi ned- subcl ass mappings in
separate mapping documents, directly beneath hi ber nat e- mappi ng. This allows you to extend
a class hierachy just by adding a new mapping file. You must specify an ext ends attribute in the
subclass mapping, naming a previously mapped superclass. Note: Previously this feature made
the ordering of the mapping documents important. Since Hibernate3, the ordering of mapping
files does not matter when using the extends keyword. The ordering inside a single mapping file
still needs to be defined as superclasses before subclasses.

<hi ber nat e- mappi ng>
<subcl ass name="Donesti cCat" extends="Cat" discrim nator-val ue="D"'>
<property nane="nane" type="string"/>
</ subcl ass>
</ hi ber nat e- mappi ng>

1.1. Table per class hierarchy

Suppose we have an interface Paynent , with implementors Cr edi t Car dPaynent , CashPayment ,
ChequePaynent . The table per hierarchy mapping would look like:

<cl ass nane="Paynent" tabl e="PAYMENT" >
<id name="id" type="long" col um="PAYMENT_I D' >
<generator class="native"/>

135

Chapter 10. Inheritance Mapping

</id>
<di scri m nat or col um="PAYMENT_TYPE" type="string"/>
<property nane="anmount" col umm="AMOUNT"/ >

<subcl ass nane="Credit CardPaynment" di scri m nat or-val ue="CREDI T">
<property nane="credit CardType" col um="CCTYPE"/>

</ subcl ass>
<subcl ass nane="CashPaynent" di scri m nator-val ue="CASH'>

</ subcl ass>
<subcl ass nane="ChequePaynent" di scri m nat or - val ue=" CHEQUE" >

</ subcl ass>
</cl ass>

Exactly one table is required. There is one big limitation of this mapping strategy: columns
declared by the subclasses, such as CCTYPE, may not have NOT NULL constraints.

1.2. Table per subclass
A table per subclass mapping would look like:

<cl ass nane="Paynent" tabl e="PAYMENT" >
<id name="id" type="long" col utm="PAYMENT_I D' >
<generator class="native"/>
</id>
<property nane="anount" col umm="AMOUNT"/ >

<j oi ned- subcl ass nanme="Credit CardPaynent" tabl e="CREDI T_PAYMENT" >
<key col um="PAYMENT_ | D"/ >
<property nane="creditCardType" col um="CCTYPE"/ >

</ j oi ned- subcl ass>
<j oi ned- subcl ass nane="CashPaynent" tabl e=" CASH PAYMENT" >
<key col um="PAYMENT | D"/ >

</ j oi ned- subcl ass>
<j oi ned- subcl ass nane="ChequePaynent" t abl e=" CHEQUE PAYMENT" >
<key col um="PAYMENT_ | D"/ >

</ j oi ned- subcl ass>
</ cl ass>

Four tables are required. The three subclass tables have primary key associations to the
superclass table (so the relational model is actually a one-to-one association).

1.3. Table per subclass, using a discriminator

Note that Hibernate's implementation of table per subclass requires no discriminator column.
Other object/relational mappers use a different implementation of table per subclass which

136

Mixing table per class hierarchy with table

requires a type discriminator column in the superclass table. The approach taken by Hibernate
is much more difficult to implement but arguably more correct from a relational point of view. If
you would like to use a discriminator column with the table per subclass strategy, you may
combine the use of <subcl ass> and <j oi n>, as follow:

<cl ass nane="Paynent" tabl e="PAYMENT" >
<id name="id" type="long" col um="PAYMENT | D"'>
<generator class="native"/>
</id>
<di scri m nator col um="PAYMENT_TYPE" type="string"/>
<property nane="anmount" col umm="AMOUNT"/ >

<subcl ass nane="Credit Car dPayment" di scri m nat or-val ue="CREDI T" >
<joi n tabl e="CREDI T_PAYMENT" >
<key col um="PAYMENT_ | D"/ >
<property nane="creditCardType" col um="CCTYPE"/ >

</j oi n>
</ subcl ass>
<subcl ass nane="CashPaynent" di scri m nator-val ue="CASH' >
<j oi n tabl e=" CASH PAYMENT" >
<key col um="PAYMENT | D"/ >

</j oi n>
</ subcl ass>
<subcl ass nane="ChequePaynment" di scri m nat or-val ue="CHEQUE" >
<j oi n tabl e=" CHEQUE_PAYMENT" fetch="sel ect">
<key col um="PAYMENT_I D'/ >

</joi n>
</ subcl ass>
</cl ass>

The optional f et ch="sel ect" declaration tells Hibernate not to fetch the ChequePaynent
subclass data using an outer join when querying the superclass.

1.4. Mixing table per class hierarchy with table per subclass

You may even mix the table per hierarchy and table per subclass strategies using this
approach:

<cl ass name="Paynment" tabl e=" PAYMENT" >
<id name="id" type="long" col um="PAYMENT_I D' >
<generator class="native"/>
</id>
<di scri m nat or col um="PAYMENT_TYPE" type="string"/>
<property nane="anmpunt" col umm="AMOUNT"/ >

<subcl ass nane="Credit Car dPayment" di scri m nat or - val ue=" CREDI T" >
<j oi n tabl e="CREDI T_PAYMENT" >
<property nane="credit CardType" col um="CCTYPE"/>

</j oi n>

137

Chapter 10. Inheritance Mapping

</ subcl ass>
<subcl ass nane="CashPaynent" di scri m nator-val ue="CASH' >

</ subcl ass>
<subcl ass nane="ChequePaynent" di scri m nat or-val ue=" CHEQUE" >

</ subcl ass>
</ cl ass>

For any of these mapping strategies, a polymorphic association to the root Paynent class is
mapped using <many- t o- one>.

<many-t o- one nanme="paynment" col um="PAYMENT | D' cl ass="Paynent"/>

1.5. Table per concrete class

There are two ways we could go about mapping the table per concrete class strategy. The first
is to use <uni on- subcl ass>.

<cl ass nane="Paynent ">
<id name="id" type="long" col utm="PAYMENT_I| D' >
<gener at or cl ass="sequence"/>
</id>
<property nanme="anount" col umm="AMOUNT"/ >

<uni on- subcl ass nanme="Credi t Car dPaynment " t abl e=" CREDI T_PAYMENT" >
<property nane="creditCardType" col um="CCTYPE"/>

</ uni on- subcl ass>
<uni on- subcl ass nanme="CashPaynment" tabl e=" CASH PAYMENT" >

</ uni on- subcl ass>
<uni on- subcl ass nanme="ChequePaynent " tabl e=" CHEQUE PAYMENT" >

</ uni on- subcl ass>
</ cl ass>

Three tables are involved for the subclasses. Each table defines columns for all properties of
the class, including inherited properties.

The limitation of this approach is that if a property is mapped on the superclass, the column
name must be the same on all subclass tables. (We might relax this in a future release of
Hibernate.) The identity generator strategy is not allowed in union subclass inheritance, indeed
the primary key seed has to be shared accross all unioned subclasses of a hierarchy.

If your superclass is abstract, map it with abst ract ="t rue" . Of course, if it is not abstract, an
additional table (defaults to PAYMENT in the example above) is needed to hold instances of the
superclass.

138

per subclass

1.6. Table per concrete class, using implicit polymorphism
An alternative approach is to make use of implicit polymorphism:

<cl ass nanme="Credi t CardPaynent" tabl e=" CREDI T_PAYMENT" >
<id name="id" type="Ilong" col um="CRED T_PAYMENT | D"'>
<generator class="native"/>
</id>
<property nane="anmount" col umm="CREDI T_AMOUNT"/ >

</ cl ass>
<cl ass name="CashPaynent" tabl e=" CASH PAYMENT" >
<id nanme="id" type="long" col um="CASH PAYMENT | D'>
<generator class="native"/>

</id>
<property nane="amount" col utm="CASH AMOUNT"/ >

</ cl ass>
<cl ass nane="ChequePaynent" t abl e=" CHEQUE PAYMENT" >
<id name="id" type="long" col um="CHEQUE PAYMENT | D"'>
<generator class="native"/>

</id>
<property nane="amount" col umm="CHEQUE AMOUNT"/ >

</cl ass>

Notice that nowhere do we mention the Paynent interface explicitly. Also notice that properties
of Paynent are mapped in each of the subclasses. If you want to avoid duplication, consider
using XML entities (e.g.[<! ENTITY al | properti es SYSTEM "al |l properties.xm ">] in
the DOCTYPE declartion and & al | properti es; in the mapping).

The disadvantage of this approach is that Hibernate does not generate SQL UNI ON s when
performing polymorphic queries.

For this mapping strategy, a polymorphic association to Paynent is usually mapped using
<any>.

<any nane="paynent" neta-type="string" id-type="Ilong">
<nmet a- val ue val ue="CREDI T" cl ass="Credit Car dPaynment "/ >
<met a- val ue val ue="CASH"' cl ass="CashPaynent"/>
<net a- val ue val ue="CHEQUE" cl ass="ChequePaynent"/>
<col um nanme=" PAYMENT CLASS"/ >
<col um nane="PAYMENT | D'/ >

</ any>

1.7. Mixing implicit polymorphism with other inheritance
mappings

There is one further thing to notice about this mapping. Since the subclasses are each mapped

139

Chapter 10. Inheritance Mapping

in their own <cl ass> element (and since Paynent is just an interface), each of the subclasses
could easily be part of another inheritance hierarchy! (And you can still use polymorphic queries
against the Paynent interface.)

<cl ass nanme="Credi t Car dPaynent" tabl e=" CREDI T_PAYMENT" >
<id name="id" type="long" col um="CRED T_PAYMENT | D'>
<generator class="native"/>
</id>
<di scri m nator col um="CREDI T_CARD"' type="string"/>
<property nane="amount" col utm="CREDI T_AMOUNT"/ >

<subcl ass nane="Mast er Car dPaynent" di scri m nat or-val ue="MXC'"/ >
<subcl ass nane="Vi saPaynent" di scri m nat or-val ue="VI SA"/ >
</ cl ass>

<cl ass nane="Nonel ectroni cTransacti on" tabl e=" NONELECTRONI C_TXN">
<id nanme="id" type="long" colum="TXN_| D">
<generator class="native"/>
</id>

<j oi ned- subcl ass nane="CashPaynent" tabl e=" CASH_PAYMENT" >
<key col um="PAYMENT | D"/ >
<property nane="amount" col utm="CASH AMOUNT"/ >

</ j oi ned- subcl ass>

<j oi ned- subcl ass nane="ChequePaynent" tabl e=" CHEQUE PAYNMENT" >
<key col um="PAYMENT_I| D"/ >
<property nane="amount" col umm="CHEQUE AMOUNT"/ >

</ j oi ned- subcl ass>
</ cl ass>

Once again, we don't mention Payment explicitly. If we execute a query against the Paynent
interface - for example, f rom Paynent - Hibernate automatically returns instances of

Credi t Car dPayment (and its subclasses, since they also implement Paynent), CashPaynent
and ChequePaynent but not instances of Nonel ect r oni cTransacti on.

2. Limitations

There are certain limitations to the "implicit polymorphism" approach to the table per
concrete-class mapping strategy. There are somewhat less restrictive limitations to
<uni on- subcl ass> mappings.

The following table shows the limitations of table per concrete-class mappings, and of implicit
polymorphism, in Hibernate.

InheritancePolymorph Polymorph Polymorph Polymorph Polymorph Polymorph Polymorp

strategy many-to-onone-to-one one-to-manmany-to-mi oad()/ getqueries joins

table per <many-t o- onere- t 0- oneone- t 0- MEARNY- t 0- NBNget (Paynenomcl ass,from
class-hierarchy id) Pay nment Order o

140

Limitations

InheritancePolymorph Polymorph Polymorph Polymorph Polymorph Polymorph Polymorp

strategy many-to-onone-to-one one-to-manmany-to-mi oad()/ getqueries joins

p join
0. paynent
p
table per <many-t o- orere- t 0- oneone- t 0- NERFRNY- t 0- NBNget (Paynenomc! ass,from
subclass id) Paynment Order o
p join
0. paynent
p
table per <many-t o- onere- t 0- oneone- t 0- MEANRNY- t 0- nBNget (Paynenomc! ass,from
concrete-class (for id) Payment Order o
(union-subclass) i nverse="true" p join
only) 0. paynent
p
table per | <any> not not <many- t o- agyer eat e i tem a(Paymeht . cl ass) . add(
concrete supported ' supported Restri cti oRay e (i ddupported
class). uni queRepul t ()

(implicit
polymorphism)

Table 10.1. Features of inheritance mappings

141

142

Chapter 11.

Working with objects

Hibernate is a full object/relational mapping solution that not only shields the developer from the
details of the underlying database management system, but also offers state management of
objects. This is, contrary to the management of SQL st at enent s in common JDBC/SQL
persistence layers, a very natural object-oriented view of persistence in Java applications.

In other words, Hibernate application developers should always think about the state of their
objects, and not necessarily about the execution of SQL statements. This part is taken care of
by Hibernate and is only relevant for the application developer when tuning the performance of
the system.

1. Hibernate object states

Hibernate defines and supports the following object states:

» Transient - an object is transient if it has just been instantiated using the new operator, and it
is not associated with a Hibernate Sessi on. It has no persistent representation in the
database and no identifier value has been assigned. Transient instances will be destroyed by
the garbage collector if the application doesn't hold a reference anymore. Use the Hibernate
Sessi on to make an object persistent (and let Hibernate take care of the SQL statements that
need to be executed for this transition).

» Persistent - a persistent instance has a representation in the database and an identifier value.
It might just have been saved or loaded, however, it is by definition in the scope of a Sessi on.
Hibernate will detect any changes made to an object in persistent state and synchronize the
state with the database when the unit of work completes. Developers don't execute manual
UPDATE statements, or DELETE statements when an object should be made transient.

» Detached - a detached instance is an object that has been persistent, but its Sessi on has
been closed. The reference to the object is still valid, of course, and the detached instance
might even be modified in this state. A detached instance can be reattached to a new
Sessi on at a later point in time, making it (and all the modifications) persistent again. This
feature enables a programming model for long running units of work that require user
think-time. We call them application transactions, i.e. a unit of work from the point of view of
the user.

We'll now discuss the states and state transitions (and the Hibernate methods that trigger a
transition) in more detail.

2. Making objects persistent

Newly instantiated instances of a a persistent class are considered transient by Hibernate. We
can make a transient instance persistent by associating it with a session:

DonesticCat fritz = new DonmesticCat();

143

Chapter 11. Working with objects

fritz.setCol or(Col or. A NGER) ;
fritz.setSex('M);

fritz.setNanme("Fritz");

Long generatedld = (Long) sess.save(fritz);

If Cat has a generated identifier, the identifier is generated and assigned to the cat when
save() is called. If Cat has an assi gned identifier, or a composite key, the identifier should be
assigned to the cat instance before calling save() . You may also use per si st () instead of
save(), with the semantics defined in the EJB3 early draft.

Alternatively, you may assign the identifier using an overloaded version of save() .

Donesti cCat pk = new DonesticCat ();
pk. set Col or (Col or. TABBY) ;

pk.set Sex(' F');

pk. set Name(" PK") ;

pk.setKittens(new HashSet ());
pk.addKitten(fritz);

sess. save(pk, new Long(1234));

If the object you make persistent has associated objects (e.g. the ki t t ens collection in the
previous example), these objects may be made persistent in any order you like unless you have
a NOT NULL constraint upon a foreign key column. There is never a risk of violating foreign key
constraints. However, you might violate a NOT NULL constraint if you save() the objects in the
wrong order.

Usually you don't bother with this detail, as you'll very likely use Hibernate's transitive
persistence feature to save the associated objects automatically. Then, even NOT NULL
constraint violations don't occur - Hibernate will take care of everything. Transitive persistence is
discussed later in this chapter.

3. Loading an object
The | oad() methods of Sessi on gives you a way to retrieve a persistent instance if you already
know its identifier. | oad() takes a class object and will load the state into a newly instantiated

instance of that class, in persistent state.

Cat fritz = (Cat) sess.load(Cat.class, generatedld);

/1 you need to wap prinmtive identifiers
long id = 1234;
Donesti cCat pk = (DonesticCat) sess.|load(DomesticCat.class, new Long(id));

Alternatively, you can load state into a given instance:

Cat cat = new DonesticCat();

144

Querying

[/l load pk's state into cat
sess. | oad(cat, new Long(pkld));
Set kittens = cat.getKittens();

Note that | oad() will throw an unrecoverable exception if there is no matching database row. If
the class is mapped with a proxy, | oad() just returns an uninitialized proxy and does not
actually hit the database until you invoke a method of the proxy. This behaviour is very useful if
you wish to create an association to an object without actually loading it from the database. It
also allows multiple instances to be loaded as a batch if bat ch- si ze is defined for the class

mapping.

If you are not certain that a matching row exists, you should use the get () method, which hits
the database immediately and returns null if there is no matching row.

Cat cat = (Cat) sess.get(Cat.class, id);
if (cat==null) {

cat = new Cat ();

sess. save(cat, id);

}

return cat;

You may even load an object using an SQL SELECT ... FOR UPDATE, using a LockMbde. See
the API documentation for more information.

Cat cat = (Cat) sess.get(Cat.class, id, LockMde. UPGRADE);

Note that any associated instances or contained collections are not selected FOR UPDATE,
unless you decide to specify | ock or al | as a cascade style for the association.

It is possible to re-load an object and all its collections at any time, using the r ef r esh()
method. This is useful when database triggers are used to initialize some of the properties of
the object.

sess. save(cat);
sess. flush(); //force the SQ. | NSERT
sess.refresh(cat); //re-read the state (after the trigger executes)

An important question usually appears at this point: How much does Hibernate load from the
database and how many SQL SELECT s will it use? This depends on the fetching strategy and is
explained in Section 1, “Fetching strategies”.

4. Querying

If you don't know the identifiers of the objects you are looking for, you need a query. Hibernate
supports an easy-to-use but powerful object oriented query language (HQL). For programmatic

145

Chapter 11. Working with objects

query creation, Hibernate supports a sophisticated Criteria and Example query feature (QBC
and QBE). You may also express your query in the native SQL of your database, with optional
support from Hibernate for result set conversion into objects.

4.1. Executing queries

HQL and native SQL queries are represented with an instance of or g. hi ber nat e. Query. This
interface offers methods for parameter binding, result set handling, and for the execution of the
actual query. You always obtain a Quer y using the current Sessi on:

Li st cats = session. creat eQuery(
"from Cat as cat where cat.birthdate < ?")
.set Dat e(0, date)
dist();

Li st not hers = session. creat eQuer y(
"sel ect mother from Cat as cat join cat.nother as nother where cat.name

.setString(0, nane)
dist();

Li st kittens = session.createQuery(
"from Cat as cat where cat.nother = ?")
.setEntity(0, pk)
dist();

Cat nother = (Cat) session.createQuery(
"sel ect cat.nother from Cat as cat where cat = ?")
.setEntity(0, izi)
.uni queResul t();]]

Query nothersWthKittens = (Cat) session.createQuery(
"sel ect nother from Cat as nother |left join fetch nother.kittens");
Set uni queMdot hers = new HashSet (mot hersWthKittens.list());

A query is usually executed by invoking | i st (), the result of the query will be loaded
completely into a collection in memory. Entity instances retrieved by a query are in persistent
state. The uni queResul t () method offers a shortcut if you know your query will only return a
single object. Note that queries that make use of eager fetching of collections usually return
duplicates of the root objects (but with their collections initialized). You can filter these
duplicates simply through a Set .

4.1.1. Iterating results

Occasionally, you might be able to achieve better performance by executing the query using the
i terate() method. This will only usually be the case if you expect that the actual entity
instances returned by the query will already be in the session or second-level cache. If they are
not already cached, i t er at e() will be slower than |i st () and might require many database
hits for a simple query, usually 1 for the initial select which only returns identifiers, and n
additional selects to initialize the actual instances.

146

Executing queries

/] fetch ids
Iterator iter = sess.createQuery("fromeg. Qux q order by
g.likeliness").iterate();
while (iter.hasNext()) {
Qux qux = (Qux) iter.next(); // fetch the object
/'l somet hing we coul dnt express in the query
i f (qux.cal cul ateConplicatedAl gorithm()) {
// delete the current instance
iter.renove();
// dont need to process the rest
br eak;

4.1.2. Queries that return tuples

Hibernate queries sometimes return tuples of objects, in which case each tuple is returned as
an array:

Iterator kittensAndMWot hers = sess. creat eQuery(

"select kitten, nother from Cat kitten join kitten. nother
not her ")

dist()

.iterator();

while (kittensAndMWot hers. hasNext ()) {
oject[] tuple = (oject[]) kittensAndMbt hers. next ();
Cat kitten = tuple[0];
Cat nother = tuple[l];

4.1.3. Scalar results

Queries may specify a property of a class in the sel ect clause. They may even call SQL
aggregate functions. Properties or aggregates are considered "scalar” results (and not entities
in persistent state).

Iterator results = sess. createQuery(
"sel ect cat.color, min(cat.birthdate), count(cat) from Cat cat " +
"group by cat.color")
dist()
.iterator();

while (results.hasNext()) {
oject[] row = (Object[]) results. next();
Color type = (Color) row0];
Date ol dest = (Date) row 1];
I nt eger count = (Integer) row 2];

147

Chapter 11. Working with objects

4.1.4. Bind parameters

Methods on Query are provided for binding values to named parameters or JDBC-style ?
parameters. Contrary to JDBC, Hibernate numbers parameters from zero. Named parameters
are identifiers of the form : nane in the query string. The advantages of named parameters are:

* named parameters are insensitive to the order they occur in the query string
« they may occur multiple times in the same query
* they are self-documenting

/I named paraneter (preferred)
Query q = sess.createQuery("from DonesticCat cat where cat.nane = :nanme");
g.setString("nanme", "Fritz");
Iterator cats = g.iterate();

[/ positional paraneter

Query q = sess.createQuery("from Donmesti cCat cat where cat.nane = ?");
g.setString(0, "lzi");

Iterator cats = g.iterate();

[/ naned paraneter |i st

Li st nanes = new Arraylist();

nanes. add("1zi");

nanmes. add("Fritz");

Query g = sess.createQuery("from Donmesti cCat cat where cat.nanme in
(:namesList)");

g. set Par anet er Li st ("nanmesLi st", nanes);

List cats = q.list();

4.1.5. Pagination

If you need to specify bounds upon your result set (the maximum number of rows you want to
retrieve and / or the first row you want to retrieve) you should use methods of the Query
interface:

Query g = sess.createQery("from Donmesti cCat cat");
g. set Fi r st Resul t (20);

g. set MaxResul t s(10) ;

List cats = qg.list();

Hibernate knows how to translate this limit query into the native SQL of your DBMS.
4.1.6. Scrollable iteration

If your JDBC driver supports scrollable Resul t Set s, the Query interface may be used to obtain
a Scrol | abl eResul t s object, which allows flexible navigation of the query results.

148

Executing queries

Query q = sess.createQery("sel ect cat.nane, cat from DonesticCat cat " +
"order by cat.nane");

Scrol | abl eResults cats = qg.scroll();

if (cats.first()) {

/1 find the first name on each page of an al phabetical |ist of cats by
name

firstNamesOf Pages = new ArraylList();

do {

String nane = cats.getString(0);
firstNamesOf Pages. add(nane) ;

}
while (cats.scroll (PAGE_SIZE));

/1l Now get the first page of cats

pageX Cats = new ArraylList();

cats. beforeFirst();

int i=0;

while((PAGE_SIZE > i++) && cats.next()) pageOt Cats.add(cats.get(1)
)

}

cats. close()

Note that an open database connection (and cursor) is required for this functionality, use
set MaxResul t () /set Fi r st Resul t () if you need offline pagination functionality.

4.1.7. Externalizing named queries

You may also define named queries in the mapping document. (Remember to use a CDATA
section if your query contains characters that could be interpreted as markup.)

<query name="ByNameAndMaxi numAéi ght " ><! [CDATA[
from eg. Donesti cCat as cat
where cat.nane = ?
and cat.weight > ?
1 1></query>

Parameter binding and executing is done programatically:

Query g = sess. get NanedQuer y (" ByNaneAndMaxi mumAéi ght ") ;
g.setString(0, nane);

g.setlnt(1, m nWight);

List cats = qg.list();

Note that the actual program code is independent of the query language that is used, you may
also define native SQL queries in metadata, or migrate existing queries to Hibernate by placing
them in mapping files.

Also note that a query declaration inside a <hi ber nat e- mappi ng> element requires a global

149

Chapter 11. Working with objects

uniqgue name for the query, while a query declaration inside a <cl ass> element is made unique
automatically by prepending the fully qualified name of the class, for example
eg. Cat . ByNanmeAndMaxi numiéi ght .

4.2. Filtering collections

A collection filter is a special type of query that may be applied to a persistent collection or
array. The query string may refer to t hi s, meaning the current collection element.

Col I ection bl ackKittens = session.createFilter(
pk.getKittens(),
"where this.color = ?")
. set Paranet er (Col or. BLACK, Hi bernate. cust on{ Col or User Type. cl ass))
dist()

DE

The returned collection is considered a bag, and it's a copy of the given collection. The original
collection is not modified (this is contrary to the implication of the name "filter", but consistent
with expected behavior).

Observe that filters do not require a f r omclause (though they may have one if required). Filters
are not limited to returning the collection elements themselves.

Col | ection bl ackKi ttenMates = session.createFilter(
pk.getKittens(),
"sel ect this.mate where this.color = eg. Col or. BLACK. i nt Val ue")
dist();

Even an empty filter query is useful, e.g. to load a subset of elements in a huge collection:

Col | ection tenKittens = session.createFilter(

not her. getKittens(), "")
.set Fi rst Resul t (0). set MaxResul t s(10)
dist();

4.3. Criteria queries

HQL is extremely powerful but some developers prefer to build queries dynamically, using an
object-oriented API, rather than building query strings. Hibernate provides an intuitive Criteria
query API for these cases:

Criteria crit = session.createCriteria(Cat.class);
crit.add(Expression.eq("color", eg.Color.BLACK));
crit.set MaxResul t s(10);

List cats = crit.list();

The Criteria and the associated Exanpl e API are discussed in more detail in Chapter 16,

150

Queries in native SQL

Criteria Queries.

4.4. Queries in native SQL

You may express a query in SQL, using cr eat eSQL.Quer y() and let Hibernate take care of the
mapping from result sets to objects. Note that you may at any time call sessi on. connecti on()
and use the JDBC Connect i on directly. If you chose to use the Hibernate API, you must
enclose SQL aliases in braces:

Li st cats = session. creat eSQLQuer y(
"SELECT {cat.*} FROM CAT {cat} WHERE ROANNUM<10",
"cat",
Cat . cl ass

). list();

Li st cats = session. creat eSQLQuery(
"SELECT {cat}.ID AS {cat.id}, {cat}.SEX AS {cat.sex}, " +
"{cat}. MATE AS {cat.mate}, {cat}.SUBCLASS AS {cat.class}, ... " +
"FROM CAT {cat} WHERE ROWNUM<10",
"cat",
Cat . cl ass

). list()

SQL queries may contain named and positional parameters, just like Hibernate queries. More
information about native SQL queries in Hibernate can be found in Chapter 17, Native SQL.

5. Modifying persistent objects

Transactional persistent instances (ie. objects loaded, saved, created or queried by the

Sessi on) may be manipulated by the application and any changes to persistent state will be
persisted when the Sessi on is flushed (discussed later in this chapter). There is no need to call
a particular method (like updat e() , which has a different purpose) to make your modifications
persistent. So the most straightforward way to update the state of an object is to | oad() it, and
then manipulate it directly, while the Sessi on is open:

DonesticCat cat = (DonesticCat) sess.load(Cat.class, new Long(69));
cat . set Nane(" PK") ;
sess.flush(); // changes to cat are automatically detected and persisted

Sometimes this programming model is inefficient since it would require both an SQL SELECT (to
load an object) and an SQL UPDATE (to persist its updated state) in the same session. Therefore
Hibernate offers an alternate approach, using detached instances.

Note that Hibernate does not offer its own API for direct execution of UPDATE or DELETE
statements. Hibernate is a state management service, you don't have to think in statements to
use it. JDBC is a perfect API for executing SQL statements, you can get a JDBC Connecti on at
any time by calling sessi on. connecti on() . Furthermore, the notion of mass operations

151

Chapter 11. Working with objects

conflicts with object/relational mapping for online transaction processing-oriented applications.
Future versions of Hibernate may however provide special mass operation functions. See
Chapter 14, Batch processing for some possible batch operation tricks.

6. Modifying detached objects

Many applications need to retrieve an object in one transaction, send it to the Ul layer for
manipulation, then save the changes in a new transaction. Applications that use this kind of
approach in a high-concurrency environment usually use versioned data to ensure isolation for
the "long" unit of work.

Hibernate supports this model by providing for reattachment of detached instances using the
Sessi on. updat e() or Sessi on. ner ge() methods:

/1 in the first session

Cat cat = (Cat) firstSession.|oad(Cat.class, catld);
Cat potential Mate = new Cat ();
firstSession.save(potential Mate);

[/ in a higher |ayer of the application
cat.set Mat e(potenti al Mate);

/'l later, in a new session
secondSessi on. update(cat); // update cat
secondSessi on. update(mate); // update mate

If the Cat with identifier cat | d had already been loaded by secondSessi on when the
application tried to reattach it, an exception would have been thrown.

Use updat e() if you are sure that the session does not contain an already persistent instance
with the same identifier, and mer ge() if you want to merge your modifications at any time
without consideration of the state of the session. In other words, updat e() is usually the first
method you would call in a fresh session, ensuring that reattachment of your detached
instances is the first operation that is executed.

The application should individually updat e() detached instances reachable from the given
detached instance if and only if it wants their state also updated. This can be automated of
course, using transitive persistence, see Section 11, “Transitive persistence”.

The | ock() method also allows an application to reassociate an object with a new session.
However, the detached instance has to be unmodified!

//just reassoci ate:

sess. lock(fritz, LockMode. NONE);

//do a version check, then reassoci at e:

sess. |l ock(izi, LockMdde. READ);

//do a version check, using SELECT ... FOR UPDATE, then reassoci ate:
sess. | ock(pk, LockMode. UPGRADE) ;

152

Automatic state detection

Note that | ock() can be used with various LockMbde s, see the APl documentation and the
chapter on transaction handling for more information. Reattachment is not the only usecase for
l ock().

Other models for long units of work are discussed in Section 3, “Optimistic concurrency control”.

7. Automatic state detection

Hibernate users have requested a general purpose method that either saves a transient
instance by generating a new identifier or updates/reattaches the detached instances
associated with its current identifier. The saveOr Updat e() method implements this functionality.

// in the first session
Cat cat = (Cat) firstSession.|oad(Cat.class, catlD)

/] in a higher tier of the application
Cat mate = new Cat();
cat.set Mat e(mat e) ;

[/l later, in a new session

secondSessi on. saveOr Updat e(cat) ; /1 update existing state (cat has a
non-nul | id)

secondSessi on. saveOr Updat e(mate); // save the new instance (mate has a nul
i d)

The usage and semantics of saveOr Updat e() seems to be confusing for new users. Firstly, so
long as you are not trying to use instances from one session in another new session, you
should not need to use updat e(), saveOr Updat e(), or ner ge() . Some whole applications will
never use either of these methods.

Usually updat e() or saveOr Updat e() are used in the following scenario:

« the application loads an object in the first session

- the object is passed up to the Ul tier

« some modifications are made to the object

* the object is passed back down to the business logic tier

« the application persists these modifications by calling updat e() in a second session

saveOr Updat e() does the following:

« if the object is already persistent in this session, do nothing

« if another object associated with the session has the same identifier, throw an exception

« if the object has no identifier property, save() it

« if the object's identifier has the value assigned to a newly instantiated object, save() it

« if the object is versioned (by a <ver si on> or <t i mest anp>), and the version property value is
the same value assigned to a newly instantiated object, save() it

« otherwise updat e() the object

153

Chapter 11. Working with objects

and nmer ge() is very different:

« if there is a persistent instance with the same identifier currently associated with the session,
copy the state of the given object onto the persistent instance

« if there is no persistent instance currently associated with the session, try to load it from the
database, or create a new persistent instance

* the persistent instance is returned

« the given instance does not become associated with the session, it remains detached

8. Deleting persistent objects

Sessi on. del et e() will remove an object's state from the database. Of course, your application
might still hold a reference to a deleted object. It's best to think of del et e() as making a
persistent instance transient.

sess. del et e(cat);

You may delete objects in any order you like, without risk of foreign key constraint violations. It
is still possible to violate a NOT NULL constraint on a foreign key column by deleting objects in
the wrong order, e.g. if you delete the parent, but forget to delete the children.

9. Replicating object between two different datastores

It is occasionally useful to be able to take a graph of persistent instances and make them
persistent in a different datastore, without regenerating identifier values.

/lretrieve a cat from one database

Sessi on sessionl = factoryl. openSessi on();
Transaction tx1l = sessionl. begi nTransaction();
Cat cat = sessionl.get(Cat.class, catld);
tx1l.commit();

sessi onl. cl ose();

//reconcile with a second dat abase

Sessi on session2 = factory2. openSession();

Transaction tx2 = session2. begi nTransaction();
session2.replicate(cat, ReplicationMde. LATEST_VERSI ON);
tx2.commit();

sessi on2. cl ose();

The Repl i cati onMbde determines how repl i cat e() will deal with conflicts with existing rows
in the database.

* Replicati onMbde. | GNORE - ignore the object when there is an existing database row with the
same identifier

* ReplicationMbde. OVERWRI TE - overwrite any existing database row with the same identifier

* Replicati onMbde. EXCEPTI ON - throw an exception if there is an existing database row with

154

Flushing the Session

the same identifier
* ReplicationMde. LATEST VERSI ON - overwrite the row if its version number is earlier than
the version number of the object, or ignore the object otherwise

Usecases for this feature include reconciling data entered into different database instances,
upgrading system configuration information during product upgrades, rolling back changes
made during non-ACID transactions and more.

10. Flushing the Session

From time to time the Sessi on will execute the SQL statements needed to synchronize the
JDBC connection's state with the state of objects held in memory. This process, flush, occurs by
default at the following points

» before some query executions
e fromorg. hi bernate. Transacti on. commi t ()
o from Sessi on. fl ush()

The SQL statements are issued in the following order

1. all entity insertions, in the same order the corresponding objects were saved using
Sessi on. save()

. all entity updates

. all collection deletions

. all collection element deletions, updates and insertions

. all collection insertions

. all entity deletions, in the same order the corresponding objects were deleted using
Sessi on. del ete()

o U WN

(An exception is that objects using nat i ve ID generation are inserted when they are saved.)

Except when you explicity f | ush(), there are absolutely no guarantees about when the
Sessi on executes the JDBC calls, only the order in which they are executed. However,
Hibernate does guarantee that the Query. | i st (..) will never return stale data; nor will they
return the wrong data.

It is possible to change the default behavior so that flush occurs less frequently. The Fl ushMbde
class defines three different modes: only flush at commit time (and only when the Hibernate
Transact i on APl is used), flush automatically using the explained routine, or never flush unless
f1 ush() is called explicitly. The last mode is useful for long running units of work, where a
Sessi on is kept open and disconnected for a long time (see Section 3.2, “Extended session and
automatic versioning”).

sess = sf.openSession();
Transaction tx = sess. begi nTransacti on();
sess. set Fl ushMode(Fl ushMode. COM T); // allow queries to return stale state

Cat izi = (Cat) sess.load(Cat.class, id);

155

Chapter 11. Working with objects

i zi .set Name(i zni zi);

/'l mght return stale data
sess.find("fromCat as cat left outer join cat.kittens kitten");

/1 change to izi is not flushed!

tx.commt(); // flush occurs
sess. cl ose();

During flush, an exception might occur (e.qg. if a DML operation violates a constraint). Since
handling exceptions involves some understanding of Hibernate's transactional behavior, we
discuss it in Chapter 12, Transactions And Concurrency.

11. Transitive persistence

It is quite cumbersome to save, delete, or reattach individual objects, especially if you deal with
a graph of associated objects. A common case is a parent/child relationship. Consider the
following example:

If the children in a parent/child relationship would be value typed (e.g. a collection of addresses
or strings), their lifecycle would depend on the parent and no further action would be required
for convenient "cascading” of state changes. When the parent is saved, the value-typed child
objects are saved as well, when the parent is deleted, the children will be deleted, etc. This
even works for operations such as the removal of a child from the collection; Hibernate will
detect this and, since value-typed objects can't have shared references, delete the child from
the database.

Now consider the same scenario with parent and child objects being entities, not value-types
(e.g. categories and items, or parent and child cats). Entities have their own lifecycle, support
shared references (so removing an entity from the collection does not mean it can be deleted),
and there is by default no cascading of state from one entity to any other associated entities.
Hibernate does not implement persistence by reachability by default.

For each basic operation of the Hibernate session - including persi st(), merge(),

saveOr Update(), delete(), lock(), refresh(), evict(), replicate() -thereisa
corresponding cascade style. Respectively, the cascade styles are named create, nerge,
save-update, delete, lock, refresh, evict, replicate. If youwant an operation to be
cascaded along an association, you must indicate that in the mapping document. For example:

<one-t o- one name="person" cascade="persist"/>

Cascade styles my be combined:

<one-t o- one name="person" cascade="persist, delete, | ock"/>

156

Using metadata

You may even use cascade="al | " to specify that all operations should be cascaded along the
association. The default cascade="none" specifies that no operations are to be cascaded.

A special cascade style, del et e- or phan, applies only to one-to-many associations, and
indicates that the del et e() operation should be applied to any child object that is removed from
the association.

Recommendations:

It doesn't usually make sense to enable cascade on a <many- t o- one> Or <many- t o- many>
association. Cascade is often useful for <one-t 0- one> and <one- t o- many> associations.

« If the child object's lifespan is bounded by the lifespan of the of the parent object make it a
lifecycle object by specifying cascade="al | , del et e- or phan".

« Otherwise, you might not need cascade at all. But if you think that you will often be working
with the parent and children together in the same transaction, and you want to save yourself
some typing, consider using cascade="per si st, mer ge, save- updat e".

Mapping an association (either a single valued association, or a collection) with cascade="al | "
marks the association as a parent/child style relationship where save/update/delete of the
parent results in save/update/delete of the child or children.

Futhermore, a mere reference to a child from a persistent parent will result in save/update of the
child. This metaphor is incomplete, however. A child which becomes unreferenced by its parent
is not automatically deleted, except in the case of a <one- t o- many> association mapped with
cascade="del et e- or phan". The precise semantics of cascading operations for a parent/child
relationship are as follows:

 If a parent is passed to persi st (), all children are passed to persi st ()

 If a parent is passed to ner ge(), all children are passed to mer ge()

« If a parent is passed to save(), updat e() or saveOr Updat e(), all children are passed to
saveOr Updat e()

« If atransient or detached child becomes referenced by a persistent parent, it is passed to
saveOr Updat e()

 If a parent is deleted, all children are passed to del et e()

« If a child is dereferenced by a persistent parent, nothing special happens - the application
should explicitly delete the child if necessary - unless cascade="del et e- or phan", in which
case the "orphaned” child is deleted.

Finally, note that cascading of operations can be applied to an object graph at call time or at
flush time. All operations, if enabled, are cascaded to associated entities reachable when the
operation is executed. However, save- upat e and del et e- or phan are transitive for all
associated entities reachable during flush of the Sessi on.

12. Using metadata

Hibernate requires a very rich meta-level model of all entity and value types. From time to time,
this model is very useful to the application itself. For example, the application might use

157

Chapter 11. Working with objects

Hibernate's metadata to implement a "smart" deep-copy algorithm that understands which
objects should be copied (eg. mutable value types) and which should not (eg. immutable value
types and, possibly, associated entities).

Hibernate exposes metadata via the d assMet adat a and Col | ect i onMet adat a interfaces and
the Type hierarchy. Instances of the metadata interfaces may be obtained from the
Sessi onFact ory.

Cat fritz = ;
Cl assMet adat a cat Met a = sessi onfactory. get Cl assMet adat a(Cat . cl ass) ;

oj ect[] propertyVal ues = cat Met a. get PropertyVal ues(fritz);
String[] propertyNanes = cat Met a. get Propert yNames() ;
Type[] propertyTypes = cat Met a. get PropertyTypes();

/1l get a Map of all properties which are not collections or associations
Map nanedVal ues = new HashMap();
for (int i=0; i<propertyNames.length; i++) {
if (!'propertyTypes[i].isEntityType() &&
I propertyTypes[i].isCollectionType()) {
nanedVal ues. put (propertyNanmes[i], propertyValues[i]);
}

158

Chapter 12.

Transactions And Concurrency

The most important point about Hibernate and concurrency control is that it is very easy to
understand. Hibernate directly uses JDBC connections and JTA resources without adding any
additional locking behavior. We highly recommend you spend some time with the JDBC, ANSI,
and transaction isolation specification of your database management system.

Hibernate does not lock objects in memory. Your application can expect the behavior as defined
by the isolation level of your database transactions. Note that thanks to the Sessi on, which is
also a transaction-scoped cache, Hibernate provides repeatable reads for lookup by identifier
and entity queries (not reporting queries that return scalar values).

In addition to versioning for automatic optimistic concurrency control, Hibernate also offers a
(minor) API for pessimistic locking of rows, using the SELECT FOR UPDATE syntax. Optimistic
concurrency control and this API are discussed later in this chapter.

We start the discussion of concurrency control in Hibernate with the granularity of
Confi gurati on, Sessi onFact ory, and Sessi on, as well as database transactions and long
conversations.

1. Session and transaction scopes

A Sessi onFact ory is an expensive-to-create, threadsafe object intended to be shared by all
application threads. It is created once, usually on application startup, from a Conf i gurati on
instance.

A Sessi on is an inexpensive, non-threadsafe object that should be used once, for a single
request, a conversation, single unit of work, and then discarded. A Sessi on will not obtain a
JDBC Connect i on (or a Dat asour ce) unless it is needed, hence consume no resources until
used.

To complete this picture you also have to think about database transactions. A database
transaction has to be as short as possible, to reduce lock contention in the database. Long
database transactions will prevent your application from scaling to highly concurrent load.
Hence, it is almost never good design to hold a database transaction open during user think
time, until the unit of work is complete.

What is the scope of a unit of work? Can a single Hibernate Sessi on span several database
transactions or is this a one-to-one relationship of scopes? When should you open and close a
Sessi on and how do you demarcate the database transaction boundaries?

1.1. Unit of work

First, don't use the session-per-operation antipattern, that is, don't open and close a Sessi on for
every simple database call in a single thread! Of course, the same is true for database
transactions. Database calls in an application are made using a planned sequence, they are
grouped into atomic units of work. (Note that this also means that auto-commit after every single

159

Chapter 12. Transactions And Concurrency

SQL statement is useless in an application, this mode is intended for ad-hoc SQL console work.
Hibernate disables, or expects the application server to do so, auto-commit mode immediately.)
Database transactions are never optional, all communication with a database has to occur
inside a transaction, no matter if you read or write data. As explained, auto-commit behavior for
reading data should be avoided, as many small transactions are unlikely to perform better than
one clearly defined unit of work. The latter is also much more maintainable and extensible.

The most common pattern in a multi-user client/server application is session-per-request. In this
model, a request from the client is send to the server (where the Hibernate persistence layer
runs), a new Hibernate Sessi on is opened, and all database operations are executed in this unit
of work. Once the work has been completed (and the response for the client has been
prepared), the session is flushed and closed. You would also use a single database transaction
to serve the clients request, starting and committing it when you open and close the Sessi on.
The relationship between the two is one-to-one and this model is a perfect fit for many
applications.

The challenge lies in the implementation. Hibernate provides built-in management of the
"current session" to simplify this pattern. All you have to do is start a transaction when a server
request has to be processed, and end the transaction before the response is send to the client.
You can do this in any way you like, common solutions are Ser vl et Fi | t er, AOP interceptor
with a pointcut on the service methods, or a proxy/interception container. An EJB container is a
standardized way to implement cross-cutting aspects such as transaction demarcation on EJB
session beans, declaratively with CMT. If you decide to use programmatic transaction
demarcation, prefer the Hibernate Tr ansact i on API shown later in this chapter, for ease of use
and code portability.

Your application code can access a "current session" to process the request by simply calling

sessi onFact ory. get Current Sessi on() anywhere and as often as needed. You will always

get a Sessi on scoped to the current database transaction. This has to be configured for either
resource-local or JTA environments, see Section 5, “Contextual Sessions”.

Sometimes it is convenient to extend the scope of a Sessi on and database transaction until the
"view has been rendered". This is especially useful in servlet applications that utilize a separate
rendering phase after the request has been processed. Extending the database transaction until
view rendering is complete is easy to do if you implement your own interceptor. However, it is
not easily doable if you rely on EJBs with container-managed transactions, as a transaction will
be completed when an EJB method returns, before rendering of any view can start. See the
Hibernate website and forum for tips and examples around this Open Session in View pattern.

1.2. Long conversations

The session-per-request pattern is not the only useful concept you can use to design units of
work. Many business processes require a whole series of interactions with the user interleaved
with database accesses. In web and enterprise applications it is not acceptable for a database
transaction to span a user interaction. Consider the following example:

» The first screen of a dialog opens, the data seen by the user has been loaded in a particular
Sessi on and database transaction. The user is free to modify the objects.

160

Considering object identity

« The user clicks "Save" after 5 minutes and expects his modifications to be made persistent;
he also expects that he was the only person editing this information and that no conflicting
modification can occur.

We call this unit of work, from the point of view of the user, a long running conversation (or
application transaction). There are many ways how you can implement this in your application.

A first naive implementation might keep the Sessi on and database transaction open during user
think time, with locks held in the database to prevent concurrent modification, and to guarantee
isolation and atomicity. This is of course an anti-pattern, since lock contention would not allow
the application to scale with the number of concurrent users.

Clearly, we have to use several database transactions to implement the converastion. In this
case, maintaining isolation of business processes becomes the partial responsibility of the
application tier. A single conversation usually spans several database transactions. It will be
atomic if only one of these database transactions (the last one) stores the updated data, all
others simply read data (e.g. in a wizard-style dialog spanning several request/response
cycles). This is easier to implement than it might sound, especially if you use Hibernate's
features:

« Automatic Versioning - Hibernate can do automatic optimistic concurrency control for you, it
can automatically detect if a concurrent modification occured during user think time. Usually
we only check at the end of the conversation.

« Detached Obijects - If you decide to use the already discussed session-per-request pattern, all
loaded instances will be in detached state during user think time. Hibernate allows you to
reattach the objects and persist the modifications, the pattern is called
session-per-request-with-detached-objects. Automatic versioning is used to isolate concurrent
modifications.

» Extended (or Long) Session - The Hibernate Sessi on may be disconnected from the
underlying JDBC connection after the database transaction has been committed, and
reconnected when a new client request occurs. This pattern is known as
session-per-conversation and makes even reattachment unnecessary. Automatic versioning
is used to isolate concurrent modifications and the Sessi on is usually not allowed to be
flushed automatically, but explicitely.

Both session-per-request-with-detached-objects and session-per-conversation have advantages
and disadvantages, we discuss them later in this chapter in the context of optimistic
concurrency control.

1.3. Considering object identity

An application may concurrently access the same persistent state in two different Sessi on s.
However, an instance of a persistent class is never shared between two Sessi on instances.
Hence there are two different notions of identity:

161

Chapter 12. Transactions And Concurrency

Database Identity
foo.getld().equal s(bar.getld())

JVM Identity
f oo==bar

Then for objects attached to a particularSessi on (i.e. in the scope of a Sessi on) the two notions
are equivalent, and JVM identity for database identity is guaranteed by Hibernate. However,
while the application might concurrently access the "same" (persistent identity) business object
in two different sessions, the two instances will actually be "different" (JVM identity). Conflicts
are resolved using (automatic versioning) at flush/commit time, using an optimistic approach.

This approach leaves Hibernate and the database to worry about concurrency; it also provides
the best scalability, since guaranteeing identity in single-threaded units of work only doesn't
need expensive locking or other means of synchronization. The application never needs to
synchronize on any business object, as long as it sticks to a single thread per Sessi on. Within a
Sessi on the application may safely use == to compare objects.

However, an application that uses == outside of a Sessi on, might see unexpected results. This
might occur even in some unexpected places, for example, if you put two detached instances
into the same Set . Both might have the same database identity (i.e. they represent the same
row), but JVM identity is by definition not guaranteed for instances in detached state. The
developer has to override the equal s() and hashCode() methods in persistent classes and
implement his own notion of object equality. There is one caveat: Never use the database
identifier to implement equality, use a business key, a combination of unique, usually
immutable, attributes. The database identifier will change if a transient object is made
persistent. If the transient instance (usually together with detached instances) is held in a Set ,
changing the hashcode breaks the contract of the Set . Attributes for business keys don't have
to be as stable as database primary keys, you only have to guarantee stability as long as the
objects are in the same Set . See the Hibernate website for a more thorough discussion of this
issue. Also note that this is not a Hibernate issue, but simply how Java object identity and
equality has to be implemented.

1.4. Common issues

Never use the anti-patterns session-per-user-session or session-per-application (of course,
there are rare exceptions to this rule). Note that some of the following issues might also appear
with the recommended patterns, make sure you understand the implications before making a
design decision:

« A Sessi on is not thread-safe. Things which are supposed to work concurrently, like HTTP
requests, session beans, or Swing workers, will cause race conditions if a Sessi on instance
would be shared. If you keep your Hibernate Sessi on in your Ht t pSessi on (discussed later),
you should consider synchronizing access to your Http session. Otherwise, a user that clicks
reload fast enough may use the same Sessi on in two concurrently running threads.

162

Database transaction demarcation

« An exception thrown by Hibernate means you have to rollback your database transaction and
close the Sessi on immediately (discussed later in more detail). If your Sessi on is bound to
the application, you have to stop the application. Rolling back the database transaction
doesn't put your business objects back into the state they were at the start of the transaction.
This means the database state and the business objects do get out of sync. Usually this is not
a problem, because exceptions are not recoverable and you have to start over after rollback

anyway.

» The Sessi on caches every object that is in persistent state (watched and checked for dirty
state by Hibernate). This means it grows endlessly until you get an OutOfMemoryException, if
you keep it open for a long time or simply load too much data. One solution for this is to call
clear () and evi ct () to manage the Sessi on cache, but you most likely should consider a
Stored Procedure if you need mass data operations. Some solutions are shown in
Chapter 14, Batch processing. Keeping a Sessi on open for the duration of a user session
also means a high probability of stale data.

2. Database transaction demarcation

Datatabase (or system) transaction boundaries are always necessary. No communication with
the database can occur outside of a database transaction (this seems to confuse many
developers who are used to the auto-commit mode). Always use clear transaction boundaries,
even for read-only operations. Depending on your isolation level and database capabilities this
might not be required but there is no downside if you always demarcate transactions explicitly.
Certainly, a single database transaction is going to perform better than many small transactions,
even for reading data.

A Hibernate application can run in non-managed (i.e. standalone, simple Web- or Swing
applications) and managed J2EE environments. In a non-managed environment, Hibernate is
usually responsible for its own database connection pool. The application developer has to
manually set transaction boundaries, in other words, begin, commit, or rollback database
transactions himself. A managed environment usually provides container-managed transactions
(CMT), with the transaction assembly defined declaratively in deployment descriptors of EJB
session beans, for example. Programmatic transaction demarcation is then no longer
necessary.

However, it is often desirable to keep your persistence layer portable between non-managed
resource-local environments, and systems that can rely on JTA but use BMT instead of CMT. In
both cases you'd use programmatic transaction demaracation. Hibernate offers a wrapper API
called Tr ansact i on that translates into the native transaction system of your deployment
environment. This APl is actually optional, but we strongly encourage its use unless you are in a
CMT session bean.

Usually, ending a Sessi on involves four distinct phases:

 flush the session
* commit the transaction
* close the session

163

Chapter 12. Transactions And Concurrency

» handle exceptions

Flushing the session has been discussed earlier, we'll now have a closer look at transaction
demarcation and exception handling in both managed- and non-managed environments.

2.1. Non-managed environment

If a Hibernate persistence layer runs in a non-managed environment, database connections are
usually handled by simple (i.e. non-DataSource) connection pools from which Hibernate obtains
connections as needed. The session/transaction handling idiom looks like this:

/1 Non-managed environnent idiom
Sessi on sess = factory. openSession();
Transaction tx = null;

try {
tx = sess. begi nTransacti on();

// do sonme work

tx.conmit();

}

catch (RuntineException e) {
if (tx !'=null) tx.rollback();
throw e; // or display error nessage

}
finally {

sess. cl ose();

}

You don't have to f | ush() the Sessi on explicitly - the call to conmi t () automatically triggers
the synchronization (depending upon the Section 10, “Flushing the Session” FlushMode for the
session. A call to cl ose() marks the end of a session. The main implication of cl ose() is that
the JDBC connection will be relinquished by the session. This Java code is portable and runs in
both non-managed and JTA environments.

A much more flexible solution is Hibernate's built-in "current session" context management, as
described earlier:

[/ Non- managed environment idiomw th getCurrent Session()

try {
factory. get Current Sessi on() . begi nTransacti on();

/'l do sonme work

factory. get Current Sessi on(). get Transacti on().conmm t();

}

catch (RuntineException e) {
factory. get Current Sessi on().get Transacti on().rol |l back();
throw e; // or display error nmessage

164

Using JTA

You will very likely never see these code snippets in a regular application; fatal (system)
exceptions should always be caught at the "top”. In other words, the code that executes
Hibernate calls (in the persistence layer) and the code that handles Runt i neExcept i on (and
usually can only clean up and exit) are in different layers. The current context management by
Hibernate can significantly simplify this design, as all you need is access to a Sessi onFactory.
Exception handling is discussed later in this chapter.

Note that you should select or g. hi ber nat e. t ransact i on. JDBCTr ansact i onFact ory (which is
the default), and for the second example "t hr ead" as your
hi ber nat e. current _sessi on_cont ext _cl ass.

2.2. Using JTA

If your persistence layer runs in an application server (e.g. behind EJB session beans), every
datasource connection obtained by Hibernate will automatically be part of the global JTA
transaction. You can also install a standalone JTA implementation and use it without EJB.
Hibernate offers two strategies for JTA integration.

If you use bean-managed transactions (BMT) Hibernate will tell the application server to start
and end a BMT transaction if you use the Tr ansact i on API. So, the transaction management
code is identical to the non-managed environment.

[/ BM idi om
Sessi on sess = factory. openSession();
Transaction tx = null;

try {
tx = sess. begi nTransaction();

// do some work

tx.commt();

}

catch (RuntineException e) {
if (tx !'= null) tx.rollback();
throw e; // or display error nessage

}
finally {

sess. cl ose();
}

If you want to use a transaction-bound Sessi on, that is, the get Curr ent Sessi on() functionality
for easy context propagation, you will have to use the JTA User Tr ansact i on API directly:

[/ BMI idiomwth getCurrent Session()
try {
User Transaction tx = (User Transacti on) new I niti al Cont ext ()
.l ookup("java: conp/ User Transacti on") ;

165

Chapter 12. Transactions And Concurrency

t x. begi n();

// Do some work on Session bound to transaction
factory. get Current Session().load(...);
factory. getCurrent Session().persist(...);

tx.conmt();

}
catch (RuntineException e) {
tx. rol |l back();
throw e; // or display error nmessage

With CMT, transaction demarcation is done in session bean deployment descriptors, not
programatically, hence, the code is reduced to:

[/ CM idiom
Sessi on sess = factory. get Current Sessi on();

/! do sone work

In a CMT/EJB even rollback happens automatically, since an unhandled Runt i neExcept i on
thrown by a session bean method tells the container to set the global transaction to rollback.
This means you do not need to use the Hibernate Tr ansact i on API at all with BMT or CMT,
and you get automatic propagation of the "current” Session bound to the transaction.

Note that you should choose or g. hi ber nat e. t ransacti on. JTATr ansact i onFact ory if you
use JTA directly (BMT), and or g. hi bernat e. transacti on. CMITr ansact i onFact ory in a CMT
session bean, when you configure Hibernate's transaction factory. Remember to also set

hi ber nat e. transacti on. manager _| ookup_cl ass. Furthermore, make sure that your

hi ber nat e. current _sessi on_cont ext _cl ass is either unset (backwards compatiblity), or set
to"jta".

The get Cur r ent Sessi on() operation has one downside in a JTA environment. There is one
caveat to the use of af t er _st at enent connection release mode, which is then used by default.
Due to a silly limitation of the JTA spec, it is not possible for Hibernate to automatically clean up
any unclosed Scrol | abl eResul ts or | terator instances returned by scrol | () oriterate().
You must release the underlying database cursor by calling Scr ol | abl eResul ts. cl ose() or

Hi ber nate. cl ose(lterator) explicity fromafi nal |y block. (Of course, most applications can
easily avoid using scrol | () oriterate() atall fromthe JTA or CMT code.)

2.3. Exception handling

If the Sessi on throws an exception (including any SQLExcept i on), you should immediately
rollback the database transaction, call Sessi on. cl ose() and discard the Sessi on instance.
Certain methods of Sessi on will not leave the session in a consistent state. No exception

166

Transaction timeout

thrown by Hibernate can be treated as recoverable. Ensure that the Sessi on will be closed by
calling cl ose() inafinally block.

The Hi ber nat eExcept i on, which wraps most of the errors that can occur in a Hibernate
persistence layer, is an unchecked exception (it wasn't in older versions of Hibernate). In our
opinion, we shouldn't force the application developer to catch an unrecoverable exception at a
low layer. In most systems, unchecked and fatal exceptions are handled in one of the first
frames of the method call stack (i.e. in higher layers) and an error message is presented to the
application user (or some other appropriate action is taken). Note that Hibernate might also
throw other unchecked exceptions which are not a H ber nat eExcept i on. These are, again, not
recoverable and appropriate action should be taken.

Hibernate wraps SQLExcept i on s thrown while interacting with the database in a

JDBCExcept i on. In fact, Hibernate will attempt to convert the eexception into a more meningful
subclass of JDBCExcept i on. The underlying SQLExcept i on is always available via

JDBCExcept i on. get Cause() . Hibernate converts the SQLExcept i on into an appropriate
JDBCExcept i on subclass using the SQLExcept i onConvert er attached to the Sessi onFact ory.
By default, the SQLExcept i onConvert er is defined by the configured dialect; however, it is also
possible to plug in a custom implementation (see the javadocs for the

SQLExcept i onConvert er Fact ory class for details). The standard JDBCExcept i on subtypes
are:

» JDBCConnect i onExcept i on - indicates an error with the underlying JDBC communication.

e SQLG anmar Except i on - indicates a grammar or syntax problem with the issued SQL.

e ConstraintViol ati onExcepti on - indicates some form of integrity constraint violation.

» LockAcqui sitionExcepti on - indicates an error acquiring a lock level necessary to perform
the requested operation.

* Generi cJDBCExcept i on - a generic exception which did not fall into any of the other
categories.

2.4. Transaction timeout

One extremely important feature provided by a managed environment like EJB that is never
provided for non-managed code is transaction timeout. Transaction timeouts ensure that no
misbehaving transaction can indefinitely tie up resources while returning no response to the
user. Outside a managed (JTA) environment, Hibernate cannot fully provide this functionality.
However, Hibernate can at least control data access operations, ensuring that database level
deadlocks and queries with huge result sets are limited by a defined timeout. In a managed
environment, Hibernate can delegate transaction timeout to JTA. This functioanlity is abstracted
by the Hibernate Tr ansact i on object.

Sessi on sess = factory. openSession();

try {
//set transaction timeout to 3 seconds
sess. get Transacti on() . set Ti neout (3) ;
sess. get Transacti on() . begi n();

// do sonme work

167

Chapter 12. Transactions And Concurrency

sess. get Transaction().conmt ()

}

catch (RuntineException e) {
sess. get Transacti on(). rol | back();
throw e; // or display error nessage

}
finally {

sess. cl ose();
}

Note that set Ti meout () may not be called in a CMT bean, where transaction timeouts must be
defined declaratively.

3. Optimistic concurrency control

The only approach that is consistent with high concurrency and high scalability is optimistic
concurrency control with versioning. Version checking uses version numbers, or timestamps, to
detect conflicting updates (and to prevent lost updates). Hibernate provides for three possible
approaches to writing application code that uses optimistic concurrency. The use cases we
show are in the context of long conversations, but version checking also has the benefit of
preventing lost updates in single database transactions.

3.1. Application version checking

In an implementation without much help from Hibernate, each interaction with the database
occurs in a new Sessi on and the developer is responsible for reloading all persistent instances
from the database before manipulating them. This approach forces the application to carry out
its own version checking to ensure conversation transaction isolation. This approach is the least
efficient in terms of database access. It is the approach most similar to entity EJBs.

// foo is an instance | oaded by a previ ous Session
session = factory. openSession();
Transaction t = sessi on. begi nTransaction();

i nt ol dVersi on = foo.getVersion();

session. | oad(foo, foo.getKey()); // load the current state

if (ol dVersion!=foo.getVersion) throw new Stal eCbj ect St at eException();
foo. set Property("bar");

t.commit();
session. cl ose();

The ver si on property is mapped using <ver si on>, and Hibernate will automatically increment it
during flush if the entity is dirty.

Of course, if you are operating in a low-data-concurrency environment and don't require version
checking, you may use this approach and just skip the version check. In that case, last commit

168

Extended session and automatic versioning

wins will be the default strategy for your long conversations. Keep in mind that this might
confuse the users of the application, as they might experience lost updates without error
messages or a chance to merge conflicting changes.

Clearly, manual version checking is only feasible in very trivial circumstances and not practical
for most applications. Often not only single instances, but complete graphs of modified ojects
have to be checked. Hibernate offers automatic version checking with either an extended
Sessi on or detached instances as the design paradigm.

3.2. Extended session and automatic versioning

A single Sessi on instance and its persistent instances are used for the whole conversation,
known as session-per-conversation. Hibernate checks instance versions at flush time, throwing
an exception if concurrent modification is detected. It's up to the developer to catch and handle
this exception (common options are the opportunity for the user to merge changes or to restart
the business conversation with non-stale data).

The Sessi on is disconnected from any underlying JDBC connection when waiting for user
interaction. This approach is the most efficient in terms of database access. The application
need not concern itself with version checking or with reattaching detached instances, nor does it
have to reload instances in every database transaction.

// foo is an instance | oaded earlier by the old session
Transaction t = session. begi nTransaction(); // Obtain a new JDBC connecti on,
start transaction

f oo. set Property("bar");

session. flush(); /Il Only for last transaction in conversation
t.comit(); /Il Al'so return JDBC connection
sessi on. cl ose(); /[l Only for last transaction in conversation

The f oo object still knows which Sessi on it was loaded in. Beginning a new database
transaction on an old session obtains a new connection and resumes the session. Committing a
database transaction disconnects a session from the JDBC connection and returns the
connection to the pool. After reconnection, to force a version check on data you aren't updating,
you may call Sessi on. | ock() with LockMbde. READ on any objects that might have been
updated by another transaction. You don't need to lock any data that you are updating. Usually
you would set Fl ushMbde. NEVER on an extended Sessi on, so that only the last database
transaction cycle is allowed to actually persist all modifications made in this conversation.
Hence, only this last database transaction would include the f | ush() operation, and then also
cl ose() the session to end the conversation.

This pattern is problematic if the Sessi on is too big to be stored during user think time, e.g. an
Ht t pSessi on should be kept as small as possible. As the Sessi on is also the (mandatory)
first-level cache and contains all loaded objects, we can probably use this strategy only for a few
request/response cycles. You should use a Sessi on only for a single conversation, as it will
soon also have stale data.

169

Chapter 12. Transactions And Concurrency

(Note that earlier Hibernate versions required explicit disconnection and reconnection of a
Sessi on. These methods are deprecated, as beginning and ending a transaction has the same
effect.)

Also note that you should keep the disconnected Sessi on close to the persistence layer. In
other words, use an EJB stateful session bean to hold the Sessi on in a three-tier environment,
and don't transfer it to the web layer (or even serialize it to a separate tier) to store it in the

Ht t pSessi on.

The extended session pattern, or session-per-conversation, is more difficult to implement with
automatic current session context management. You need to supply your own implementation
of the Current Sessi onCont ext for this, see the Hibernate Wiki for examples.

3.3. Detached objects and automatic versioning

Each interaction with the persistent store occurs in a new Sessi on. However, the same
persistent instances are reused for each interaction with the database. The application
manipulates the state of detached instances originally loaded in another Sessi on and then
reattaches them using Sessi on. updat e(), Sessi on. saveOr Updat e(), or Sessi on. nmer ge() .

// foo is an instance | oaded by a previ ous Session

f oo. set Property("bar");

session = factory. openSession();

Transaction t = session. begi nTransacti on();

sessi on. saveOr Updat e(foo); // Use nmerge() if "foo" m ght have been | oaded
al r eady

t.commit();

sessi on. cl ose();

Again, Hibernate will check instance versions during flush, throwing an exception if conflicting
updates occured.

You may also call | ock() instead of updat e() and use LockMbde. READ (performing a version
check, bypassing all caches) if you are sure that the object has not been modified.

3.4. Customizing automatic versioning

You may disable Hibernate's automatic version increment for particular properties and
collections by setting the opt i mi sti c- 1 ock mapping attribute to f al se. Hibernate will then no
longer increment versions if the property is dirty.

Legacy database schemas are often static and can't be modified. Or, other applications might
also access the same database and don't know how to handle version numbers or even
timestamps. In both cases, versioning can't rely on a particular column in a table. To force a
version check without a version or timestamp property mapping, with a comparison of the state
of all fields in a row, turn on opti mi stic-1 ock="al | " in the <cl ass> mapping. Note that this
concepetually only works if Hibernate can compare the old and new state, i.e. if you use a
single long Sessi on and not session-per-request-with-detached-objects.

170

Pessimistic Locking

Sometimes concurrent modification can be permitted as long as the changes that have been
made don't overlap. If you set opti mi stic-1ock="dirty" when mapping the <cl ass>,
Hibernate will only compare dirty fields during flush.

In both cases, with dedicated version/timestamp columns or with full/dirty field comparison,
Hibernate uses a single UPDATE statement (with an appropriate WHERE clause) per entity to
execute the version check and update the information. If you use transitive persistence to
cascade reattachment to associated entities, Hibernate might execute uneccessary updates.
This is usually not a problem, but on update triggers in the database might be executed even
when no changes have been made to detached instances. You can customize this behavior by
setting sel ect - bef or e- updat e="t rue" in the <cl ass> mapping, forcing Hibernate to SELECT
the instance to ensure that changes did actually occur, before updating the row.

4. Pessimistic Locking

It is not intended that users spend much time worring about locking strategies. Its usually
enough to specify an isolation level for the JDBC connections and then simply let the database
do all the work. However, advanced users may sometimes wish to obtain exclusive pessimistic
locks, or re-obtain locks at the start of a new transaction.

Hibernate will always use the locking mechanism of the database, never lock objects in
memory!

The LockMode class defines the different lock levels that may be acquired by Hibernate. A lock
is obtained by the following mechanisms:

* LockMode. VRI TE is acquired automatically when Hibernate updates or inserts a row.

» LockMode. UPGRADE may be acquired upon explicit user request using SELECT ... FOR
UPDATE on databases which support that syntax.

* LockMode. UPGRADE_NOWAI T may be acquired upon explicit user request using a SELECT . ..
FOR UPDATE NOWAI T under Oracle.

e LockMode. READ is acquired automatically when Hibernate reads data under Repeatable Read
or Serializable isolation level. May be re-acquired by explicit user request.

» LockMode. NONE represents the absence of a lock. All objects switch to this lock mode at the
end of a Tr ansact i on. Objects associated with the session via a call to updat e() or
saveOr Updat e() also start out in this lock mode.

The "explicit user request"” is expressed in one of the following ways:

e Acallto Sessi on. | oad(), specifying a LockMode.
e Acall to Sessi on. | ock().
« Acallto Query. set LockMode().

If Sessi on. | oad() is called with UPGRADE or UPGRADE_NOWAI T, and the requested object was
not yet loaded by the session, the object is loaded using SELECT ... FOR UPDATE. If | oad() is
called for an object that is already loaded with a less restrictive lock than the one requested,
Hibernate calls | ock() for that object.

171

Chapter 12. Transactions And Concurrency

Sessi on. | ock() performs a version number check if the specified lock mode is READ, UPGRADE
or UPGRADE_NOWAI T. (In the case of UPGRADE or UPGRADE_NOWAI T, SELECT ... FOR UPDATEis
used.)

If the database does not support the requested lock mode, Hibernate will use an appropriate
alternate mode (instead of throwing an exception). This ensures that applications will be
portable.

5. Connection Release Modes

The legacy (2.x) behavior of Hibernate in regards to JDBC connection management was that a
Sessi on would obtain a connection when it was first needed and then hold unto that connection
until the session was closed. Hibernate 3.x introduced the notion of connection release modes
to tell a session how to handle its JDBC connections. Note that the following discussion is
pertinent only to connections provided through a configured Connect i onPr ovi der;
user-supplied connections are outside the breadth of this discussion. The different release
modes are identified by the enumerated values of or g. hi ber nat e. Connect i onRel easeMde:

* ON_CLOSE - is essentially the legacy behavior described above. The Hibernate session obatins
a connection when it first needs to perform some JDBC access and holds unto that
connection until the session is closed.

e AFTER_TRANSACTI ON - says to release connections after a or g. hi ber nat e. Transacti on has
completed.

* AFTER_STATEMENT (also referred to as aggressive release) - says to release connections after
each and every statement execution. This aggressive releasing is skipped if that statement
leaves open resources associated with the given session; currently the only situation where
this occurs is through the use of or g. hi ber nat e. Scrol | abl eResul t s.

The configuration parameter hi ber nat e. connecti on. r el ease_node is used to specify which
release mode to use. The possible values:

 aut o (the default) - this choice delegates to the release mode returned by the
org. hi bernate. transaction. Transacti onFact ory. get Def aul t Rel easeMbde() method.
For JTATransactionFactory, this returns ConnectionReleaseMode. AFTER_STATEMENT; for
JDBCTransactionFactory, this returns ConnectionReleaseMode.AFTER_TRANSACTION. It
is rarely a good idea to change this default behavior as failures due to the value of this setting
tend to indicate bugs and/or invalid assumptions in user code.

« on_cl ose - says to use ConnectionReleaseMode.ON_CLOSE. This setting is left for
backwards compatibility, but its use is highly discouraged.

e after_transaction - says to use ConnectionReleaseMode. AFTER_TRANSACTION. This
setting should not be used in JTA environments. Also note that with
ConnectionReleaseMode. AFTER_TRANSACTION, if a session is considered to be in
auto-commit mode connections will be released as if the release mode were
AFTER_STATEMENT.

* after_statenent - says to use ConnectionReleaseMode.AFTER_STATEMENT.
Additionally, the configured Connect i onPr ovi der is consulted to see if it supports this setting

172

Connection Release Modes

(support sAggr essi veRel ease()). If not, the release mode is reset to
ConnectionReleaseMode. AFTER_TRANSACTION. This setting is only safe in environments
where we can either re-acquire the same underlying JDBC connection each time we make a
call into Connect i onProvi der . get Connect i on() or in auto-commit environments where it
does not matter whether we get back the same connection.

173

174

Chapter 13.

Interceptors and events

It is often useful for the application to react to certain events that occur inside Hibernate. This
allows implementation of certain kinds of generic functionality, and extension of Hibernate
functionality.

1. Interceptors

The I nt er cept or interface provides callbacks from the session to the application allowing the
application to inspect and/or manipulate properties of a persistent object before it is saved,
updated, deleted or loaded. One possible use for this is to track auditing information. For
example, the following | nt er cept or automatically sets the cr eat eTi mest anp when an

Audi t abl e is created and updates the | ast Updat eTi nest anp property when an Audi t abl e is
updated.

You may either implement I nt er cept or directly or (better) extend Enpt yI nt er cept or .

package org. hi bernate.test;

i nport java.io.Serializable;
i mport java.util.Date;
i mport java.util.lterator;

i mport org. hi bernate. Enptyl nt erceptor;
i mport org. hi bernate. Transacti on;
i mport org. hi bernate.type. Type;

public class Auditlnterceptor extends Enptylnterceptor {

private int updates;
private int creates;
private int |oads;

public void onDel et e(Obj ect entity,
Serializable id,
Qoj ect[] state,
String[] propertyNanes,
Type[] types) {
// do not hi ng

}

publ i ¢ bool ean onFl ushDirty(Chject entity,
Serializable id,
oj ect[] current State,
oj ect[] previousState,
String[] propertyNanes,

Type[] types) {

if (entity instanceof Auditable) {
updat es++;
for (int i=0; i < propertyNanes.length; i++) {
if ("lastUpdateTi nestanmp”. equal s(propertyNames[i])) {
currentState[i] = new Date();

175

Chapter 13. Interceptors and events

return true,;

}
}

return fal se;

publ i ¢ bool ean onLoad(Obj ect entity,
Serializable id,
ohject[] state,
String[] propertyNanes,
Type[] types) {
if (entity instanceof Auditable) {
| oads++;

}

return fal se;

publ i ¢ bool ean onSave((bj ect entity,
Serializable id,
Chject[] state,
String[] propertyNanes,

Type[] types) {

if (entity instanceof Auditable) {
creat es++;
for (int i=0; i<propertyNames.|length; i++) {
if ("createTi nestanp". equal s(propertyNames[i])) {
state[i] = new Date();
return true;

}
}

return fal se;

}

public void afterTransacti onConpl eti on(Transacti on tx) {
if (tx.wasCommitted()) {

Systemout.println("Creations: " + creates + ", Updates: " +
updat es,
"Loads: " + | oads);

}

updat es=0;

creat es=0;

| oads=0;

}

}

Interceptors come in two flavors: Sessi on-scoped and Sessi onFact or y-scoped.

A Sessi on-scoped interceptor is specified when a session is opened using one of the
overloaded SessionFactory.openSession() methods accepting an | nt er cept or .

Sessi on session = sf.openSessi on(new Auditlnterceptor());

176

Event system

A Sessi onFact or y-scoped interceptor is registered with the Confi gur ati on object prior to
building the Sessi onFact ory. In this case, the supplied interceptor will be applied to all
sessions opened from that Sessi onFact or y; this is true unless a session is opened explicitly
specifying the interceptor to use. Sessi onFact or y-scoped interceptors must be thread safe,
taking care to not store session-specific state since multiple sessions will use this interceptor
(potentially) concurrently.

new Configuration().setlnterceptor(new Auditlnterceptor());

2. Event system

If you have to react to particular events in your persistence layer, you may also use the
Hibernate3 event architecture. The event system can be used in addition or as a replacement
for interceptors.

Essentially all of the methods of the Sessi on interface correlate to an event. You have a
LoadEvent, a Fl ushEvent, etc (consult the XML configuration-file DTD or the

or g. hi ber nat e. event package for the full list of defined event types). When a request is made
of one of these methods, the Hibernate Sessi on generates an appropriate event and passes it
to the configured event listeners for that type. Out-of-the-box, these listeners implement the
same processing in which those methods always resulted. However, you are free to implement
a customization of one of the listener interfaces (i.e., the LoadEvent is processed by the
registered implemenation of the LoadEvent Li st ener interface), in which case their
implementation would be responsible for processing any | oad() requests made of the Sessi on.

The listeners should be considered effectively singletons; meaning, they are shared between
requests, and thus should not save any state as instance variables.

A custom listener should implement the appropriate interface for the event it wants to process
and/or extend one of the convenience base classes (or even the default event listeners used by
Hibernate out-of-the-box as these are declared non-final for this purpose). Custom listeners can
either be registered programmatically through the Conf i gur at i on object, or specified in the
Hibernate configuration XML (declarative configuration through the properties file is not
supported). Here's an example of a custom load event listener:

public class MyLoadLi stener inplenents LoadEventLi stener {
/!l this is the single nethod defined by the LoadEventListener interface
public void onLoad(LoadEvent event, LoadEventListener.LoadType | oadType)
t hrows Hi ber nat eExcepti on {
if (!'MySecurity.isAuthorized(event.getEntityC assNanme(),
event.getEntityld())) {
t hrow MySecurityExcepti on(" Unaut horized access");

}

177

Chapter 13. Interceptors and events

You also need a configuration entry telling Hibernate to use the listener in addition to the default
listener:

<hi ber nat e- confi gurati on>
<sessi on-factory>

<event type="I|oad">
<l i stener class="com eg. M\yLoadLi stener"/>
<l i stener
cl ass="org. hi bernat e. event . def . Def aul t LoadEvent Li st ener"/ >
</ event >
</ sessi on-factory>
</ hi ber nat e-confi gurati on>

Instead, you may register it programmatically:

Configuration cfg = new Configuration();

LoadEvent Li stener[] stack = { new MyLoadLi stener (), new
Def aul t LoadEvent Li stener () };

cfg. Event Li steners(). set LoadEvent Li st ener s(st ack) ;

Listeners registered declaratively cannot share instances. If the same class name is used in
multiple <l i st ener/ > elements, each reference will result in a separate instance of that class. If
you need the capability to share listener instances between listener types you must use the
programmatic registration approach.

Why implement an interface and define the specific type during configuration? Well, a listener
implementation could implement multiple event listener interfaces. Having the type additionally
defined during registration makes it easier to turn custom listeners on or off during configuration.

3. Hibernate declarative security

Usually, declarative security in Hibernate applications is managed in a session facade layer.
Now, Hibernate3 allows certain actions to be permissioned via JACC, and authorized via JAAS.
This is optional functionality built on top of the event architecture.

First, you must configure the appropriate event listeners, to enable the use of JAAS
authorization.

<listener type="pre-delete"

cl ass="org. hi ber nat e. secur e. JACCPr eDel et eEvent Li st ener"/ >
<listener type="pre-update"

cl ass="or g. hi ber nat e. secur e. JACCPr eUpdat eEvent Li st ener"/ >
<l istener type="pre-insert"

cl ass="org. hi bernat e. secure. JACCPr el nsert Event Li st ener"/>
<l istener type="pre-I|oad"

cl ass="or g. hi ber nat e. secure. JACCPr eLoadEvent Li st ener"/ >

178

Hibernate declarative security

Note that <l i st ener type="..." class="..."/>isjust a shorthand for <event
type="..."><listener class="..."/></event>when there is exactly one listener for a
particular event type.

Next, still in hi ber nat e. cf g. xnl, bind the permissions to roles:

<grant role="adm n" entity-name="User" actions="insert, update,read"/>
<grant role="su" entity-nane="User" actions="*"/>

The role names are the roles understood by your JACC provider.

179

180

Chapter 14.

Batch processing

A naive approach to inserting 100 000 rows in the database using Hibernate might look like this:

Sessi on sessi on = sessi onFact ory. openSessi on()
Transaction tx = session. begi nTransacti on();
for (int i=0; i<100000; i++) {
Cust oner custonmer = new Custoner(.....);
sessi on. save(cust oner)

}

tx.commt();
session. cl ose();

This would fall over with an CQut Of Menor yExcept i on somewhere around the 50 000th row.
That's because Hibernate caches all the newly inserted Cust ormer instances in the session-level
cache.

In this chapter we'll show you how to avoid this problem. First, however, if you are doing batch
processing, it is absolutely critical that you enable the use of JDBC batching, if you intend to
achieve reasonable performance. Set the JDBC batch size to a reasonable number (say,
10-50):

hi ber nat e. j dbc. batch_si ze 20

Note that Hibernate disables insert batching at the JDBC level transparently if you use an
i dent i y identifier generator.

You also might like to do this kind of work in a process where interaction with the second-level
cache is completely disabled:

hi ber nat e. cache. use_second_| evel _cache fal se

However, this is not absolutely necessary, since we can explicitly set the CacheMbde to disable
interaction with the second-level cache.

1. Batch inserts

When making new objects persistent, you must f | ush() and then cl ear () the session
regularly, to control the size of the first-level cache.

Sessi on session = sessionFactory. openSessi on();
Transaction tx = session. begi nTransacti on();

for (int i=0; i<100000; i++) {
Cust oner customer = new Customer(.....)
sessi on. save(cust oner) ;
if (i %920 ==0) { //20, sane as the JDBC batch size

181

Chapter 14. Batch processing

[/flush a batch of inserts and rel ease nenory:
session. flush();
session. clear();

}

tx.commit();
sessi on. cl ose();

2. Batch updates

For retrieving and updating data the same ideas apply. In addition, you need to use scrol | () to
take advantage of server-side cursors for queries that return many rows of data.

Sessi on session = sessi onFactory. openSessi on();
Transaction tx = session. begi nTransacti on();

Scrol | abl eResul ts custoners = sessi on. get NamedQuer y(" Get Cust onmer s")
. set CacheMode(CacheMode. | GNORE)
.scroll (Scrol | Mbde. FORWARD_ONLY) ;
i nt count =0;
while (custonmers.next()) {
Cust oner customer = (Custoner) custoners.get(0);
custoner. updateStuff(...);
if (++count %20 == 0) {
//flush a batch of updates and rel ease nenory:
session. flush();
session. clear();

}

tx.conmt();
session. cl ose();

3. The StatelessSession interface

Alternatively, Hibernate provides a command-oriented API that may be used for streaming data
to and from the database in the form of detached objects. A St at el essSessi on has no
persistence context associated with it and does not provide many of the higher-level lifecycle
semantics. In particular, a stateless session does not implement a first-level cache nor interact
with any second-level or query cache. It does not implement transactional write-behind or
automatic dirty checking. Operations performed using a stateless session do not ever cascade
to associated instances. Collections are ignored by a stateless session. Operations performed
via a stateless session bypass Hibernate's event model and interceptors. Stateless sessions are
vulnerable to data aliasing effects, due to the lack of a first-level cache. A stateless session is a
lower-level abstraction, much closer to the underlying JDBC.

St at el essSessi on sessi on = sessi onFactory. openSt at el essSessi on() ;
Transacti on tx = session. begi nTransacti on();

182

DML-style operations

Scrol | abl eResul ts custoners = sessi on. get NanedQuer y(" Get Cust oners")
.scrol |l (Scrol | Mode. FORWARD_ONLY) ;
while (customers.next()) {
Cust oner custonmer = (Custoner) custoners.get(0);
custoner. updateStuff(...);
sessi on. updat e(cust oner) ;

}

tx.commit();
sessi on. cl ose();

Note that in this code example, the Cust oner instances returned by the query are immediately
detached. They are never associated with any persistence context.

Theinsert(), update() and del et e() operations defined by the St at el essSessi on
interface are considered to be direct database row-level operations, which result in immediate
execution of a SQL | NSERT, UPDATE or DELETE respectively. Thus, they have very different
semantics to the save(), saveOrUpdate() and del et e() operations defined by the Sessi on
interface.

4. DML-style operations

As already discussed, automatic and transparent object/relational mapping is concerned with
the management of object state. This implies that the object state is available in memory, hence
manipulating (using the SQL Dat a Mani pul ati on Language (DML) statements: | NSERT,
UPDATE, DELETE) data directly in the database will not affect in-memory state. However,
Hibernate provides methods for bulk SQL-style DML statement execution which are performed
through the Hibernate Query Language (Chapter 15, HQL: The Hibernate Query Language

HQL).

The pseudo-syntax for UPDATE and DELETE statements is: (UPDATE | DELETE) FROW
EntityName (WHERE where_conditi ons) ?. Some points to note:

« In the from-clause, the FROM keyword is optional

« There can only be a single entity named in the from-clause; it can optionally be aliased. If the
entity name is aliased, then any property references must be qualified using that alias; if the
entity name is not aliased, then it is illegal for any property references to be qualified.

* No Section 4, “Forms of join syntax” joins (either implicit or explicit) can be specified in a bulk
HQL query. Sub-queries may be used in the where-clause; the subqueries, themselves, may
contain joins.

» The where-clause is also optional.

As an example, to execute an HQL UPDATE, use the Query. execut eUpdat e() method (the
method is named for those familiar with JDBC's Pr epar edSt at ement . execut eUpdat e()):

Sessi on session = sessi onFactory. openSessi on();
Transaction tx = session. begi nTransacti on();

183

Chapter 14. Batch processing

String hqgl Update = "update Custonmer ¢ set c.name = :newNanme where c.nane =
: ol dNane" ;
[/l or String hqgl Update = "update Customer set name = :newNanme where nanme =
: ol dNane";

int updatedEntities = s.createQuery(hqgl Update)
.setString("newNane", newNane)
.setString("ol dNane", ol dNanme)
. execut eUpdat e() ;

tx.conmit();

sessi on. cl ose();

HQL UPDATE statements, by default do not effect the Section 1.7, “version (optional)” version or
the Section 1.8, “timestamp (optional)” timestamp property values for the affected entities; this is
in keeping with the EJB3 specification. However, you can force Hibernate to properly reset the
ver si on orti mest anp property values through the use of a ver si oned updat e. This is
achieved by adding the VERSI ONED keyword after the UPDATE keyword.

Sessi on session = sessi onFactory. openSessi on();
Transaction tx = session. begi nTransacti on();
String hgl Versi onedUpdat e = "update versi oned Custoner set nane = :newNane
where nane = : ol dNanme";
int updatedEntities = s.createQuery(hqgl Update)
.setString("newNane", newNane)
.setString("ol dNane", ol dNane)
. execut eUpdat e() ;
tx.conmt();
session. cl ose();

Note that custom version types (or g. hi ber nat e. user t ype. User Ver si onType) are not allowed
in conjunction with a updat e ver si oned statement.

To execute an HQL DELETE, use the same Query. execut eUpdat e() method:

Sessi on session = sessi onFactory. openSessi on();
Transacti on tx = session. begi nTransacti on();

String hqlDelete = "del ete Custoner ¢ where c.nane = :ol dNane";
[/l or String hqlDelete = "del ete Custonmer where nane = :ol dNane";
int deletedEntities = s.createQuery(hqgl Del ete)

.setString("ol dNane", ol dNanme)

. execut eUpdat e() ;
tx.conmt();
session. cl ose();

The i nt value returned by the Query. execut eUpdat e() method indicate the number of entities
effected by the operation. Consider this may or may not correlate to the number of rows

effected in the database. An HQL bulk operation might result in multiple actual SQL statements
being executed, for joined-subclass, for example. The returned number indicates the number of

184

DML-style operations

actual entities affected by the statement. Going back to the example of joined-subclass, a delete
against one of the subclasses may actually result in deletes against not just the table to which
that subclass is mapped, but also the "root" table and potentially joined-subclass tables further
down the inheritence hierarchy.

The pseudo-syntax for | NSERT statements is: | NSERT | NTO EntityNanme properties_|i st
sel ect _st at enent. Some points to note:

e Only the INSERT INTO ... SELECT ... form is supported; not the INSERT INTO ... VALUES ...
form.

The properties_list is analogous to the col unm spefi ci ati on in the SQL | NSERT statement.
For entities involved in mapped inheritence, only properties directly defined on that given
class-level can be used in the properties_list. Superclass properties are not allowed; and
subclass properties do not make sense. In other words, | NSERT statements are inherently
non-polymorphic.

» select_statement can be any valid HQL select query, with the caveat that the return types
must match the types expected by the insert. Currently, this is checked during query
compilation rather than allowing the check to relegate to the database. Note however that this
might cause problems between Hibernate Type s which are equivalent as opposed to equal.
This might cause issues with mismatches between a property defined as a
or g. hi ber nat e. t ype. Dat eType and a property defined as a
or g. hi ber nat e. t ype. Ti mest anpType, even though the database might not make a
distinction or might be able to handle the conversion.

« For the id property, the insert statement gives you two options. You can either explicitly
specify the id property in the properties_list (in which case its value is taken from the
corresponding select expression) or omit it from the properties_list (in which case a generated
value is used). This later option is only available when using id generators that operate in the
database; attempting to use this option with any "in memory" type generators will cause an
exception during parsing. Note that for the purposes of this discussion, in-database
generators are considered to be or g. hi bernat e. i d. SequenceGener at or (and its
subclasses) and any implementors of
org. hi bernate.id. PostlnsertldentifierGenerator. The most notable exception here is
org. hi bernate.id. Tabl eH LoGener at or, which cannot be used because it does not
expose a selectable way to get its values.

» For properties mapped as either ver si on or ti nest anp, the insert statement gives you two
options. You can either specify the property in the properties_list (in which case its value is
taken from the corresponding select expressions) or omit it from the properties_list (in which
case the seed val ue defined by the or g. hi ber nat e. t ype. Ver si onType is used).

An example HQL | NSERT statement execution:

Sessi on session = sessi onFactory. openSessi on();
Transacti on tx = session. begi nTransacti on();

String hgllnsert = "insert into DelinquentAccount (id, nane) select c.id,
c. name from Cust oner

c where ..."
int createdEntities = s.createQuery(hqgllnsert)

185

Chapter 14. Batch processing

. execut eUpdat e() ;
tx.commit();
sessi on. cl ose();

186

Chapter 15.

HQL: The Hibernate Query Language

Hibernate is equipped with an extremely powerful query language that (quite intentionally) looks
very much like SQL. But don't be fooled by the syntax; HQL is fully object-oriented,
understanding notions like inheritence, polymorphism and association.

1. Case Sensitivity
Queries are case-insensitive, except for names of Java classes and properties. So SeLeCT is

the same as sELEct is the same as SELECT but or g. hi ber nat e. eg. FOOis not
or g. hi ber nat e. eg. Foo and f oo. bar Set is not f 0oo. BARSET.

This manual uses lowercase HQL keywords. Some users find queries with uppercase keywords
more readable, but we find this convention ugly when embedded in Java code.

2. The from clause
The simplest possible Hibernate query is of the form:

from eg. Cat

which simply returns all instances of the class eg. Cat . We don't usually need to qualify the
class name, since aut o-i nport is the default. So we almost always just write:

from Cat

Most of the time, you will need to assign an alias, since you will want to refer to the Cat in other
parts of the query.

from Cat as cat

This query assigns the alias cat to Cat instances, so we could use that alias later in the query.
The as keyword is optional; we could also write:

from Cat cat

Multiple classes may appear, resulting in a cartesian product or "cross" join.

from Formul a, Par aneter

fromFornmula as form Paraneter as param

187

Chapter 15. HQL: The Hibernate Query Language

It is considered good practice to name query aliases using an initial lowercase, consistent with
Java naming standards for local variables (eg. donest i cCat).

3. Associations and joins

We may also assign aliases to associated entities, or even to elements of a collection of values,
using a j oi n.

from Cat as cat
inner join cat.mate as mate
left outer join cat.kittens as kitten

fromCat as cat left join cat.mate.kittens as kittens

fromFormula formfull join form paraneter param

The supported join types are borrowed from ANSI SQL

* inner join

e |eft outer join

e right outer join

e full join (notusually useful)

Theinner join,left outer joinandright outer join constructs may be abbreviated.

from Cat as cat
join cat.mte as nate
left join cat.kittens as kitten

You may supply extra join conditions using the HQL wi t h keyword.

from Cat as cat
left join cat.kittens as kitten
with kitten. bodyWight > 10.0

In addition, a "fetch” join allows associations or collections of values to be initialized along with
their parent objects, using a single select. This is particularly useful in the case of a collection. It
effectively overrides the outer join and lazy declarations of the mapping file for associations and
collections. See Section 1, “Fetching strategies” for more information.

from Cat as cat
inner join fetch cat.mate
left join fetch cat.kittens

188

Forms of join syntax

A fetch join does not usually need to assign an alias, because the associated objects should not
be used in the wher e clause (or any other clause). Also, the associated objects are not returned
directly in the query results. Instead, they may be accessed via the parent object. The only
reason we might need an alias is if we are recursively join fetching a further collection:

from Cat as cat
inner join fetch cat.mate
left join fetch cat.kittens child
left join fetch child.kittens

Note that the f et ch construct may not be used in queries called using i t er at e() (though

scrol | () can be used). Nor should f et ch be used together with set MaxResul t s() or

set First Resul t () as these operations are based on the result rows, which usually contain
duplicates for eager collection fetching, hence, the number of rows is not what you'd expect. Nor
may f et ch be used together with an ad hoc wi t h condition. It is possible to create a cartesian
product by join fetching more than one collection in a query, so take care in this case. Join
fetching multiple collection roles also sometimes gives unexpected results for bag mappings, so
be careful about how you formulate your queries in this case. Finally, note that ful | j oi n
fetchandright join fetch are not meaningful.

If you are using property-level lazy fetching (with bytecode instrumentation), it is possible to
force Hibernate to fetch the lazy properties immediately (in the first query) using fet ch al |
properties.

from Docunment fetch all properties order by nane

from Document doc fetch all properties where | ower(doc.nane) |ike '%ats%

4. Forms of join syntax

HQL supports two forms of association joining: i nplicit and explicit.

The queries shown in the previous section all use the expl i ci t form where the join keyword is
explicitly used in the from clause. This is the recommended form.

The i npli cit form does not use the join keyword. Instead, the associations are "dereferenced"
using dot-notation. i npl i ci t joins can appear in any of the HQL clauses. i npl i cit join result
in inner joins in the resulting SQL statement.

fromCat as cat where cat.mate.nane |ike ' %%

5. Refering to identifier property

There are, generally speaking, 2 ways to refer to an entity's identifier property:

189

Chapter 15. HQL: The Hibernate Query Language

» The special property (lowercase) i d may be used to reference the identifier property of an
entity provided that entity does not define a non-identifier property named id.
« If the entity defines a named identifier property, you may use that property name.

References to composite identifier properties follow the same naming rules. If the entity has a
non-identifier property named id, the composite identifier property can only be referenced by its
defined named; otherwise, the special i d property can be used to rerference the identifier

property.

Note: this has changed significantly starting in version 3.2.2. In previous versions, i dalways
referred to the identifier property no matter what its actual name. A ramification of that decision
was that non-identifier properties named i d could never be referenced in Hibernate queries.

6. The select clause

The sel ect clause picks which objects and properties to return in the query result set.
Consider:

sel ect mate
from Cat as cat
inner join cat.nmate as mate

The query will select mat e s of other Cat s. Actually, you may express this query more
compactly as:

sel ect cat.mate from Cat cat

Queries may return properties of any value type including properties of component type:

sel ect cat.nane from DonmesticCat cat
where cat.nanme like "fri%

sel ect cust.nane.firstNane from Custonmer as cust

Queries may return multiple objects and/or properties as an array of type bj ect[],

sel ect nother, offspr, nate.nane
from Donmesti cCat as not her
i nner join nmother. mate as nmate
left outer join nother.kittens as of fspr

orasalist,

sel ect new list(nother, offspr, mate.nane)
from Donesti cCat as not her

190

Aggregate functions

inner join nother.mate as mate
| eft outer join nother.kittens as of fspr

or as an actual typesafe Java object,

sel ect new Fam | y(nother, mate, offspr)
from Domesti cCat as not her

join nmother.mate as nate

left join nother.kittens as of fspr

assuming that the class Fami | y has an appropriate constructor.

You may assign aliases to selected expressions using as:

sel ect max(bodyWei ght) as max, m n(bodyWight) as mn, count(*) as n
from Cat cat

This is most useful when used together with sel ect new map:

sel ect new map(nmax(bodyWei ght) as max, mi n(bodyWight) as min, count(*) as

n)

from Cat cat

This query returns a Map from aliases to selected values.

7. Aggregate functions
HQL queries may even return the results of aggregate functions on properties:

sel ect avg(cat.weight), sun{cat.weight), max(cat.weight), count(cat)
from Cat cat

The supported aggregate functions are

e avg(...), sum...), mn(...), max(...)
e count (*)
e count(...), count(distinct ...), count(all...)

You may use arithmetic operators, concatenation, and recognized SQL functions in the select
clause:

sel ect cat.weight + sun(kitten.weight)
from Cat cat

join cat.kittens kitten
group by cat.id, cat.weight

191

Chapter 15. HQL: The Hibernate Query Language

select firstName||' "||initial||" "|]|upper(lastNane) from Person

The di stinct and al | keywords may be used and have the same semantics as in SQL.

sel ect distinct cat.name from Cat cat

sel ect count (distinct cat.nanme), count(cat) from Cat cat

8. Polymorphic queries
A query like:

from Cat as cat

returns instances not only of Cat , but also of subclasses like Donest i cCat . Hibernate queries
may name any Java class or interface in the f r omclause. The query will return instances of all
persistent classes that extend that class or implement the interface. The following query would
return all persistent objects:

fromjava.l ang. Obj ect o

The interface Naned might be implemented by various persistent classes:

from Naned n, Naned m where n.nane = m nane

Note that these last two queries will require more than one SQL SELECT. This means that the
order by clause does not correctly order the whole result set. (It also means you can't call
these queries using Query. scrol | ().)

9. The where clause

The wher e clause allows you to narrow the list of instances returned. If no alias exists, you may
refer to properties by name:

from Cat where name='Fritz'

If there is an alias, use a qualified property hame:

from Cat as cat where cat.nanme='Fritz'

192

The where clause

returns instances of Cat named 'Fritz'.

sel ect foo
from Foo foo, Bar bar
where foo.startDate = bar. date

will return all instances of Foo for which there exists an instance of bar with a dat e property
equal to the st ar t Dat e property of the Foo. Compound path expressions make the wher e
clause extremely powerful. Consider:

fromCat cat where cat.mate.nane is not null

This query translates to an SQL query with a table (inner) join. If you were to write something
like

from Foo foo
wher e foo. bar. baz. custoner. address.city is not null

you would end up with a query that would require four table joins in SQL.

The = operator may be used to compare not only properties, but also instances:

fromCat cat, Cat rival where cat.mate = rival.mte

sel ect cat, mate
fromCat cat, Cat mate
where cat.nmate = nmate

The special property (lowercase) i d may be used to reference the unique identifier of an object.
See Section 5, “Refering to identifier property” for more information.

fromCat as cat where cat.id = 123

fromCat as cat where cat.mate.id = 69

The second query is efficient. No table join is required!

Properties of composite identifiers may also be used. Suppose Per son has a composite
identifier consisting of count ry and nedi car eNunber . Again, see Section 5, “Refering to
identifier property” for more information regarding referencing identifier properties.

from bank. Person person
where person.id.country = "'AU
and person.id. medi careNumber = 123456

193

Chapter 15. HQL: The Hibernate Query Language

from bank. Account account
where account.owner.id.country = "'AU
and account . owner. i d. medi car eNunber = 123456

Once again, the second query requires no table join.

Likewise, the special property cl ass accesses the discriminator value of an instance in the case
of polymorphic persistence. A Java class name embedded in the where clause will be translated
to its discriminator value.

from Cat cat where cat.class = Donesti cCat

You may also use components or composite user types, or properties of said component types.
See Section 17, “Components” for more details.

An "any" type has the special properties i d and cl ass, allowing us to express a join in the
following way (where Audi t Log. i t emis a property mapped with <any>).

from AuditLog | og, Paynent paynent
where log.itemclass = 'Payment' and log.itemid = paynent.id

Notice that | og. i t em cl ass and paynent . cl ass would refer to the values of completely
different database columns in the above query.

10. Expressions

Expressions allowed in the wher e clause include most of the kind of things you could write in
SQL:

« mathematical operators +, -, *, /

 binary comparison operators =, >=, <=, <>, =, like
* logical operations and, or, not

» Parentheses (), indicating grouping

e in,not in,between,is null,is not null,is enpty,is not enpty, menber of and not
nmenber of

e "Simple" case,case ... when ... then ... else ... end, and "searched" case, case
when ... then ... else ... end

* string concatenation ... ||... orconcat(...,...)

e current_date(),current_time(),current_timestanp()

e second(...),mnute(...),hour(...),day(...),nonth(...),year(...),

« Any function or operator defined by EJB-QL 3.0: substring(), trim(), |ower(),
upper (), length(), locate(), abs(), sqrt(), bit_length(), nod()

e coal esce() and nul i f ()

« str() for converting numeric or temporal values to a readable string

e cast(... as ...),where the second argument is the name of a Hibernate type, and

194

Expressions

extract(... from...) if ANSIcast() and extract () is supported by the underlying
database

» the HQL i ndex() function, that applies to aliases of a joined indexed collection

* HQL functions that take collection-valued path expressions: si ze(), mni nel ement (),
maxel enent (), i nindex(), naxindex(), along with the special el enent s() and i ndi ces
functions which may be quantified using sone, all, exists, any, in.

« Any database-supported SQL scalar function like si gn(), trunc(),rtrin(), sin()

« JDBC-style positional parameters ?

* named parameters : nane, : start_date, : x1

e SQL literals* foo', 69, 6. 66E+2, ' 1970- 01- 01 10: 00: 01. O

e Javapublic static final constants eg. Col or. TABBY

i n and bet ween may be used as follows:

from Donesti cCat cat where cat.nane between 'A" and 'B'

from DonesticCat cat where cat.nane in ('Foo', 'Bar', 'Baz')

and the negated forms may be written

from DonesticCat cat where cat.nane not between 'A" and 'B

from Donmesti cCat cat where cat.nane not in ('Foo', 'Bar', 'Baz')

Likewise,is null andis not null may be used to test for null values.

Booleans may be easily used in expressions by declaring HQL query substitutions in Hibernate
configuration:

<property nane="hi bernate. query. substitutions">true 1, false 0</property>

This will replace the keywords t r ue and f al se with the literals 1 and 0 in the translated SQL
from this HQL:

from Cat cat where cat.alive = true

You may test the size of a collection with the special property si ze, or the special si ze()
function.

fromCat cat where cat.kittens.size > 0

from Cat cat where size(cat.kittens) > 0

195

Chapter 15. HQL: The Hibernate Query Language

For indexed collections, you may refer to the minimum and maximum indices using mi ni ndex
and maxi ndex functions. Similarly, you may refer to the minimum and maximum elements of a
collection of basic type using the mi nel ement and maxel enent functions.

from Cal endar cal where maxel enent (cal . hol i days) > current _date

from Order order where nmaxindex(order.itens) > 100

from Order order where m nel enent(order.itens) > 10000

The SQL functions any, some, all, exists, in aresupportedwhen passed the element or
index set of a collection (el enent s and i ndi ces functions) or the result of a subquery (see
below).

sel ect nother from Cat as nother, Cat as kit
where kit in el enents(foo.kittens)

select p from NaneList |ist, Person p
where p.nane = sone el ements(list.nanes)

from Cat cat where exists el enents(cat.kittens)

from Player p where 3 > all el enents(p.scores)

from Show show where 'fizard' in indices(show acts)

Note that these constructs - si ze, el enent s, i ndi ces, ni ni ndex, maxi ndex, m nel enent ,
maxel ement - may only be used in the where clause in Hibernate3.

Elements of indexed collections (arrays, lists, maps) may be referred to by index (in a where
clause only):

from Order order where order.itens[0].id = 1234
sel ect person from Person person, Cal endar cal endar

wher e cal endar. hol i days[' nati onal day'] = person. birthDay
and person. nationality.cal endar = cal endar

196

Expressions

select itemfromltemitem Order order
where order.itens|[order.deliveredltenm ndices[0]] = itemand order.id = 11

select itemfromltemitem O der order
where order.items[maxindex(order.itenms)] = itemand order.id = 11

The expression inside [] may even be an arithmetic expression.

select itemfromltemitem Oder order
where order.itens[size(order.itenms) - 1] = item

HQL also provides the built-in i ndex() function, for elements of a one-to-many association or
collection of values.

select item index(item from Oder order
join order.itenms item
where index(itenm) < 5

Scalar SQL functions supported by the underlying database may be used

from Donmesti cCat cat where upper(cat.nane) like 'FRI %

If you are not yet convinced by all this, think how much longer and less readable the following
query would be in SQL:

sel ect cust
from Product prod,
Store store
i nner join store.custoners cust
where prod. name = 'w dget'
and store.location.nane in (' Ml bourne', 'Sydney')
and prod = all elenments(cust.currentOrder.|ineltens)

Hint: something like

SELECT cust. nanme, cust.address, cust.phone, cust.id, cust.current_order
FROM cust onmers cust,
stores store,
| ocations | oc,
store_custoners sc,
pr oduct prod
WHERE prod. name = 'wi dget'
AND store.loc_id = loc.id
AND | oc. name I N (' Mel bourne', 'Sydney')
AND sc.store_id = store.id
AND sc.cust_id = cust.id

197

Chapter 15. HQL: The Hibernate Query Language

AND prod.id = ALL(
SELECT item prod_id
FROM line_ itens item orders o
WHERE itemorder _id = o.id
AND cust.current_order = o.id

11. The order by clause
The list returned by a query may be ordered by any property of a returned class or components:

from Donesti cCat cat
order by cat.nanme asc, cat.weight desc, cat.birthdate

The optional asc or desc indicate ascending or descending order respectively.

12. The group by clause

A query that returns aggregate values may be grouped by any property of a returned class or
components:

sel ect cat.col or, sum(cat.weight), count(cat)
from Cat cat
group by cat. col or

sel ect foo.id, avg(nane), nmax(nane)
from Foo foo join foo. names nane
group by foo.id

A havi ng clause is also allowed.

sel ect cat.color, sun{cat.weight), count(cat)

from Cat cat

group by cat.col or

havi ng cat.col or in (eg.Col or. TABBY, eg. Col or. BLACK)

SQL functions and aggregate functions are allowed in the havi ng and or der by clauses, if
supported by the underlying database (eg. not in MySQL).

sel ect cat
from Cat cat
join cat.kittens kitten
group by cat.id, cat.nanme, cat.other, cat.properties
havi ng avg(kitten.weight) > 100
order by count (kitten) asc, sun(kitten.weight) desc

198

Subqueries

Note that neither the gr oup by clause nor the or der by clause may contain arithmetic
expressions. Also note that Hibernate currently does not expand a grouped entity, so you can't
write gr oup by cat if all properties of cat are non-aggregated. You have to list all
non-aggregated properties explicitly.

13. Subqueries

For databases that support subselects, Hibernate supports subqueries within queries. A
subquery must be surrounded by parentheses (often by an SQL aggregate function call). Even
correlated subqueries (subqueries that refer to an alias in the outer query) are allowed.

from Cat as fatcat
where fatcat.weight > (
sel ect avg(cat.weight) from DonesticCat cat

)

from DonesticCat as cat
where cat.name = some (
sel ect nane. ni ckNanme from Nane as nane

)

from Cat as cat
where not exists (
from Cat as mate where mate. mate = cat

)

from DonesticCat as cat
where cat.name not in (
sel ect nane. ni ckNane from Nane as nane

select cat.id, (select max(kit.weight) fromcat.kitten kit)
from Cat as cat
Note that HQL subqueries may occur only in the select or where clauses.

Note that subqueries can also utilize r ow val ue constructor syntax. See Section 18, “Row
value constructor syntax” for more details.

14. HQL examples

Hibernate queries can be quite powerful and complex. In fact, the power of the query language
is one of Hibernate's main selling points. Here are some example queries very similar to queries
that | used on a recent project. Note that most queries you will write are much simpler than

199

Chapter 15. HQL: The Hibernate Query Language

these!

The following query returns the order id, number of items and total value of the order for all
unpaid orders for a particular customer and given minimum total value, ordering the results by
total value. In determining the prices, it uses the current catalog. The resulting SQL query,
against the ORDER, ORDER_LI NE, PRODUCT, CATALOG and PRI CE tables has four inner joins and an
(uncorrelated) subselect.

sel ect order.id, sun(price.anmount), count(item
from Order as order
join order.lineltens as item
join item product as product,
Cat al og as cat al og
join catal og. prices as price
where order.paid = fal se
and order.custonmer = :custoner
and price. product = product
and catal og. effectiveDate < sysdate
and catal og. effectiveDate >= all (
sel ect cat.effectiveDate
from Catal og as cat
where cat.effectiveDate < sysdate
)
group by order
havi ng sun(price. amount) > :m nAnount
order by sun{price.anpunt) desc

What a monster! Actually, in real life, I'm not very keen on subqueries, so my query was really
more like this:

sel ect order.id, sun(price.anmunt), count(iten)
from Order as order

join order.lineltens as item

join item product as product,

Cat al og as catal og

join catal og. prices as price
where order.paid = fal se

and order. custoner = :custoner
and price. product = product
and catal og = :currentCatal og

group by order
havi ng sun(price. amount) > : m nAnount
order by sum(price.anobunt) desc

The next query counts the number of payments in each status, excluding all payments in the
AWAI TI NG_APPROVAL status where the most recent status change was made by the current
user. It translates to an SQL query with two inner joins and a correlated subselect against the
PAYMENT, PAYMENT _STATUS and PAYMENT _STATUS CHANGE tables.

sel ect count (paynent), status. nanme
from Paynent as paynent

200

Bulk update and delete

join paynment.currentStatus as status
j oi n paynent. st at usChanges as st at usChange
wher e paynent. status. nane <> Paynent St at us. AWAI TI NG_APPROVAL
or (
st at usChange. ti meStanp = (
sel ect max(change. ti neSt anp)
f rom Paynent St at usChange change
wher e change. paynent = paymnent
)
and st atusChange. user <> :currentUser
)
group by status.nane, status.sortOrder
order by status.sortOrder

If | would have mapped the st at usChanges collection as a list, instead of a set, the query would
have been much simpler to write.

sel ect count (paynent), status.nane
from Paynent as paynent
join payment.currentStatus as status
wher e paynent. st atus. name <> Paynent St at us. AWAI TI NG_APPROVAL
or paynent. st atusChanges[maxl| ndex(paynent. statusChanges)].user <>
:current User

group by status.nanme, status.sortOrder
order by status.sortOrder

The next query uses the MS SQL Serveri sNul | () function to return all the accounts and
unpaid payments for the organization to which the current user belongs. It translates to an SQL
query with three inner joins, an outer join and a subselect against the ACCOUNT, PAYMENT,
PAYMENT _STATUS, ACCOUNT_TYPE, ORGANI ZATI ON and ORG_USER tables.

sel ect account, payment
from Account as account
| eft outer join account.paynents as paynent
where :currentUser in el enents(account. hol der. users)
and Paynent St at us. UNPAI D = i sNul | (paynent . current St at us. nane,
Paynent St at us. UNPAI D)
order by account.type.sortOrder, account.accountNunmber, paynent. dueDate

For some databases, we would need to do away with the (correlated) subselect.

sel ect account, paynent
from Account as account
join account. hol der. users as user
left outer join account.paynents as paynent
where :currentUser = user
and Paynent St at us. UNPAI D = i sNul | (paynent . current St at us. nane,
Paynent St at us. UNPAI D)
order by account.type.sortOrder, account.accountNunber, paynent. dueDate

201

Chapter 15. HQL: The Hibernate Query Language

15. Bulk update and delete

HQL now supports updat e, del ete andinsert ... select ... statements. See Section 4,
“DML-style operations” for details.

16. Tips & Tricks
You can count the number of query results without actually returning them:

((Integer) session.iterate("select count(*) from....").next()).intValue()

To order a result by the size of a collection, use the following query:

sel ect usr.id, usr.nane
from User as usr
I eft join usr.nmessages as mnsg
group by usr.id, usr.nane
order by count (nsg)

If your database supports subselects, you can place a condition upon selection size in the
where clause of your query:

from User usr where size(usr.nmessages) >= 1

If your database doesn't support subselects, use the following query:

sel ect usr.id, usr.name
from User usr.nane

join usr.nmessages nsg
group by usr.id, usr.nane
havi ng count (nsg) >= 1

As this solution can't return a User with zero messages because of the inner join, the following
form is also useful:

sel ect usr.id, usr.name
from User as usr
| eft join usr.nmessages as nsg
group by usr.id, usr.nane
havi ng count (nsg) = 0

Properties of a JavaBean can be bound to named query parameters:

Query g = s.createQuery("fromfoo Foo as foo where foo.nane=: nane and
f 0o. si ze=:si ze");
g. set Properti es(fooBean); // fooBean has get Nane() and get Si ze()

202

Components

List foos = g.list();

Collections are pageable by using the Query interface with a filter:

Query q = s.createFilter(collection, ""); // the trivial filter
g. set MaxResul t s(PAGE_SI ZE) ;

g. set Fi r st Resul t (PAGE_SI ZE * pageNunber) ;

Li st page = qg.list();

Collection elements may be ordered or grouped using a query filter:

Col | ection orderedCollection = s.filter(collection, "order by this.anmunt"
)i

Col l ection counts = s.filter(collection, "select this.type, count(this)
group by this.type");

You can find the size of a collection without initializing it:

((Integer) session.iterate("select count(*) from....").next()
).intVal ue();

17. Components

Components might be used in just about every way that simple value types can be used in HQL
queries. They can appear in the sel ect clause:

sel ect p.nane from from Person p

sel ect p.nane.first fromfrom Person p

where the Person's name property is a component. Components can also be used in the wher e
clause:

fromfrom Person p where p.nanme = :nane

fromfrom Person p where p.nane.first = :firstNane

Components can also be used in the or der by clause:

fromfrom Person p order by p.nane

203

Chapter 15. HQL: The Hibernate Query Language

fromfrom Person p order by p.nane.first

Another common use of components is in Section 18, “Row value constructor syntax” row value
constructors.

18. Row value constructor syntax

HQL supports the use of ANSI SQL row val ue constructor syntax (sometimes called t upl e
syntax), even though the underlying database may not support that notion. Here we are
generally referring to multi-valued comparisons, typically associated with components. Consider
an entity Person which defines a name component:

from Person p where p.nane.first="John' and
p. name. | ast =' Ji ngl ehei mer - Schmi dt '

That's valid syntax, although a little verbose. It be nice to make this a bit more concise and use
row val ue constructor syntax:

from Person p where p.nane=('John', 'Jinglehei mer-Schm dt')

It can also be useful to specify this in the sel ect clause:

sel ect p.nane from from Person p

Another time using r ow val ue construct or syntax can be beneficial is when using subqueries
needing to compare against multiple values:

from Cat as cat
where not (cat.nanme, cat.color) in (
sel ect cat.nane, cat.color from Donesti cCat cat

)

One thing to consider when deciding if you want to use this syntax is that the query will be
dependent upon the ordering of the component sub-properties in the metadata.

204

Chapter 16.

Criteria Queries

Hibernate features an intuitive, extensible criteria query API.

1. Creating a Criteria instance

The interface or g. hi bernate. Criteri a represents a query against a particular persistent
class. The Sessi on is a factory for Cri t eri a instances.

Criteria crit = sess.createCriteria(Cat.class);
crit.set MaxResul t s(50);
List cats = crit.list();

2. Narrowing the result set

An individual query criterion is an instance of the interface
org. hibernate.criterion.Criterion. The class org. hi bernate.criterion.Restrictions
defines factory methods for obtaining certain built-in Cri t eri on types.

List cats = sess.createCriteria(Cat.class)
.add(Restrictions.like("nanme", "Fritz%))
.add(Restrictions. between("wei ght", m nWeight, nmaxWeight))
dist();

Restrictions may be grouped logically.

List cats = sess.createCriteria(Cat.class)
.add(Restrictions.like("name", "Fritz%))
.add(Restrictions. or(
Restrictions. eq("age", new Integer(0)),
Restrictions.isNull ("age")

))
dist();

List cats = sess.createCriteria(Cat.cl ass)
.add(Restrictions.in("name", new String[] { "Fritz", "lzi", "Pk" }))
.add(Restrictions.disjunction()
.add(Restrictions.isNull("age"))
.add(Restrictions.eq("age", new Integer(0)))
.add(Restrictions.eq("age", new Integer(1)))
.add(Restrictions.eq("age", new Integer(2)))

))
dist();

There are quite a range of built-in criterion types (Rest ri cti ons subclasses), but one that is
especially useful lets you specify SQL directly.

205

Chapter 16. Criteria Queries

List cats = sess.createCriteria(Cat.class)
.add(Restrictions.sqgl Restriction("lower({alias}.nane) |like |ower(?)",
"Fritzu%,
Hi ber nat e. STRING)
dist();

The {al i as} placeholder with be replaced by the row alias of the queried entity.

An alternative approach to obtaining a criterion is to get it from a Pr oper t y instance. You can
create a Property by calling Property. f or Nane() .

Property age = Property. forName("age");
List cats = sess.createCriteria(Cat.class)
.add(Restrictions.disjunction()
.add(age.isNull())
.add(age.eq(new Integer(0)))
.add(age.eq(new Integer(1)))
.add(age.eq(new Integer(2)))
))
.add(Property.forName("name").in(new String[] { "Fritz", "lzi", "Pk"

))
dist();

3. Ordering the results
You may order the results using or g. hi bernate. criterion. Order.

Li st cats = sess.createCriteria(Cat.class)
.add(Restrictions.|like("nanme", "F%)
.addOrder (Order. asc("nane"))
.addOrder (Order. desc("age"))

. set MaxResul t s(50)
dist();

List cats = sess.createCriteria(Cat.cl ass)
.add(Property.forName("name").like("F%))
.addOrder (Property.forNane("name").asc())
.addOrder (Property. forNane("age").desc())
. set MaxResul t s(50)
dist();

4. Associations

You may easily specify constraints upon related entities by navigating associations using
createCriteria().

Li st cats = sess.createCriteria(Cat.class)

206

Dynamic association fetching

.add(Restrictions.|ike("name", "F%))
.createCriteria("kittens")

.add(Restrictions.like("nanme", "F%))
dist();

note that the second createCriteria() returns a new instance of Cri t eri a, which refers to
the elements of the ki t t ens collection.

The following, alternate form is useful in certain circumstances.

Li st cats = sess.createCriteria(Cat.cl ass)
.createAlias("kittens", "kt")
.createAlias("mate", "nt")
.add(Restrictions.eqgProperty("kt.nane", "mt.nane"))
dist();

(creat eAl i as() does not create a new instance of Criteri a.)

Note that the kittens collections held by the Cat instances returned by the previous two queries
are not pre-filtered by the criteria! If you wish to retrieve just the kittens that match the criteria,
you must use a Resul t Tr ansf or mer .

List cats = sess.createCriteria(Cat.cl ass)
.createCriteria("kittens", "kt")
.add(Restrictions.eq("nane", "F%))
.setResult Transforner(Criteria. ALI AS_ TO ENTI TY_MAP)
dist();
Iterator iter = cats.iterator();
while (iter.hasNext()) {
Map map = (Map) iter.next();
Cat cat = (Cat) nap.get(Criteria. ROOT_ALI AS);
Cat kitten = (Cat) map.get("kt");

5. Dynamic association fetching
You may specify association fetching semantics at runtime using set Fet chivbde() .

List cats = sess.createCriteria(Cat.class)
.add(Restrictions.like("name", "Fritz%))
. set Fet chvbde("nate", Fet chMode. EAGER)
. set Fet chMode("ki ttens", FetchMde. EAGER)
dist();

This query will fetch both mat e and ki t t ens by outer join. See Section 1, “Fetching strategies”
for more information.

207

Chapter 16. Criteria Queries

6. Example queries

The class or g. hi ber nat e. criteri on. Exanpl e allows you to construct a query criterion from a
given instance.

Cat cat = new Cat();

cat.set Sex('F);

cat . set Col or (Col or. BLACK) ;

List results = session.createCriteria(Cat.class)
.add(Exanpl e.create(cat))
dist();

Version properties, identifiers and associations are ignored. By default, null valued properties
are excluded.

You can adjust how the Exanpl e is applied.

Exanpl e exanpl e = Exanpl e. creat e(cat)

. excl udeZer oes() /l excl ude zero val ued properties

. excl udeProperty(“"color") //exclude the property named "col or"

. ignoreCase() /I perform case insensitive string conparisons
. enabl eLi ke() ; /luse like for string conparisons

List results = session.createCriteria(Cat.cl ass)
. add(exanpl e)
dist();

You can even use examples to place criteria upon associated objects.

List results = session.createCriteria(Cat.class)
.add(Exanple.create(cat))
.createCriteria("mte")

.add(Exanple.create(cat.getMate()))
dist();

7. Projections, aggregation and grouping

The class or g. hi bernate. criterion. Projections is afactory for Proj ecti on instances. We
apply a projection to a query by calling set Proj ecti on() .

List results = session.createCriteria(Cat.cl ass)
.setProjection(Projections.rowCount())
.add(Restrictions.eq("color", Color.BLACK))
dist();

List results = session.createCriteria(Cat.cl ass)
.set Projection(Projections.projectionList()
.add(Projections.rowCount())
.add(Projections.avg("weight"))

208

Projections, aggregation and grouping

.add(Projections. max("weight"))
.add(Projections.groupProperty("color"))

)
dist();

There is no explicit "group by" necessary in a criteria query. Certain projection types are defined
to be grouping projections, which also appear in the SQL gr oup by clause.

An alias may optionally be assigned to a projection, so that the projected value may be referred
to in restrictions or orderings. Here are two different ways to do this:

List results = session.createCriteria(Cat.cl ass)

.setProjection(Projections.alias(Projections.groupProperty("color"),
"colr"))

.addOrder (Order.asc("colr"))

dist();

List results = session.createCriteria(Cat.cl ass)
.setProjection(Projections.groupProperty("color").as("colr"))
.addOrder (Order.asc("colr"))
dist();

The al i as() and as() methods simply wrap a projection instance in another, aliased, instance
of Proj ecti on. As a shortcut, you can assign an alias when you add the projection to a
projection list:

List results = session.createCriteria(Cat.cl ass)

.setProjection(Projections.projectionList()
.add(Projections.rowCount(), "catCountByColor")
.add(Projections.avg("weight"), "avgWeight")
.add(Projections. max("weight"), "maxWeight")
.add(Projections.groupProperty("color"), "color")

)

.addOrder (Order. desc("cat Count ByCol or"))

.addOrder (Order. desc("avgWight"))

dist();

List results = session.createCriteri a(Donmestic.class, "cat")

.createAlias("kittens", "kit")

.setProjection(Projections.projectionList()
.add(Projections.property("cat.nanme"), "catNane")
.add(Projections.property("kit.name"), "kitName")

)

.addOrder (Order. asc("cat Nane"))

.addOrder (Order.asc("kitName"))

dist();

209

Chapter 16. Criteria Queries

You can also use Property. f or Name() to express projections:

List results = session.createCriteria(Cat.cl ass)
.set Proj ection(Property.forNanme("nane"))
.add(Property.forName("col or").eq(Col or. BLACK))
dist();

List results = session.createCriteria(Cat.cl ass)

.setProjection(Projections.projectionList()
.add(Projections.rowCount().as("catCountByCol or"))
.add(Property.forName("weight").avg().as("avgWight"))
.add(Property.forNanme("weight").max().as("maxWei ght"))
.add(Property.forName("color").group().as("color")

)

.addOrder (Order. desc("cat Count ByCol or"))

.addOrder (Order. desc("avgWeight"))

dist();

8. Detached queries and subqueries

The Det achedCriteri a class lets you create a query outside the scope of a session, and then
later execute it using some arbitrary Sessi on.

Det achedCriteria query = DetachedCriteria.ford ass(Cat. cl ass)
.add(Property.forName("sex").eq('F));

Sessi on sessi on R

Transacti on txn = session. begi nTransacti on();

List results =

query. get Execut abl eCriteri a(sessi on). set MaxResul t s(100).1ist();
txn. conmmi t();

session. cl ose();

A Det achedCrit eri a may also be used to express a subquery. Criterion instances involving
subqueries may be obtained via Subqueri es or Property.

Det achedCriteria avgWi ght = DetachedCriteria.ford ass(Cat. cl ass)
.setProjection(Property.forName("weight").avg());
session.createCriteria(Cat.cl ass)
.add(Property.forNane("wei ght). gt (avg\Wei ght))
dist();

Det achedCriteria weights = DetachedCriteria.forC ass(Cat.cl ass)
.setProjection(Property.forName("weight"));
session.createCriteri a(Cat.cl ass)
.add(Subqueries.geAll ("weight", weights))
dist();

210

Queries by natural identifier

Even correlated subqueries are possible:

Det achedCriteria avgWi ght For Sex = DetachedCriteria.ford ass(Cat.cl ass,
"cat 2")

.setProjection(Property.forName("wei ght").avg())

.add(Property.forName("cat2.sex").eqProperty("cat.sex"));
session.createCriteria(Cat.class, "cat")

.add(Property.forNane("wei ght). gt (avg\Wei ght For Sex))

dist();

9. Queries by natural identifier

For most queries, including criteria queries, the query cache is not very efficient, because query
cache invalidation occurs too frequently. However, there is one special kind of query where we
can optimize the cache invalidation algorithm: lookups by a constant natural key. In some
applications, this kind of query occurs frequently. The criteria API provides special provision for
this use case.

First, you should map the natural key of your entity using <nat ur al - i d>, and enable use of the
second-level cache.

<cl ass nanme="User">
<cache usage="read-wite"/>
<id name="id">
<generator class="increment"/>
</id>
<natural -id>
<property nane="nane"/>
<property nane="org"/>
</natural -id>
<property nane="password"/>
</ cl ass>

Note that this functionality is not intended for use with entities with mutable natural keys.

Next, enable the Hibernate query cache.

Now, Restrictions. natural I d() allows us to make use of the more efficient cache algorithm.

session.createCriteria(User.cl ass)
.add(Restrictions.naturalld()
.set ("nanme", "gavin")
.set("org", "hb")
) . set Cacheabl e(t rue)
. uni queResul t () ;

211

212

Chapter 17.

Native SQL

You may also express queries in the native SQL dialect of your database. This is useful if you
want to utilize database specific features such as query hints or the CONNECT keyword in Oracle.
It also provides a clean migration path from a direct SQL/JDBC based application to Hibernate.

Hibernate3 allows you to specify handwritten SQL (including stored procedures) for all create,
update, delete, and load operations.

1. Using a SQLQuery

Execution of native SQL queries is controlled via the SQ_LQuer y interface, which is obtained by
calling Sessi on. creat eSQLQuer y() . The following describes how to use this API for querying.

1.1. Scalar queries

The most basic SQL query is to get a list of scalars (values).

sess. creat eSQLQuer y(" SELECT * FROM CATS").list();
sess. creat eSQLQuery(" SELECT | D, NAME, BI RTHDATE FROM CATS").list();

These will both return a List of Object arrays (Object[]) with scalar values for each column in the
CATS table. Hibernate will use ResultSetMetadata to deduce the actual order and types of the
returned scalar values.

To avoid the overhead of using Resul t Set Met adat a or simply to be more explicit in what is
returned one can use addScal ar ().

sess. creat eSQLQuer y(" SELECT * FROM CATS")
.addScal ar ("1 D', Hi bernate. LONG
.addScal ar (" NAME", Hi bernate. STRI NG
. addScal ar (" Bl RTHDATE", Hi ber nat e. DATE)

This query specified:

« the SQL query string

« the columns and types to return

This will still return Object arrays, but now it will not use Resul t Set Met dat a but will instead
explicitly get the ID, NAME and BIRTHDATE column as respectively a Long, String and a Short

from the underlying resultset. This also means that only these three columns will be returned,
even though the query is using * and could return more than the three listed columns.

It is possible to leave out the type information for all or some of the scalars.

213

Chapter 17. Native SQL

sess. creat eSQLQuery(" SELECT * FROM CATS")
.addScal ar ("1 D', Hi bernate. LONG
. addScal ar (" NAMVE")
. addScal ar (" Bl RTHDATE")

This is essentially the same query as before, but now Resul t Set Met aDat a is used to decide the
type of NAME and BIRTHDATE where as the type of ID is explicitly specified.

How the java.sql.Types returned from ResultSetMetaData is mapped to Hibernate types is
controlled by the Dialect. If a specific type is not mapped or does not result in the expected type
it is possible to customize it via calls to r egi st er H ber nat eType in the Dialect.

1.2. Entity queries

The above queries were all about returning scalar values, basically returning the "raw" values
from the resultset. The following shows how to get entity objects from a native sqgl query via
addEntity().

sess. creat eSQ.Quer y(" SELECT * FROM CATS") . addEntity(Cat. cl ass);
sess. creat eSQLQuery(" SELECT | D, NAME, Bl RTHDATE FROM
CATS") . addEntity(Cat.cl ass);

This query specified:

» the SQL query string

« the entity returned by the query

Assuming that Cat is mapped as a class with the columns ID, NAME and BIRTHDATE the
above queries will both return a List where each element is a Cat entity.

If the entity is mapped with a many- t o- one to another entity it is required to also return this
when performing the native query, otherwise a database specific "column not found" error will
occur. The additional columns will automatically be returned when using the * notation, but we
prefer to be explicit as in the following example for a many- t o- one to a Dog:

sess. creat eSQ.Query (" SELECT | D, NAME, BI RTHDATE, DOG | D FROM
CATS") . addEnti ty(Cat. cl ass);

This will allow cat.getDog() to function properly.

1.3. Handling associations and collections

It is possible to eagerly join in the Dog to avoid the possible extra roundtrip for initializing the
proxy. This is done via the addJoi n() method, which allows you to join in an association or

214

Returning multiple entities

collection.

sess. creat eSQLQuery("SELECT c. 1D, NAME, BI RTHDATE, DOG ID, D ID, D _NAVE FROM
CATS c, DOGS d
VWHERE c¢c.DOG ID = d.D I D")
.addEntity("cat", Cat.class)
.addJoi n("cat. dog");

In this example the returned Cat 's will have their dog property fully initialized without any extra
roundtrip to the database. Notice that we added a alias name ("cat") to be able to specify the
target property path of the join. It is possible to do the same eager joining for collections, e.g. if
the Cat had a one-to-many to Dog instead.

sess. creat eSQLQuery("SELECT | D, NAME, BI RTHDATE, D |ID, D NAME, CAT_|D FROM
CATS c, DOGS d
WHERE c.|D = d. CAT_ID")
.addEntity("cat", Cat.class)
.addJoi n("cat . dogs") ;

At this stage we are reaching the limits of what is possible with native queries without starting to
enhance the sgl queries to make them usable in Hibernate; the problems starts to arise when
returning multiple entities of the same type or when the default alias/column names are not
enough.

1.4. Returning multiple entities

Until now the result set column names are assumed to be the same as the column names
specified in the mapping document. This can be problematic for SQL queries which join multiple
tables, since the same column names may appear in more than one table.

Column alias injection is needed in the following query (which most likely will fail):

sess. creat eSQLQuery("SELECT c.*, m* FROM CATS c, CATS m WHERE c. MOTHER | D
=c.ID")

.addEntity("cat", Cat.class)

.addEntity("nother", Cat.class)

The intention for this query is to return two Cat instances per row, a cat and its mother. This will
fail since there is a conflict of names since they are mapped to the same column names and on
some databases the returned column aliases will most likely be on the form "c.ID", "c.NAME",
etc. which are not equal to the columns specificed in the mappings ("ID" and "NAME").

The following form is not vulnerable to column name duplication:

sess. creat eSQLQuery(" SELECT {cat.*}, {nmother.*} FROM CATS c, CATS m WHERE
c. MOTHER ID = c.|1D")

.addEntity("cat", Cat.class)

.addEntity("nother", Cat.class)

215

Chapter 17. Native SQL

This query specified:

« the SQL query string, with placeholders for Hibernate to inject column aliases

« the entities returned by the query

The {cat.*} and {mother.*} notation used above is a shorthand for "all properties”. Alternatively,

you may list the columns explicity, but even in this case we let Hibernate inject the SQL column
aliases for each property. The placeholder for a column alias is just the property name qualified
by the table alias. In the following example, we retrieve Cats and their mothers from a different

table (cat_log) to the one declared in the mapping metadata. Notice that we may even use the

property aliases in the where clause if we like.

String sgql = "SELECT ID as {c.id}, NAME as {c.nane}, " +
"Bl RTHDATE as {c.birthDate}, MOTHER ID as {c.nother}, {nother.*} "
+

"FROM CAT_LOG ¢, CAT_LOG m WHERE {c.mother} = c.ID";

Li st | oggedCats = sess.createSQ Query(sql)
.addEntity("cat", Cat.class)
.addEntity("mther", Cat.class).list()

1.4.1. Alias and property references

For most cases the above alias injection is needed, but for queries relating to more complex
mappings like composite properties, inheritance discriminators, collections etc. there are some
specific aliases to use to allow Hibernate to inject the proper aliases.

The following table shows the different possibilities of using the alias injection. Note: the alias
names in the result are examples, each alias will have a unique and probably different name
when used.

Description Syntax Example
A simple property {[al i asname] . [pr operNAVEre] {item nane}

A composite {[al i asnan®] . [conpURRENGY s [{prtaperaymarte]dur r ency}, VALUE
property as {item anount. val ue}

Discriminator of an {[al i asnane] . cl asd)l SC as {item cl ass}

entity

All properties of an {[aliasname].*} {item *}

entity

A collection key {[al i asnanme] . key} ORG D as {coll. key}
The id of an {[aliasnanme].id} EMPID as {coll.id}
collection

The elementofan {[al i asnane] . el eneXitD as {col | . el ement}
collection

216

Returning non-managed entities

Description Syntax Example

roperty of the {[al i asnan®] . el eneMAME o deardlyinaatedfent . nane}
element in the

collection

All properties of the {[al i asnane] . el endraalt}. el enent . *}
element in the
collection

All properties of the {[aliasname].*} {coll.*}
the collection

Table 17.1. Alias injection names

1.5. Returning non-managed entities

It is possible to apply a ResultTransformer to native sql queries. Allowing it to e.g. return
non-managed entities.

sess. creat eSQLQuer y(" SELECT NAME, BI RTHDATE FROM CATS")
. set Resul t Tr ansf or ner (Tr ansf or mer s. al i asToBean(Cat DTO. cl ass))

This query specified:

» the SQL query string
* a result transformer

The above query will return a list of Cat DTOwhich has been instantiated and injected the values
of NAME and BIRTHNAME into its corresponding properties or fields.

1.6. Handling inheritance

Native sql queries which query for entities that is mapped as part of an inheritance must include
all properties for the baseclass and all it subclasses.

1.7. Parameters
Native sqgl queries support positional as well as named parameters:

Query query = sess.createSQLQuery("SELECT * FROM CATS WHERE NAME | i ke
?").addEntity(Cat.class);
Li st pusList = query.setString(0, "Pus%).list();

query = sess. createSQ.Query("SELECT * FROM CATS WHERE NAME | i ke
:name") . addEntity(Cat. cl ass);
Li st pusList = query.setString("name", "Pus%).list();

217

Chapter 17. Native SQL

2. Named SQL queries

Named SQL queries may be defined in the mapping document and called in exactly the same
way as a named HQL query. In this case, we do not need to call addEntity().

<sql - query nanme="persons">
<return alias="person" class="eg. Person"/>
SELECT person. NAME AS { per son. nane},
person. AGE AS {person. age},
person. SEX AS {person. sex}
FROM PERSON per son
WHERE per son. NAME LI KE : nanmePatt ern
</ sql - query>

Li st peopl e = sess. get NanedQuer y(" persons")
.setString("nanePattern”, nanmePattern)
. set MaxResul t s(50)
dist();

The <r et ur n-j oi n>and <l oad- col | ecti on> elements are used to join associations and
define queries which initialize collections, respectively.

<sqgl - query nane="personsWth">
<return alias="person" class="eg.Person"/>
<return-join alias="address" property="person. mailingAddress"/>
SELECT person. NAME AS {person. nane},
person. AGE AS {person. age},
person. SEX AS {person. sex},
adddr ess. STREET AS {address. street},
adddress. CI TY AS {address.city},
adddr ess. STATE AS {address. st ate},
adddress. ZI P AS {address. zi p}
FROM PERSON per son
JO N ADDRESS adddr ess
ON person. | D = address. PERSON_| D AND addr ess. TYPE=" MAI LI NG
VWHERE per son. NAME LI KE : nanePatt ern
</ sql - query>

A named SQL query may return a scalar value. You must declare the column alias and
Hibernate type using the <r et ur n- scal ar > element:

<sql - query name="nmySql Query" >
<return-scal ar col um="nane" type="string"/>
<return-scal ar col um="age" type="Ilong"/>
SELECT p. NAME AS nane,
p. AGE AS age,
FROM PERSON p WHERE p. NAME LI KE ' Hi ber %

218

Using return-property to explicitly specify

</ sql - query>

You can externalize the resultset mapping informations in a <r esul t set > element to either
reuse them accross several named queries or through the set Resul t Set Mappi ng() API.

<resul t set nane="per sonAddress" >

<return alias="person" class="eg. Person"/>

<return-join alias="address" property="person. mailingAddress"/>
</resul tset>

<sqgl - query nanme="personsWth" resultset-ref="personAddress">
SELECT person. NAME AS {person. nane},
person. AGE AS {person. age},
per son. SEX AS {person. sex},
adddr ess. STREET AS {address. street},
adddress. CITY AS {address.city},
adddr ess. STATE AS {address. st at e},
adddress. ZI P AS {address. zi p}
FROM PERSON per son
JO N ADDRESS adddr ess
ON person. | D = address. PERSON_| D AND addr ess. TYPE=" MAI LI NG
WHERE per son. NAME LI KE : nanmePatt ern
</ sql - query>

You can alternatively use the resultset mapping information in your hbm files directly in java
code.

Li st cats = sess.createSQQuery(
"select {cat.*}, {kitten.*} fromcats cat, cats kitten where
kitten. ot her = cat.id"
)
. set Resul t Set Mappi ng("cat AndKi tten")
dist();

2.1. Using return-property to explicitly specify column/alias
names

With <r et ur n- pr oper t y> you can explicitly tell Hibernate what column aliases to use, instead
of using the {} -syntax to let Hibernate inject its own aliases.

<sql - query name="nmySql Query" >
<return alias="person" class="eg. Person">
<return-property nane="nane" col um="nyNane"/>
<return-property name="age" col um="nyAge"/>
<return-property name="sex" col um="rmySex"/>
</return>
SELECT person. NAME AS nyNane,
person. AGE AS nyAge,
person. SEX AS nySex,
FROM PERSON person WHERE per son. NAME LI KE : nanme

219

Chapter 17. Native SQL

</ sql - query>

<r et ur n- pr oper t y> also works with multiple columns. This solves a limitation with the
{}-syntax which can not allow fine grained control of multi-column properties.

<sqgl - query nane="or gani zati onCur r ent Enpl oynent s" >
<return alias="enp" class="Enpl oynent">
<return-property nane="sal ary">
<return-col um nanme="VALUE"/ >
<r et ur n- col um nanme=" CURRENCY"/ >
</return-property>
<return-property nane="endDate" col utm="nmyEndDate"/>
</return>
SELECT EMPLOYEE AS {enp. enpl oyee}, EMPLOYER AS {enp. enpl oyer},
STARTDATE AS {enp. startDate}, ENDDATE AS {enp. endDat e},
REG ONCODE as {enp.regi onCode}, EID AS {enp.id}, VALUE, CURRENCY
FROM EMPLOYMENT
WHERE EMPLOYER = :id AND ENDDATE | S NULL
ORDER BY STARTDATE ASC
</ sql - query>

Notice that in this example we used <r et ur n- pr oper t y> in combination with the {} -syntax for
injection. Allowing users to choose how they want to refer column and properties.

If your mapping has a discriminator you must use <r et ur n- di scri ni nat or > to specify the
discriminator column.

2.2. Using stored procedures for querying

Hibernate 3 introduces support for queries via stored procedures and functions. Most of the
following documentation is equivalent for both. The stored procedure/function must return a
resultset as the first out-parameter to be able to work with Hibernate. An example of such a
stored function in Oracle 9 and higher is as follows:

CREATE OR REPLACE FUNCTI ON sel ect Al | Enpl oyment s
RETURN SYS_REFCURSOR
AS
st_cursor SYS REFCURSOR;
BEG N
OPEN st _cursor FOR
SELECT EMPLOYEE, EMPLOYER,
STARTDATE, ENDDATE,
REG ONCODE, EI D, VALUE, CURRENCY
FROM EMPLOYMENT;
RETURN st _cursor;
END;

To use this query in Hibernate you need to map it via a hamed query.

220

column/alias names

<sql - query nane="sel ect Al | Enpl oyees_SP" cal | abl e="true">
<return alias="enp" class="Enpl oynent">
<return-property nane="enpl oyee" col utm="EMPLOYEE"/ >
<return-property nanme="enpl oyer" col um="EMPLOYER"/ >
<return-property nane="start Date" col um="STARTDATE"/ >
<return-property nanme="endDat e" col unm="ENDDATE"/ >
<return-property nanme="regi onCode" col um="REG ONCCDE"/ >
<return-property name="id" colum="El D'/ >
<return-property nane="sal ary">
<return-col um nanme="VALUE"/ >
<r et urn-col um name=" CURRENCY"/ >
</return-property>
</return>
{ ? = call selectAllEnmploynents() }
</ sql - query>

Notice stored procedures currently only return scalars and entities. <r et ur n-j oi n> and
<l oad- col | ecti on> are not supported.

2.2.1. Rules/limitations for using stored procedures

To use stored procedures with Hibernate the procedures/functions have to follow some rules. If
they do not follow those rules they are not usable with Hibernate. If you still want to use these
procedures you have to execute them via sessi on. connecti on() . The rules are different for
each database, since database vendors have different stored procedure semantics/syntax.

Stored procedure queries can't be paged with set Fi r st Resul t () / set MaxResul t s() .

Recommended call form is standard SQL92: { ? = cal| functionName(<paraneters>) } or
{ ? = call procedureName(<paranet er s>}. Native call syntax is not supported.

For Oracle the following rules apply:

» A function must return a result set. The first parameter of a procedure must be an OUT that
returns a result set. This is done by using a SYS_REFCURSCR type in Oracle 9 or 10. In Oracle
you need to define a REF CURSCR type, see Oracle literature.

For Sybase or MS SQL server the following rules apply:

» The procedure must return a result set. Note that since these servers can/will return multiple
result sets and update counts, Hibernate will iterate the results and take the first result that is
a result set as its return value. Everything else will be discarded.

« If you can enable SET NOCOUNT ONin your procedure it will probably be more efficient, but
this is not a requirement.

3. Custom SQL for create, update and delete

Hibernate3 can use custom SQL statements for create, update, and delete operations. The

221

Chapter 17. Native SQL

class and collection persisters in Hibernate already contain a set of configuration time generated
strings (insertsql, deletesql, updatesql etc.). The mapping tags <sql -i nsert >, <sql - del et e>,
and <sgl - updat e> override these strings:

<cl ass nane="Per son">

<id name="id">

<generator class="increnent"/>

</id>

<property nane="nanme" not-null="true"/>

<sql -i nsert > NSERT | NTO PERSON (NAME, |D) VALUES (UPPER(?), ?
)</sql -insert>

<sql - updat e>UPDATE PERSON SET NAME=UPPER(?) WHERE | D=?</sql - updat e>

<sql - del et e>DELETE FROM PERSON WHERE | D=7?</ sql - del et e>
</ cl ass>

The SQL is directly executed in your database, so you are free to use any dialect you like. This
will of course reduce the portability of your mapping if you use database specific SQL.

Stored procedures are supported if the cal | abl e attribute is set:

<cl ass nane="Person">

<id name="id">

<generator class="increment"/>

</id>

<property nane="nane" not-null="true"/>

<sqgl -insert callable="true">{call createPerson (?, ?)}</sql-insert>

<sqgl -del ete callable="true">{? = call del etePerson (?)}</sql-del ete>

<sqgl -updat e cal |l abl e="true">{? = call updatePerson (?, ?)}</sql-update>
</ cl ass>

The order of the positional parameters are currently vital, as they must be in the same sequence
as Hibernate expects them.

You can see the expected order by enabling debug logging for the

or g. hi bernate. persi ster. entity level. With this level enabled Hibernate will print out the
static SQL that is used to create, update, delete etc. entities. (To see the expected sequence,
remember to not include your custom SQL in the mapping files as that will override the
Hibernate generated static sql.)

The stored procedures are in most cases (read: better do it than not) required to return the
number of rows inserted/updated/deleted, as Hibernate has some runtime checks for the
success of the statement. Hibernate always registers the first statement parameter as a numeric
output parameter for the CUD operations:

CREATE OR REPLACE FUNCTI ON updat ePerson (uid I N NUMBER, unane | N VARCHAR2)
RETURN NUMBER | S
BEG N

updat e PERSON
set

222

Custom SQL for loading

NAME = unane,
wher e
I D = uid;

return SQLYRONCOUNT,;

END updat ePer son

4. Custom SQL for loading
You may also declare your own SQL (or HQL) queries for entity loading:

<sqgl - query nane="person">
<return alias="pers" class="Person" | ock-node="upgrade"/>
SELECT NAME AS {pers.nane}, |ID AS {pers.id}
FROM PERSON
WHERE | D=7
FOR UPDATE
</ sql - query>

This is just a named query declaration, as discussed earlier. You may reference this named

query in a class mapping:

<cl ass name="Person">
<id name="id">
<generat or class="increnent"/>

</id>
<property nane="nane" not-null="true"/>
<l oader query-ref="person"/>

</ cl ass>

This even works with stored procedures.

You may even define a query for collection loading:

<set name="enpl oynments" inverse="true">
<key/ >
<one-to-many cl ass="Enpl oynent"/>
<| oader query-ref="enpl oyments"/>
</set>

<sql - query name="enpl oyment s" >
<l oad-col | ection alias="enp" rol e="Person. enpl oynents"/>
SELECT {enp. *}
FROM EMPLOYMENT enp
WHERE EMPLOYER = :i d
ORDER BY STARTDATE ASC, EMPLOYEE ASC
</ sql - query>

223

Chapter 17. Native SQL

You could even define an entity loader that loads a collection by join fetching:

<sqgl - query nane="person">
<return alias="pers" class="Person"/>
<return-join alias="enmp" property="pers.enpl oynents"/>
SELECT NAME AS {pers.*}, {enp.*}
FROM PERSON pers
LEFT OQUTER JO N EMPLOYMENT enp
ON pers. | D = enp. PERSON I D
VHERE | D=7
</ sql - query>

224

Chapter 18.

Filtering data

Hibernate3 provides an innovative new approach to handling data with "visibility" rules. A
Hibernate filter is a global, named, parameterized filter that may be enabled or disabled for a
particular Hibernate session.

1. Hibernate filters

Hibernate3 adds the ability to pre-define filter criteria and attach those filters at both a class and
a collection level. A filter criteria is the ability to define a restriction clause very similiar to the
existing "where" attribute available on the class and various collection elements. Except these
filter conditions can be parameterized. The application can then make the decision at runtime
whether given filters should be enabled and what their parameter values should be. Filters can
be used like database views, but parameterized inside the application.

In order to use filters, they must first be defined and then attached to the appropriate mapping
elements. To define a filter, use the <fi | t er - def / > element within a <hi ber nat e- mappi ng/ >
element:

<filter-def name="nyFilter">
<filter-param name="nyFilterParanm' type="string"/>
</filter-def>

Then, this filter can be attached to a class:

<cl ass nane="nyd ass" ...>

<filter name="nyFilter" condition=":nyFilterParam =
MY_FI LTERED_COLUWN'/ >
</ cl ass>

or, to a collection:

<set ...>

<filter name="myFilter" condition=":nmnmyFilterParam
MY_FI LTERED_COLUWN'/ >
</ set>

or, even to both (or multiples of each) at the same time.

The methods on Sessi on are: enabl eFilter(String filterNane),

get Enabl edFi lter(String filterNane), and di sabl eFilter(String filterName). By
default, filters are not enabled for a given session; they must be explcitly enabled through use of
the Sessi on. enabl edFi | t er () method, which returns an instance of the Fi | t er interface.
Using the simple filter defined above, this would look like:

225

Chapter 18. Filtering data

session. enabl eFilter("nmyFilter").setParaneter("nmyFilterParant,
"some-val ue");

Note that methods on the org.hibernate.Filter interface do allow the method-chaining common
to much of Hibernate.

A full example, using temporal data with an effective record date pattern:

<filter-def name="effectiveDate">
<filter-param nane="asCf Date" type="date"/>
</filter-def>

<cl ass nane="Enpl oyee" ...>

<many-t o- one nanme="departnent" col um="dept id" class="Departnent"/>
<property nane="effectiveStartDate" type="date" colum="eff_start_dt"/>
<property nane="effecti veEndDate" type="date" colum="eff_end_dt"/>

<I--
Note that this assunes non-term nal records have an eff_end_dt set
to
a max db date for sinplicity-sake
S
<filter name="effectiveDate"
condi tion=":asCf Date BETWEEN eff start dt and eff_end dt"/>
</ cl ass>

<cl ass name="Departnent" ...>

<set name="enpl oyees" |azy="true">
<key col um="dept _id"/>
<one-to-many cl ass="Enpl oyee"/ >
<filter name="effectiveDate"
condi tion=":asCf Date BETWEEN eff start dt and eff_end dt"/>
</ set >
</ cl ass>

Then, in order to ensure that you always get back currently effective records, simply enable the
filter on the session prior to retrieving employee data:

Session session = ...;
session. enabl edFilter("effectiveDate").setParanmeter("asCOf Date", new Date());
List results = session. createQuery("from Enpl oyee as e where e.salary >
:target Sal ary")

.setLong("targetSal ary", new Long(21000000))

ist();

In the HQL above, even though we only explicitly mentioned a salary constraint on the results,
because of the enabled filter the query will return only currently active employees who have a
salary greater than a million dollars.

226

Hibernate filters

Note: if you plan on using filters with outer joining (either through HQL or load fetching) be
careful of the direction of the condition expression. Its safest to set this up for left outer joining;
in general, place the parameter first followed by the column name(s) after the operator.

After being defined a filter might be attached to multiple entities and/or collections each with its
own condition. That can be tedious when the conditions are the same each time. Thus
<filter-def/> allows defining a default condition, either as an attribute or CDATA:

<filter-def name="nyFilter" condition="abc > xyz">...</filter-def>
<filter-def name="nmyQt herFilter">abc=xyz</filter-def>

This default condition will then be used whenever the filter is attached to something without
specifying a condition. Note that this means you can give a specific condition as part of the
attachment of the filter which overrides the default condition in that particular case.

227

228

Chapter 19.

XML Mapping

Note that this is an experimental feature in Hibernate 3.0 and is under extremely active
development.

1. Working with XML data

Hibernate lets you work with persistent XML data in much the same way you work with
persistent POJOs. A parsed XML tree can be thought of as just another way to represent the
relational data at the object level, instead of POJOs.

Hibernate supports dom4j as API for manipulating XML trees. You can write queries that
retrieve dom4j trees from the database and have any modification you make to the tree
automatically synchronized to the database. You can even take an XML document, parse it
using dom4j, and write it to the database with any of Hibernate's basic operations: persi st (),
saveOrUpdate(), nerge(), delete(), replicate() (merging is notyet supported).

This feature has many applications including data import/export, externalization of entity data
via JMS or SOAP and XSLT-based reporting.

A single mapping may be used to simultaneously map properties of a class and nodes of an
XML document to the database, or, if there is no class to map, it may be used to map just the
XML.

1.1. Specifying XML and class mapping together
Here is an example of mapping a POJO and XML simultaneously:

<cl ass nane="Account"
t abl e=" ACCOUNTS"
node="account ">

<id nane="account | d"
col um="ACCOUNT_I| D"
node="@d"/ >

<many-t o- one nane="custoner"
col um=" CUSTOVER_| D"
node="cust oner/ @ d"
embed- xm ="f al se"/ >

<property nane="bal ance"

col unm=" BALANCE"
node="bal ance"/ >

</cl ass>

229

Chapter 19. XML Mapping

1.2. Specifying only an XML mapping
Here is an example where there is no POJO class:

<cl ass entity-nane="Account"
t abl e=" ACCOUNTS"
node="account ">

<id name="id"
col utm="ACCOUNT _| D'
node=" @ d"
type="string"/>

<many-t o- one nane="custoner|d"
col utm="CUSTOVER_I| D"
node="cust oner/ @ d"
enmbed- xm ="f al se"
entity-nane="Custoner"/>

<property nane="bal ance"
col um="BALANCE"
node="bal ance"
type="hi g _deci mal "/ >

</cl ass>

This mapping allows you to access the data as a dom4j tree, or as a graph of property
name/value pairs (java Map s). The property names are purely logical constructs that may be
referred to in HQL queries.

2. XML mapping metadata

Many Hibernate mapping elements accept the node attribute. This let's you specify the name of
an XML attribute or element that holds the property or entity data. The format of the node
attribute must be one of the following:

e "el ement - nane" - map to the named XML element

e "@ttribute-nane” - map to the named XML attribute

e "." -map to the parent element

e "el ement - nane/ @t tri bute-nane" - map to the named attribute of the named element

For collections and single valued associations, there is an additional enbed- xm attribute. If
enbed- xm ="t rue", the default, the XML tree for the associated entity (or collection of value
type) will be embedded directly in the XML tree for the entity that owns the association.
Otherwise, if enbed- xnl ="f al se", then only the referenced identifier value will appear in the
XML for single point associations and collections will simply not appear at all.

You should be careful not to leave enbed- xml ="t rue" for too many associations, since XML

230

XML mapping metadata

does not deal well with circularity!

<cl ass nane="Cust oner"
t abl e=" CUSTOVER"
node="cust oner" >

<id nane="id"
col um="CUST | D"
node="@d"/ >

<map nanme="accounts"
node="."
enbed- xm ="t rue" >
<key col um="CUSTOMER | D"
not-nul I ="true"/>
<map- key col umm="SHORT DESC"
node=" @hort - desc"
type="string"/>
<one-to-many entity-name="Account"
enmbed- xm ="f al se"
node="account"/ >
</ map>

<conponent nanme="nane"
node="nane" >
<property name="first Name"
node="fi rst-nane"/>
<property name="initial"
node="initial"/>
<property nane="| ast Nane"
node="1| ast - nane"/ >
</ conponent >

</ cl ass>

in this case, we have decided to embed the collection of account ids, but not the actual account
data. The following HQL query:

from Custoner ¢ left join fetch c.accounts where c.|astNane |ike :|astName

Would return datasets such as this:

<cust oner id="123456789" >
<account short-desc="Savi ngs">987632567</ account >

<account short-desc="Credit Card">985612323</account >
<nane>

<first-name>Gvi n</first-nane>
<initial >A</initial>
<l ast - nane>Ki ng</ | ast - nanme>

</ nane>

</ cust oner >

231

Chapter 19. XML Mapping

If you set enbed- xml ="t rue" on the <one-t o- nany> mapping, the data might look more like
this:

<custoner id="123456789">

<account id="987632567" short-desc="Savi ngs">
<cust oner id="123456789"/ >
<bal ance>100. 29</ bal ance>

</ account >

<account id="985612323" short-desc="Credit Card">
<cust oner id="123456789"/>
<bal ance>- 2370. 34</ bal ance>

</ account >

<name>
<first-name>Gvi n</first-nane>
<initial >A</initial>
<l ast - nane>Ki ng</ | ast - name>

</ name>

</ cust oner >

3. Manipulating XML data

Let's rearead and update XML documents in the application. We do this by obtaining a dom4;j
session:

Docunent doc =;

Sessi on session = factory. openSession();
Sessi on domdj Sessi on = sessi on. get Sessi on(EntityMbde. DOVAJ) ;
Transaction tx = session. begi nTransacti on();

Li st results = domdj Sessi on

.createQuery("from Customer c left join fetch c.accounts where
c.lastName like :I|astNane")

dist();
for (int i=0; i<results.size(); i++) {

//add the customer data to the XM. docunent

El enent custonmer = (Elenment) results.get(i);

doc. add(cust oner) ;

}

tx.conmt();
session. cl ose();

Sessi on session = factory. openSession();
Sessi on domdj Sessi on = sessi on. get Sessi on(EntityMbde. DOWVAJ) ;
Transaction tx = session. begi nTransacti on();

El enent cust = (El enment) dom4j Session. get (" Custoner", custonerld);

232

Manipulating XML data

for (int i=0; i<results.size(); i++) {
El enent custoner = (Elenent) results.get(i);
// change the custoner name in the XML and dat abase
El enent nane = custoner. el ement (" nane");
nane. el ement ("first-name"). set Text (firstNane);
name. el ement ("initial").setText(initial);
nane. el enent ("l ast - nane") . set Text (| ast Nane) ;

}

tx.commit();
sessi on. cl ose();

It is extremely useful to combine this feature with Hibernate's r epl i cat e() operation to
implement XML-based data import/export.

233

234

Chapter 20.

Improving performance

1. Fetching strategies

A fetching strategy is the strategy Hibernate will use for retrieving associated objects if the
application needs to navigate the association. Fetch strategies may be declared in the O/R
mapping metadata, or over-ridden by a particular HQL or Cri teri a query.

Hibernate3 defines the following fetching strategies:

« Join fetching - Hibernate retrieves the associated instance or collection in the same SELECT,
using an QUTER JO N.

» Select fetching - a second SELECT is used to retrieve the associated entity or collection.
Unless you explicitly disable lazy fetching by specifying | azy="f al se", this second select will
only be executed when you actually access the association.

» Subselect fetching - a second SELECT is used to retrieve the associated collections for all
entities retrieved in a previous query or fetch. Unless you explicitly disable lazy fetching by
specifying | azy="f al se", this second select will only be executed when you actually access
the association.

« Batch fetching - an optimization strategy for select fetching - Hibernate retrieves a batch of
entity instances or collections in a single SELECT, by specifying a list of primary keys or
foreign keys.

Hibernate also distinguishes between:

« Immediate fetching - an association, collection or attribute is fetched immediately, when the
owner is loaded.

 Lazy collection fetching - a collection is fetched when the application invokes an operation
upon that collection. (This is the default for collections.)

» "Extra-lazy" collection fetching - individual elements of the collection are accessed from the
database as needed. Hibernate tries not to fetch the whole collection into memory unless
absolutely needed (suitable for very large collections)

» Proxy fetching - a single-valued association is fetched when a method other than the identifier
getter is invoked upon the associated object.

* "No-proxy" fetching - a single-valued association is fetched when the instance variable is
accessed. Compared to proxy fetching, this approach is less lazy (the association is fetched
even when only the identifier is accessed) but more transparent, since no proxy is visible to
the application. This approach requires buildtime bytecode instrumentation and is rarely
necessary.

235

Chapter 20. Improving performance

« Lazy attribute fetching - an attribute or single valued association is fetched when the instance
variable is accessed. This approach requires buildtime bytecode instrumentation and is rarely
necessary.

We have two orthogonal notions here: when is the association fetched, and how is it fetched
(what SQL is used). Don't confuse them! We use f et ch to tune performance. We may use | azy
to define a contract for what data is always available in any detached instance of a particular
class.

1.1. Working with lazy associations

By default, Hibernate3 uses lazy select fetching for collections and lazy proxy fetching for
single-valued associations. These defaults make sense for almost all associations in almost all
applications.

Note: if you set hi ber nat e. def aul t _bat ch_f et ch_si ze, Hibernate will use the batch fetch
optimization for lazy fetching (this optimization may also be enabled at a more granular level).

However, lazy fetching poses one problem that you must be aware of. Access to a lazy
association outside of the context of an open Hibernate session will result in an exception. For
example:

S = sessions. openSessi on();
Transaction tx = s.begi nTransaction();

User u = (User) s.createQuery("from User u where u.nane=:user Nane")
.setString("userNane", userNane). uni queResult();
Map permi ssions = u. getPerm ssions();

tx.conmit();
s.cl ose();

I nt eger accesslLevel = (Integer) perm ssions.get("accounts"); [/ Error!

Since the permissions collection was not initialized when the Sessi on was closed, the collection
will not be able to load its state. Hibernate does not support lazy initialization for detached
objects. The fix is to move the code that reads from the collection to just before the transaction
is committed.

Alternatively, we could use a non-lazy collection or association, by specifying | azy="f al se" for
the association mapping. However, it is intended that lazy initialization be used for almost all
collections and associations. If you define too many non-lazy associations in your object model,
Hibernate will end up needing to fetch the entire database into memory in every transaction!

On the other hand, we often want to choose join fetching (which is non-lazy by nature) instead
of select fetching in a particular transaction. We'll now see how to customize the fetching
strategy. In Hibernate3, the mechanisms for choosing a fetch strategy are identical for
single-valued associations and collections.

236

Single-ended association proxies

1.2. Tuning fetch strategies

Select fetching (the default) is extremely vulnerable to N+1 selects problems, so we might want
to enable join fetching in the mapping document:

<set name="perm ssi ons"
fetch="join">
<key col um="userld"/>
<one-to-many cl ass="Perm ssion"/>
</ set

<many-t o- one name="not her" class="Cat" fetch="join"/>

The f et ch strategy defined in the mapping document affects:

* retrieval via get () orl oad()

retrieval that happens implicitly when an association is navigated

e Criteriaqueries

HQL queries if subsel ect fetching is used

No matter what fetching strategy you use, the defined non-lazy graph is guaranteed to be
loaded into memory. Note that this might result in several immediate selects being used to
execute a particular HQL query.

Usually, we don't use the mapping document to customize fetching. Instead, we keep the
default behavior, and override it for a particular transaction, using | eft join fetch in HQL.
This tells Hibernate to fetch the association eagerly in the first select, using an outer join. In the
Criteriaquery API, you would use set Fet chMbde(Fet chvbde. JO N) .

If you ever feel like you wish you could change the fetching strategy used by get () or | oad(),
simply use a Cri teri a query, for example:

User user = (User) session.createCriteria(User.class)
. set Fet chMode(" per m ssi ons", FetchMde.JO N)
.add(Restrictions.idEq(userld))
. uni queResul t () ;

(This is Hibernate's equivalent of what some ORM solutions call a "fetch plan”.)

A completely different way to avoid problems with N+1 selects is to use the second-level cache.

1.3. Single-ended association proxies

Lazy fetching for collections is implemented using Hibernate's own implementation of persistent

237

Chapter 20. Improving performance

collections. However, a different mechanism is needed for lazy behavior in single-ended
associations. The target entity of the association must be proxied. Hibernate implements lazy
initializing proxies for persistent objects using runtime bytecode enhancement (via the excellent
CGLIB library).

By default, Hibernate3 generates proxies (at startup) for all persistent classes and uses them to
enable lazy fetching of many-t o- one and one- t o- one associations.

The mapping file may declare an interface to use as the proxy interface for that class, with the
pr oxy attribute. By default, Hibernate uses a subclass of the class. Note that the proxied class
must implement a default constructor with at least package visibility. We recommend this
constructor for all persistent classes!

There are some gotchas to be aware of when extending this approach to polymorphic classes,
eg.

<cl ass nane="Cat" proxy="Cat">

</ subcl ass>
</ cl ass>

Firstly, instances of Cat will never be castable to Dorest i cCat, even if the underlying instance
is an instance of Donest i cCat :

Cat cat = (Cat) session.load(Cat.class, id); // instantiate a proxy (does
not hit the db)

if (cat.isDonesticCat()) { /1 hit the db to initialize
t he proxy

DonesticCat dc = (DonesticCat) cat; /1 Error!
}

Secondly, it is possible to break proxy ==.

Cat cat = (Cat) session.load(Cat.class, id); // instantiate a Cat
pr oxy
DonesticCat dc =

(DonesticCat) session.| oad(DonesticCat.class, id); // acquire new
Donest i cCat proxy!
System out . printl n(cat ==dc) ; [/ false

However, the situation is not quite as bad as it looks. Even though we now have two references
to different proxy objects, the underlying instance will still be the same object:

cat.setWeight(11.0); // hit the db to initialize the proxy
Systemout.println(dc.getWight()); // 11.0

238

Initializing collections and proxies

Third, you may not use a CGLIB proxy for afi nal class or a class with any fi nal methods.

Finally, if your persistent object acquires any resources upon instantiation (eg. in initializers or
default constructor), then those resources will also be acquired by the proxy. The proxy class is
an actual subclass of the persistent class.

These problems are all due to fundamental limitations in Java's single inheritance model. If you
wish to avoid these problems your persistent classes must each implement an interface that
declares its business methods. You should specify these interfaces in the mapping file. eg.

<cl ass nanme="Catl nmpl " proxy="Cat">

</ subcl ass>
</ cl ass>

where Cat | npl implements the interface Cat and Donest i cCat | npl implements the interface
Donest i cCat . Then proxies for instances of Cat and Donest i cCat may be returned by | oad()
oriterate(). (Notethat!ist() does notusually return proxies.)

Cat cat = (Cat) session.load(Catlnpl.class, catid);
Iterator iter = session.iterate("fromCatlnpl as cat where
cat.name='fritz'");

Cat fritz = (Cat) iter.next();

Relationships are also lazily initialized. This means you must declare any properties to be of
type Cat, not Cat | npl .

Certain operations do not require proxy initialization

* equal s(), if the persistent class does not override equal s()
» hashCode(), if the persistent class does not override hashCode()
» The identifier getter method

Hibernate will detect persistent classes that override equal s() or hashCode() .

By choosing | azy="no- proxy" instead of the default | azy="pr oxy", we can avoid the
problems associated with typecasting. However, we will require buildtime bytecode
instrumentation, and all operations will result in immediate proxy initialization.

1.4. Initializing collections and proxies

A LazylnitializationException will be thrown by Hibernate if an uninitialized collection or
proxy is accessed outside of the scope of the Sessi on, ie. when the entity owning the collection
or having the reference to the proxy is in the detached state.

Sometimes we need to ensure that a proxy or collection is initialized before closing the Sessi on.

239

Chapter 20. Improving performance

Of course, we can alway force initialization by calling cat . get Sex() or
cat.getKittens().size(), for example. But that is confusing to readers of the code and is not
convenient for generic code.

The static methods Hi bernate.initialize() and H bernate.islnitialized() provide the
application with a convenient way of working with lazily initialized collections or proxies.

Hi bernate.initialize(cat) will force the initialization of a proxy, cat, as long as its Sessi on
is still open. Hi bernate.initialize(cat.getKittens()) has a similar effect for the
collection of kittens.

Another option is to keep the Sessi on open until all needed collections and proxies have been
loaded. In some application architectures, particularly where the code that accesses data using
Hibernate, and the code that uses it are in different application layers or different physical
processes, it can be a problem to ensure that the Sessi on is open when a collection is
initialized. There are two basic ways to deal with this issue:

« In a web-based application, a servlet filter can be used to close the Sessi on only at the very
end of a user request, once the rendering of the view is complete (the Open Session in View
pattern). Of course, this places heavy demands on the correctness of the exception handling
of your application infrastructure. It is vitally important that the Sessi on is closed and the
transaction ended before returning to the user, even when an exception occurs during
rendering of the view. See the Hibernate Wiki for examples of this "Open Session in View"
pattern.

* In an application with a separate business tier, the business logic must "prepare" all
collections that will be needed by the web tier before returning. This means that the business
tier should load all the data and return all the data already initialized to the presentation/web
tier that is required for a particular use case. Usually, the application calls
H bernate.initialize() for each collection that will be needed in the web tier (this call
must occur before the session is closed) or retrieves the collection eagerly using a Hibernate
guery with a FETCH clause or a Fet chMbde. JO Nin Cri t eri a. This is usually easier if you
adopt the Command pattern instead of a Session Facade.

« You may also attach a previously loaded object to a new Sessi on with ner ge() or | ock()
before accessing uninitialized collections (or other proxies). No, Hibernate does not, and
certainly should not do this automatically, since it would introduce ad hoc transaction
semantics!

Sometimes you don't want to initialize a large collection, but still need some information about it
(like its size) or a subset of the data.

You can use a collection filter to get the size of a collection without initializing it:

((Integer) s.createFilter(collection, "select count(*)").list().get(0)
). i ntVal ue()

The creat eFi | ter () method is also used to efficiently retrieve subsets of a collection without

240

Using batch fetching

needing to initialize the whole collection:

s.createFilter(| azyCollection,
"").setFirstResult(0).set MaxResul ts(10).list();

1.5. Using batch fetching

Hibernate can make efficient use of batch fetching, that is, Hibernate can load several
uninitialized proxies if one proxy is accessed (or collections. Batch fetching is an optimization of
the lazy select fetching strategy. There are two ways you can tune batch fetching: on the class
and the collection level.

Batch fetching for classes/entities is easier to understand. Imagine you have the following
situation at runtime: You have 25 Cat instances loaded in a Sessi on, each Cat has a reference
to its owner, a Per son. The Per son class is mapped with a proxy, | azy="t rue" . If you now
iterate through all cats and call get Oaner () on each, Hibernate will by default execute 25
SELECT statements, to retrieve the proxied owners. You can tune this behavior by specifying a
bat ch- si ze in the mapping of Per son:

<cl ass nane="Person" batch-size="10">...</cl ass>

Hibernate will now execute only three queries, the pattern is 10, 10, 5.

You may also enable batch fetching of collections. For example, if each Per son has a lazy
collection of Cat s, and 10 persons are currently loaded in the Sesssi on, iterating through all
persons will generate 10 SELECT s, one for every call to get Cat s() . If you enable batch fetching
for the cat s collection in the mapping of Per son, Hibernate can pre-fetch collections:

<cl ass nane="Person">
<set nanme="cats" batch-size="3">

</ set>
</cl ass>

With a bat ch- si ze of 8, Hibernate will load 3, 3, 3, 1 collections in four SELECT s. Again, the
value of the attribute depends on the expected number of uninitialized collections in a particular
Sessi on.

Batch fetching of collections is particularly useful if you have a nested tree of items, ie. the
typical bill-of-materials pattern. (Although a nested set or a materialized path might be a better
option for read-mostly trees.)

1.6. Using subselect fetching

If one lazy collection or single-valued proxy has to be fetched, Hibernate loads all of them,
re-running the original query in a subselect. This works in the same way as batch-fetching,
without the piecemeal loading.

241

Chapter 20. Improving performance

1.7. Using lazy property fetching

Hibernate3 supports the lazy fetching of individual properties. This optimization technique is
also known as fetch groups. Please note that this is mostly a marketing feature, as in practice,
optimizing row reads is much more important than optimization of column reads. However, only
loading some properties of a class might be useful in extreme cases, when legacy tables have
hundreds of columns and the data model can not be improved.

To enable lazy property loading, set the | azy attribute on your particular property mappings:

<cl ass nane="Docunent " >
<id name="id">
<generator class="native"/>

</id>

<property nane="nanme" not-null="true" |ength="50"/>

<property nane="summary" not-null="true" |ength="200" |azy="true"/>

<property nane="text" not-null="true" |ength="2000" |azy="true"/>
</ cl ass>

Lazy property loading requires buildtime bytecode instrumentation! If your persistent classes are
not enhanced, Hibernate will silently ignore lazy property settings and fall back to immediate
fetching.

For bytecode instrumentation, use the following Ant task:

<target name="instrunent" depends="conpile">
<t askdef name="instrunment"
cl assnanme="or g. hi bernate. t ool . i nstrument . | nstrument Task" >
<cl asspath pat h="${jar.path}"/>
<cl asspat h pat h="%${cl asses.dir}"/>
<cl asspath refid="lib.cl ass.path"/>
</t askdef >

<i nstrunent verbose="true">
<fileset dir="${testclasses.dir}/org/hibernate/auction/nodel ">
<i ncl ude name="*.cl ass"/>
</fileset>
</instrunent>
</target>

A different (better?) way to avoid unnecessary column reads, at least for read-only transactions
is to use the projection features of HQL or Criteria queries. This avoids the need for buildtime
bytecode processing and is certainly a prefered solution.

You may force the usual eager fetching of properties using fetch all properties in HQL.

2. The Second Level Cache

A Hibernate Sessi on is a transaction-level cache of persistent data. It is possible to configure a
cluster or JVM-level (Sessi onFact or y-level) cache on a class-by-class and

242

Cache mappings

collection-by-collection basis. You may even plug in a clustered cache. Be careful. Caches are
never aware of changes made to the persistent store by another application (though they may
be configured to regularly expire cached data).

You have the option to tell Hibernate which caching implementation to use by specifying the
name of a class that implements or g. hi ber nat e. cache. CachePr ovi der using the property

hi ber nat e. cache. provi der _cl ass. Hibernate comes bundled with a number of built-in
integrations with open-source cache providers (listed below); additionally, you could implement
your own and plug it in as outlined above. Note that versions prior to 3.2 defaulted to use
EhCache as the default cache provider; that is no longer the case as of 3.2.

Provider class Cluster Query
Safe Cache
Supported
Hashtable org. hi ber nat e. cache. Hasht abl eCachePemoder yes
(not
intended
for
production
use)
EHCache or g. hi ber nat e. cache. EhCachePr ovi dememory, yes
disk
OSCache org. hi bernat e. cache. GSCachePr ovi dememory, yes
disk

SwarmCacheor g. hi ber nat e. cache. Swar nCachePr ovtldstered yes
(ip (clustered
multicast) invalidation)

JBoss org. hi bernat e. cache. TreeCachePr ovi destered yes yes (clock
TreeCache (ip (replication) sync req.)
multicast),

transactional

Table 20.1. Cache Providers

2.1. Cache mappings
The <cache> element of a class or collection mapping has the following form:

<cache
usage="transactional |[read-wite| nonstrict-read-wite|read-only"
r egi on=" Regi onNang"
i ncl ude="al |l | non-1 azy"

/>

usage (required) specifies the caching strategy: t ransacti onal ,read-wite,

243

Chapter 20. Improving performance

nonstrict-read-witeorread-only

r egi on (optional, defaults to the class or collection role name) specifies the name of the second
level cache region

i ncl ude (optional, defaults to al |) non- | azy specifies that properties of the entity mapped with
l azy="true" may not be cached when attribute-level lazy fetching is enabled

Alternatively (preferrably?), you may specify <cl ass- cache> and <col | ecti on- cache>
elements in hi ber nate. cf g. xm .

The usage attribute specifies a cache concurrency strategy.

2.2. Strategy: read only

If your application needs to read but never modify instances of a persistent class, a read-onl y
cache may be used. This is the simplest and best performing strategy. It's even perfectly safe
for use in a cluster.

<cl ass nane="eg. | mut abl " nut abl e="f al se">
<cache usage="read-only"/>

</cl ass>

2.3. Strategy: read/write

If the application needs to update data, a r ead- wri t e cache might be appropriate. This cache
strategy should never be used if serializable transaction isolation level is required. If the cache
is used in a JTA environment, you must specify the property

hi ber nat e. t ransacti on. manager _| ookup_cl ass, naming a strategy for obtaining the JTA
Transact i onManager . In other environments, you should ensure that the transaction is
completed when Sessi on. cl ose() or Sessi on. di sconnect () is called. If you wish to use this
strategy in a cluster, you should ensure that the underlying cache implementation supports
locking. The built-in cache providers do not.

<cl ass nane="eg.Cat" >
<cache usage="read-wite"/>

<set name="kittens" ... >
<cache usage="read-wite"/>

</ set >
</cl ass>

2.4. Strategy: nonstrict read/write

If the application only occasionally needs to update data (ie. if it is extremely unlikely that two
transactions would try to update the same item simultaneously) and strict transaction isolation is

244

Strategy: transactional

not required, a nonstri ct -read-w it e cache might be appropriate. If the cache is used in a
JTA environment, you must specify hi ber nat e. t ransact i on. manager _| ookup_cl ass. In other
environments, you should ensure that the transaction is completed when Sessi on. cl ose() or
Sessi on. di sconnect () is called.

2.5. Strategy: transactional

The transacti onal cache strategy provides support for fully transactional cache providers
such as JBoss TreeCache. Such a cache may only be used in a JTA environment and you must
specify hi ber nat e. t ransact i on. manager _| ookup_cl ass.

None of the cache providers support all of the cache concurrency strategies. The following table
shows which providers are compatible with which concurrency strategies.

read-only nonstrict-read-wriread-write transactional

Hashtable (not yes yes yes
intended for
production use)

EHCache yes yes yes
OSCache yes yes yes
SwarmCache yes yes

JBoss yes yes

TreeCache

Table 20.2. Cache Concurrency Strategy Support

3. Managing the caches

Whenever you pass an object to save(), updat e() or saveOr Updat e() and whenever you
retrieve an object using | oad(), get (), list(),iterate() orscroll (), that objectis added to
the internal cache of the Sessi on.

When f | ush() is subsequently called, the state of that object will be synchronized with the
database. If you do not want this synchronization to occur or if you are processing a huge
number of objects and need to manage memory efficiently, the evi ct () method may be used to
remove the object and its collections from the first-level cache.

Scrol | abl eResult cats = sess.createQuery("from Cat as cat").scroll(); //a
huge result set
while (cats.next()) {

Cat cat = (Cat) cats.get(0);

doSonet hi ngW t hACat (cat) ;

sess. evict(cat);

245

Chapter 20. Improving performance

The Sessi on also provides a cont ai ns() method to determine if an instance belongs to the
session cache.

To completely evict all objects from the session cache, call Sessi on. cl ear ()

For the second-level cache, there are methods defined on Sessi onFact ory for evicting the
cached state of an instance, entire class, collection instance or entire collection role.

sessi onFactory. evict(Cat.class, catld); //evict a particular Cat

sessi onFactory. evict(Cat.class); //evict all Cats

sessi onFactory. evictCol l ection("Cat.kittens", catld); //evict a particular
collection of kittens

sessi onFactory. evictCol l ection("Cat.kittens"); //evict all kitten

col | ecti ons

The CacheMvde controls how a particular session interacts with the second-level cache.

* CacheMdde. NORMAL - read items from and write items to the second-level cache

e CacheModde. GET - read items from the second-level cache, but don't write to the second-level
cache except when updating data

* CacheMode. PUT - write items to the second-level cache, but don't read from the second-level
cache

* CacheMdde. REFRESH - write items to the second-level cache, but don't read from the
second-level cache, bypass the effect of hi ber nat e. cache. use_ni ni mal _put s, forcing a
refresh of the second-level cache for all items read from the database

To browse the contents of a second-level or query cache region, use the St ati stics API:

Map cacheEntries = sessionFactory. getStatistics()
. get SecondLevel CacheSt ati sti cs(regi onNane)
.getEntries();

You'll need to enable statistics, and, optionally, force Hibernate to keep the cache entries in a
more human-understandable format:

hi ber nat e. generate_statistics true
hi ber nat e. cache. use_structured _entries true

4. The Query Cache

Query result sets may also be cached. This is only useful for queries that are run frequently with
the same parameters. To use the query cache you must first enable it:

246

Understanding Collection performance

hi ber nat e. cache. use_query_cache true

This setting causes the creation of two new cache regions - one holding cached query result
sets (or g. hi ber nat e. cache. St andar dQuer yCache), the other holding timestamps of the most
recent updates to queryable tables (or g. hi ber nat e. cache. Updat eTi mest anpsCache). Note
that the query cache does not cache the state of the actual entities in the result set; it caches
only identifier values and results of value type. So the query cache should always be used in
conjunction with the second-level cache.

Most queries do not benefit from caching, so by default queries are not cached. To enable
caching, call Query. set Cacheabl e(true). This call allows the query to look for existing cache
results or add its results to the cache when it is executed.

If you require fine-grained control over query cache expiration policies, you may specify a
named cache region for a particular query by calling Query. set CacheRegi on().

Li st bl ogs = sess.createQuery("from Bl og bl og where bl og. bl ogger =
: bl ogger™)

.setEntity("bl ogger", bl ogger)

. set MaxResul t s(15)

. set Cacheabl e(true)

. set CacheRegi on("front pages")

dist();

If the query should force a refresh of its query cache region, you should call

Query. set CacheMde(CacheMbde. REFRESH) . This is particularly useful in cases where
underlying data may have been updated via a separate process (i.e., not modified through
Hibernate) and allows the application to selectively refresh particular query result sets. This is a
more efficient alternative to eviction of a query cache region via

Sessi onFactory. evi ct Queries().

5. Understanding Collection performance

We've already spent quite some time talking about collections. In this section we will highlight a
couple more issues about how collections behave at runtime.

5.1. Taxonomy

Hibernate defines three basic kinds of collections:

« collections of values
e one to many associations

* many to many associations

247

Chapter 20. Improving performance

This classification distinguishes the various table and foreign key relationships but does not tell
us quite everything we need to know about the relational model. To fully understand the
relational structure and performance characteristics, we must also consider the structure of the
primary key that is used by Hibernate to update or delete collection rows. This suggests the
following classification:

* indexed collections
* sets

* bags

All indexed collections (maps, lists, arrays) have a primary key consisting of the <key> and

<i ndex> columns. In this case collection updates are usually extremely efficient - the primary
key may be efficiently indexed and a particular row may be efficiently located when Hibernate
tries to update or delete it.

Sets have a primary key consisting of <key> and element columns. This may be less efficient
for some types of collection element, particularly composite elements or large text or binary
fields; the database may not be able to index a complex primary key as efficently. On the other
hand, for one to many or many to many associations, particularly in the case of synthetic
identifiers, it is likely to be just as efficient. (Side-note: if you want SchemaExport to actually
create the primary key of a <set > for you, you must declare all columns as not - nul | ="t rue".)

<i dbag> mappings define a surrogate key, so they are always very efficient to update. In fact,
they are the best case.

Bags are the worst case. Since a bag permits duplicate element values and has no index
column, no primary key may be defined. Hibernate has no way of distinguishing between
duplicate rows. Hibernate resolves this problem by completely removing (in a single DELETE)
and recreating the collection whenever it changes. This might be very inefficient.

Note that for a one-to-many association, the "primary key" may not be the physical primary key
of the database table - but even in this case, the above classification is still useful. (It still
reflects how Hibernate "locates" individual rows of the collection.)

5.2. Lists, maps, idbags and sets are the most efficient
collections to update

From the discussion above, it should be clear that indexed collections and (usually) sets allow
the most efficient operation in terms of adding, removing and updating elements.

There is, arguably, one more advantage that indexed collections have over sets for many to
many associations or collections of values. Because of the structure of a Set , Hibernate doesn't
ever UPDATE a row when an element is "changed”. Changes to a Set always work via | NSERT
and DELETE (of individual rows). Once again, this consideration does not apply to one to many
associations.

248

Bags and lists are the most efficient inverse

After observing that arrays cannot be lazy, we would conclude that lists, maps and idbags are
the most performant (non-inverse) collection types, with sets not far behind. Sets are expected
to be the most common kind of collection in Hibernate applications. This is because the "set"
semantics are most natural in the relational model.

However, in well-designed Hibernate domain models, we usually see that most collections are
in fact one-to-many associations with i nver se="tr ue". For these associations, the update is
handled by the many-to-one end of the association, and so considerations of collection update
performance simply do not apply.

5.3. Bags and lists are the most efficient inverse collections

Just before you ditch bags forever, there is a particular case in which bags (and also lists) are
much more performant than sets. For a collection with i nver se="true" (the standard
bidirectional one-to-many relationship idiom, for example) we can add elements to a bag or list
without needing to initialize (fetch) the bag elements! This is because Col | ecti on. add() or
Col | ection. addAl | () must always return true for a bag or Li st (unlike a Set). This can make
the following common code much faster.

Parent p = (Parent) sess.|oad(Parent.class, id);

Child ¢ = new Child();

c.set Parent (p);

p. get Children().add(c); //no need to fetch the collection!
sess. flush();

5.4. One shot delete

Occasionally, deleting collection elements one by one can be extremely inefficient. Hibernate
isn't completely stupid, so it knows not to do that in the case of an newly-empty collection (if you
called I'i st. cl ear (), for example). In this case, Hibernate will issue a single DELETE and we
are done!

Suppose we add a single element to a collection of size twenty and then remove two elements.
Hibernate will issue one | NSERT statement and two DELETE statements (unless the collection is
a bag). This is certainly desirable.

However, suppose that we remove eighteen elements, leaving two and then add thee new
elements. There are two possible ways to proceed

« delete eighteen rows one by one and then insert three rows

» remove the whole collection (in one SQL DELETE) and insert all five current elements (one by

one)

Hibernate isn't smart enough to know that the second option is probably quicker in this case.
(And it would probably be undesirable for Hibernate to be that smart; such behaviour might
confuse database triggers, etc.)

249

Chapter 20. Improving performance

Fortunately, you can force this behaviour (ie. the second strategy) at any time by discarding (ie.
dereferencing) the original collection and returning a newly instantiated collection with all the
current elements. This can be very useful and powerful from time to time.

Of course, one-shot-delete does not apply to collections mapped i nver se="true".

6. Monitoring performance

Optimization is not much use without monitoring and access to performance numbers.
Hibernate provides a full range of figures about its internal operations. Statistics in Hibernate are
available per Sessi onFact ory.

6.1. Monitoring a SessionFactory

You can access Sessi onFact ory metrics in two ways. Your first option is to call
sessi onFactory. get Stati stics() and read or display the St ati sti cs yourself.

Hibernate can also use JMX to publish metrics if you enable the St ati sti csServi ce MBean.
You may enable a single MBean for all your Sessi onFact ory or one per factory. See the
following code for minimalistic configuration examples:

/1l MBean service registration for a specific SessionFactory

Hasht abl e tb = new Hasht abl e();

tbh. put ("type", "statistics");

tb. put ("sessi onFactory", "nyFi nanci al App");

Obj ect Name on = new Obj ect Name(" hi bernate", th); // MBean object name

StatisticsService stats = new StatisticsService(); // Mean inplenmentation
st ats. set Sessi onFact ory(sessionFactory); // Bind the stats to a

Sessi onFact ory

server.regi sterMBean(stats, on); // Register the Mean on the server

// MBean service registration for all SessionFactory's

Hasht abl e tb = new Hasht abl e();

tbh. put ("type", "statistics");

tb. put ("sessionFactory", "all");

Obj ect Name on = new Obj ect Nane(" hi bernate", tb); // MBean object nane

StatisticsService stats = new StatisticsService(); // Mean inplenentation
server.regi sterMBean(stats, on); // Register the MBean on the server

TODO: This doesn't make sense: In the first case, we retrieve and use the MBean directly. In
the second one, we must give the JNDI name in which the session factory is held before using
it. Use hi ber nat eSt at sBean. set Sessi onFact or yJNDI Name(" my/ JNDI / Nane")

You can (de)activate the monitoring for a Sessi onFact ory

« at configuration time, set hi ber nat e. generate_stati stics tofal se

250

collections

e atruntime: sf.get Statistics().setStatisticsEnabl ed(true) or
hi ber nat eSt at sBean. set St ati sti csEnabl ed(true)

Statistics can be reset programatically using the cl ear () method. A summary can be sent to a
logger (info level) using the | ogSummar y() method.

6.2. Metrics

Hibernate provides a number of metrics, from very basic to the specialized information only
relevant in certain scenarios. All available counters are described in the St ati sti cs interface
API, in three categories:

» Metrics related to the general Sessi on usage, such as number of open sessions, retrieved
JDBC connections, etc.

» Metrics related to he entities, collections, queries, and caches as a whole (aka global
metrics),

 Detailed metrics related to a particular entity, collection, query or cache region.

For exampl,e you can check the cache hit, miss, and put ratio of entities, collections and
queries, and the average time a query needs. Beware that the number of milliseconds is subject
to approximation in Java. Hibernate is tied to the JVM precision, on some platforms this might
even only be accurate to 10 seconds.

Simple getters are used to access the global metrics (i.e. not tied to a particular entity,
collection, cache region, etc.). You can access the metrics of a particular entity, collection or
cache region through its name, and through its HQL or SQL representation for queries. Please
refertothe Statistics,EntityStatistics, CollectionStatistics,

SecondLevel CacheStati stics, and QueryStati stics APl Javadoc for more information. The
following code shows a simple example:

Statistics stats = HibernateUtil.sessionFactory. getStatistics();

doubl e queryCacheHi t Count = stats. getQueryCacheHit Count();
doubl e queryCacheM ssCount = stats.get QieryCacheM ssCount () ;
doubl e queryCacheHi tRatio =
quer yCacheHi t Count / (queryCacheHit Count + queryCacheM ssCount);

log.info("Query Hit ratio:" + queryCacheHitRatio);

EntityStatistics entityStats =
stats.getEntityStatistics(Cat.class.getNanme());
| ong changes =
entityStats. getlnsertCount ()
+ entityStats. get Updat eCount ()
+ entityStats. get Del et eCount () ;
| og.info(Cat.class. get Nane() + " changed " + changes + "tinmes");

251

Chapter 20. Improving performance

To work on all entities, collections, queries and region caches, you can retrieve the list of names
of entities, collections, queries and region caches with the following methods: get Queri es(),
get EntityNames(), get Col | ecti onRol eNames(), and get SecondLevel CacheRegi onNames() .

252

Chapter 21.

Toolset Guide

Roundtrip engineering with Hibernate is possible using a set of Eclipse plugins, commandline
tools, as well as Ant tasks.

The Hibernate Tools currently include plugins for the Eclipse IDE as well as Ant tasks for

reverse engineering of existing databases:

« Mapping Editor: An editor for Hibernate XML mapping files, supporting auto-completion and
syntax highlighting. It also supports semantic auto-completion for class names and
property/field names, making it much more versatile than a normal XML editor.

« Console: The console is a new view in Eclipse. In addition to a tree overview of your console
configurations, you also get an interactive view of your persistent classes and their
relationships. The console allows you to execute HQL queries against your database and
browse the result directly in Eclipse.

« Development Wizards: Several wizards are provided with the Hibernate Eclipse tools; you can
use a wizard to quickly generate Hibernate configuration (cfg.xml) files, or you may even
completely reverse engineer an existing database schema into POJO source files and
Hibernate mapping files. The reverse engineering wizard supports customizable templates.

* Ant Tasks:

Please refer to the Hibernate Tools package and it's documentation for more information.

However, the Hibernate main package comes bundled with an integrated tool (it can even be
used from "inside" Hibernate on-the-fly): SchemaExport aka hbn2ddl .

1. Automatic schema generation

DDL may be generated from your mapping files by a Hibernate utility. The generated schema
includes referential integrity constraints (primary and foreign keys) for entity and collection
tables. Tables and sequences are also created for mapped identifier generators.

You must specify a SQL Di al ect via the hi ber nat e. di al ect property when using this tool, as
DDL is highly vendor specific.

First, customize your mapping files to improve the generated schema.

1.1. Customizing the schema

Many Hibernate mapping elements define optional attributes named | engt h, pr eci si on and
scal e. You may set the length, precision and scale of a column with this attribute.

<property nane="zi p" |ength="5"/>

253

Chapter 21. Toolset Guide

<property nane="bal ance" precision="12" scal e="2"/>

Some tags also accept a not - nul | attribute (for generating a NOT NULL constraint on table
columns) and a uni que attribute (for generating UNI QUE constraint on table columns).

<many-t o- one name="bar" col um="barld" not-null="true"/>

<el enent col um="seri al Nunber" type="1ong" not-null="true" unique="true"/>

A uni que- key attribute may be used to group columns in a single unique key constraint.
Currently, the specified value of the uni que- key attribute is not used to name the constraint in
the generated DDL, only to group the columns in the mapping file.

<many-t o- one name="org" col um="orgld" uni que-key="0Cr gEnpl oyeel d"/>
<property nane="enpl oyeel d" uni que-key="COr gEnpl oyee"/ >

An i ndex attribute specifies the name of an index that will be created using the mapped column
or columns. Multiple columns may be grouped into the same index, simply by specifying the
same index name.

<property nane="| ast Nanme" i ndex="Cust Nanme"/ >
<property nane="first Nane" index="Cust Nane"/>

A f or ei gn- key attribute may be used to override the name of any generated foreign key
constraint.

<many-t o- one name="bar" col um="bar!ld" foreign-key="FKFooBar"/>

Many mapping elements also accept a child <col uim> element. This is particularly useful for
mapping multi-column types:

<property nane="nanme" type="ny.custontypes. Nane"/>
<col um name="last" not-null="true" index="bar _idx" |ength="30"/>
<col um name="first" not-null="true" index="bar_idx" |ength="20"/>
<col um nanme="initial"/>

</ property>

The def aul t attribute lets you specify a default value for a column (you should assign the same
value to the mapped property before saving a new instance of the mapped class).

<property nane="credits" type="integer" insert="false">
<col um nane="credits" default="10"/>
</ property>

254

Customizing the schema

<version nane="version" type="integer" insert="false">
<col um nane="version" default="0"/>
</ property>

The sql - t ype attribute allows the user to override the default mapping of a Hibernate type to
SQL datatype.

<property nane="bal ance" type="float">
<col um nane="bal ance" sql -type="deci mal (13, 3)"/>
</ property>

The check attribute allows you to specify a check constraint.

<property nane="foo" type="integer">
<col um nane="fo0" check="foo > 10"/>
</ pr operty>

<cl ass nane="Foo" tabl e="foos" check="bar < 100.0">

<property nane="bar" type="float"/>

</ cl ass>

Attribute VEIVES Interpretation

| engt h number column length

preci si on number column decimal precision

scal e number column decimal scale

not - nul | true| fal se specfies that the column should be non-nullable

uni que true| fal se specifies that the column should have a unique
constraint

i ndex i ndex_nane specifies the name of a (multi-column) index

uni que- key uni que_key_name specifies the name of a multi-column unique
constraint

f or ei gn- key f orei gn_key_nane | specifies the name of the foreign key constraint
generated for an association, for a <one-t o- one>,
<many-t o- one>, <key>, or <nany-t o- nany>
mapping element. Note that i nver se="true" sides
will not be considered by SchenaExport .

sql -type SQL colum type | overrides the default column type (attribute of
<col urm> element only)

def aul t SQL expression specify a default value for the column

255

Chapter 21. Toolset Guide

Attribute Values Interpretation
check SQL expression create an SQL check constraint on either column or
table

Table 21.1. Summary

The <conment > element allows you to specify comments for the generated schema.

<cl ass nane="Custoner" tabl e="Cur Cust">
<comment >Current custonmers onl y</ conment >

</cl ass>

<property nane="bal ance">
<col um nane="bal ">
<comrent >Bal ance i n USD</ comment >
</ col um>
</ property>

This results in a corment on t abl e or corment on col um statement in the generated DDL
(where supported).

1.2. Running the tool

The SchemaExport tool writes a DDL script to standard out and/or executes the DDL
statements.

java -cp hibernate_classpathsor g. hi ber nat e. t ool . hbn2ddl . SchemaExpor t options
mapping_files

Option Description

--qui et don't output the script to stdout

--drop only drop the tables

--create only create the tables

--text don't export to the database

- - out put =ny_schena. ddl output the ddl script to a file

- - nam ng=eg. MyNami ngSt r at egy select a Nami ngSt r at egy

- -confi g=hi ber nat e. cf g. xni read Hibernate configuration from an XML file

--properties=hi bernate. properties read database properties from a file
--format format the generated SQL nicely in the script

--delimter=; set an end of line delimiter for the script

256

Properties

Table 21.2. schemakxport Command Line Options

You may even embed SchemaExport in your application:

Configuration cfg =;
new SchemaExport (cfg).create(fal se, true);

1.3. Properties

Database properties may be specified

 as system properties with - D<property>
e in hi bernate. properties
 in a named properties file with - - properti es

The needed properties are:

Property Name Description

hi ber nat e. connecti on. dri ver _cl ass jdbc driver class

hi ber nat e. connecti on. ur| jdbc url
hi ber nat e. connecti on. user nane database user
hi ber nat e. connect i on. passwor d user password
hi ber nat e. di al ect dialect

Table 21.3. SchemaExport Connection Properties

1.4. Using Ant

You can call SchemaExport from your Ant build script:

<t arget nanme="schenaexport">
<t askdef nane="schenmexport"
cl assnane="or g. hi ber nat e. t ool . hbn2ddl . SchenmaExport Task"
cl asspat href ="cl ass. pat h"/ >

<schenmaexport

properties="hi bernate. properties"
qui et =" no"
t ext =" no"
dr op="no"
delimter=";"
out put =" schenma- export.sql ">
<fileset dir="src">

<i ncl ude name="**/*_hbm xm "/ >
</fileset>

257

Chapter 21. Toolset Guide

</ schemaexport >
</target>

1.5. Incremental schema updates

The SchemaUpdat e tool will update an existing schema with "incremental” changes. Note that
SchemaUpdat e depends heavily upon the JDBC metadata API, so it will not work with all JDBC
drivers.

java -cp hibernate_classpathsor g. hi ber nat e. t ool . hbn2ddl . SchemaUpdat eoptions
mapping_files

Option Description

--qui et don't output the script to stdout
--text don't export the script to the database
- - nam ng=eg. MyNami ngSt r at egy select a Nani ngSt r at egy

--properties=hi bernate. properties read database properties from a file

- -confi g=hi ber nat e. cf g. xni specify a. cfg. xm file

Table 21.4. schemaupdate Command Line Options

You may embed SchemaUpdat e in your application:

Configuration cfg =;
new SchenmaUpdat e(cf g) . execut e(f al se);

1.6. Using Ant for incremental schema updates
You can call SchenaUpdat e from the Ant script:

<t arget nane="schenaupdat e" >
<t askdef nane="schenaupdat e"
cl assname="or g. hi ber nat e. t ool . hbn2dd| . SchemaUpdat eTask"
cl asspat href ="cl ass. pat h"/>

<schemaupdat e
properti es="hi bernate. properties"
qui et ="no" >
<fileset dir="src">

<i ncl ude nane="**/*_hbm xm "/ >

</fil eset>

</ schemaupdat e>

</target>

258

Using Ant for schema validation

1.7. Schema validation

The SchemaVal i dat or tool will validate that the existing database schema "matches" your
mapping documents. Note that SchenaVal i dat or depends heavily upon the JDBC metadata
API, so it will not work with all JDBC drivers. This tool is extremely useful for testing.

java -cp hibernate classpathsor g. hi ber nat e. t ool . hbn2dd! . SchenaVval i dat or options
mapping_files

Option Description

- - nam ng=eg. MyNani ngSt r at egy select a Nami ngSt r at egy
--properties=hi bernate. properties read database properties from a file

- -confi g=hi ber nat e. cf g. xni specify a . cfg. xn file

Table 21.5. schemaval i dat or Command Line Options

You may embed SchemaVal i dat or in your application:

Configuration cfg =;
new SchemaVal i dat or (cfg).validate();

1.8. Using Ant for schema validation
You can call SchenaVal i dat or from the Ant script:

<t arget nane="schenaval i date">
<t askdef name="schemaval i dat or"
cl assnanme="or g. hi ber nat e. t ool . hbnRddl . SchemaVal i dat or Task"
cl asspat href ="cl ass. path"/ >

<schemaval i dat or
properties="hi bernate. properties">
<fileset dir="src">
<i ncl ude nane="**/*.hbm xm "/ >
</[fileset>
</ schemaupdat e>
</target>

259

260

Chapter 22.

Example: Parent/Child

One of the very first things that new users try to do with Hibernate is to model a parent / child
type relationship. There are two different approaches to this. For various reasons the most
convenient approach, especially for new users, is to model both Par ent and Chi | d as entity
classes with a <one- t o- many> association from Par ent to Chi | d. (The alternative approach is
to declare the Chi | d as a <conposi t e- el enent >.) Now, it turns out that default semantics of a
one to many association (in Hibernate) are much less close to the usual semantics of a parent /
child relationship than those of a composite element mapping. We will explain how to use a
bidirectional one to many association with cascades to model a parent / child relationship
efficiently and elegantly. It's not at all difficult!

1. A note about collections

Hibernate collections are considered to be a logical part of their owning entity; never of the
contained entities. This is a crucial distinction! It has the following consequences:

* When we remove / add an object from / to a collection, the version number of the collection
owner is incremented.

« If an object that was removed from a collection is an instance of a value type (eg, a composite
element), that object will cease to be persistent and its state will be completely removed from
the database. Likewise, adding a value type instance to the collection will cause its state to be
immediately persistent.

« On the other hand, if an entity is removed from a collection (a one-to-many or many-to-many
association), it will not be deleted, by default. This behaviour is completely consistent - a
change to the internal state of another entity should not cause the associated entity to vanish!
Likewise, adding an entity to a collection does not cause that entity to become persistent, by
default.

Instead, the default behaviour is that adding an entity to a collection merely creates a link
between the two entities, while removing it removes the link. This is very appropriate for all sorts
of cases. Where it is not appropriate at all is the case of a parent / child relationship, where the
life of the child is bound to the lifecycle of the parent.

2. Bidirectional one-to-many
Suppose we start with a simple <one- t o- many> association from Par ent to Chi | d.

<set name="chil dren">
<key col um="parent _id"/>
<one-to-many class="Child"/>
</ set >

261

Chapter 22. Example: Parent/Child

If we were to execute the following code

Parent p = :
Child ¢ = new Child();
p. get Chi l dren() . add(c);
sessi on. save(c);
session. flush();

Hibernate would issue two SQL statements:

* an | NSERT to create the record for ¢

e an UPDATE to create the link from p to ¢

This is not only inefficient, but also violates any NOT NULL constraint on the par ent _i d column.
We can fix the nullability constraint violation by specifying not - nul | ="t rue" in the collection

mapping:

<set name="children">

<key colum="parent_id" not-null="true"/>
<one-to-many class="Child"/>
</ set>

However, this is not the recommended solution.

The underlying cause of this behaviour is that the link (the foreign key parent _i d) from p to c is
not considered part of the state of the Chi | d object and is therefore not created in the | NSERT.
So the solution is to make the link part of the Chi | d mapping.

<many-t o-one nanme="parent" col um="parent _id" not-null="true"/>

(We also need to add the par ent property to the Chi | d class.)

Now that the Chi | d entity is managing the state of the link, we tell the collection not to update
the link. We use the i nver se attribute.

<set name="children" inverse="true">
<key col um="parent _id"/>
<one-to-many class="Child"/>

</ set >

The following code would be used to add a new Chi | d

Parent p = (Parent) session.|oad(Parent.class, pid);
Child ¢ = new Child();
c.set Parent (p);

262

Cascading lifecycle

p. get Chil dren() . add(c);
sessi on. save(c);
sessi on. fl ush();

And now, only one SQL | NSERT would be issued!

To tighten things up a bit, we could create an addChi | d() method of Par ent .

public void addChild(Child c) {
c.setParent (this);
chil dren. add(c);

Now, the code to add a Chi | d looks like

Parent p = (Parent) session.|oad(Parent.class, pid);
Child ¢ = new Child();

p. addChi | d(c);

sessi on. save(c);

session. flush();

3. Cascading lifecycle
The explicit call to save() is still annoying. We will address this by using cascades.

<set name="children" inverse="true" cascade="all">
<key col um="parent _id"/>
<one-to-many class="Child"/>

</ set>

This simplifies the code above to

Parent p = (Parent) session.|oad(Parent.class, pid);
Child ¢ = new Child();

p. addChi | d(c);

session. flush();

Similarly, we don't need to iterate over the children when saving or deleting a Par ent . The
following removes p and all its children from the database.

Parent p = (Parent) session.|oad(Parent.class, pid);
sessi on. del et e(p);
session. flush();

However, this code

263

Chapter 22. Example: Parent/Child

Parent p = (Parent) session.|oad(Parent.class, pid);
Child ¢ = (Child) p.getChildren().iterator().next();
p. get Chil dren().renove(c);

c.setParent (null);

session. flush();

will not remove ¢ from the database; it will ony remove the link to p (and cause a NOT NULL
constraint violation, in this case). You need to explicitly del et e() the Chi | d.

Parent p = (Parent) session.|oad(Parent.class, pid);
Child ¢ = (Child) p.getChildren().iterator().next();
p. get Chil dren().renove(c);

sessi on. del ete(c);

session. flush();

Now, in our case, a Chi | d can't really exist without its parent. So if we remove a Chi | d from the
collection, we really do want it to be deleted. For this, we must use
cascade="al | - del et e- or phan"

<set name="children" inverse="true" cascade="all -del et e- or phan">
<key col um="parent _id"/>
<one-to-many class="Child"/>

</ set>

Note: even though the collection mapping specifies i nver se="t rue", cascades are still
processed by iterating the collection elements. So if you require that an object be saved,
deleted or updated by cascade, you must add it to the collection. It is not enough to simply call
set Parent ().

4. Cascades and unsaved-value

Suppose we loaded up a Par ent in one Sessi on, made some changes in a Ul action and wish
to persist these changes in a new session by calling updat e() . The Par ent will contain a
collection of childen and, since cascading update is enabled, Hibernate needs to know which
children are newly instantiated and which represent existing rows in the database. Lets assume
that both Par ent and Chi | d have genenerated identifier properties of type Long. Hibernate will
use the identifier and version/timestamp property value to determine which of the children are
new. (See Section 7, “Automatic state detection”.) In Hibernate3, it is no longer necessary to
specify an unsaved- val ue explicitly.

The following code will update par ent and chi | d and insert newChi | d.

/I parent and child were both | oaded in a previous session
parent . addChi | d(chil d);

Child newChild = new Child();

par ent . addChi | d(newChi | d) ;

sessi on. updat e(parent) ;

session. flush();

264

Conclusion

Well, that's all very well for the case of a generated identifier, but what about assigned
identifiers and composite identifiers? This is more difficult, since Hibernate can't use the
identifier property to distinguish between a newly instantiated object (with an identifier assigned
by the user) and an object loaded in a previous session. In this case, Hibernate will either use
the timestamp or version property, or will actually query the second-level cache or, worst case,
the database, to see if the row exists.

5. Conclusion

There is quite a bit to digest here and it might look confusing first time around. However, in
practice, it all works out very nicely. Most Hibernate applications use the parent / child pattern in
many places.

We mentioned an alternative in the first paragraph. None of the above issues exist in the case
of <conposi t e- el enent > mappings, which have exactly the semantics of a parent / child
relationship. Unfortunately, there are two big limitations to composite element classes:
composite elements may not own collections, and they should not be the child of any entity
other than the unique parent.

265

266

Chapter 23.

Example: Weblog Application

1. Persistent Classes

The persistent classes represent a weblog, and an item posted in a weblog. They are to be
modelled as a standard parent/child relationship, but we will use an ordered bag, instead of a
set.

package eg;
i mport java.util.List;

public class Blog {
private Long _id;
private String _name;
private List _itens;

public Long getld() {
return _id;

}

public List getltems() {
return _itens;

}

public String getNane() {
return _nane;

}

public void setld(Long |ongl) {
_id = 1longl;

}

public void setltenms(List list) {
_items = list;

}

public void setNane(String string) {
_nane = string;

}

package eg;

i mport java.text. Dat eFormat;
i mport java.util.Cal endar;

public class Blogltem {
private Long _id;
private Cal endar _dateti nme;
private String _text;
private String _title;
private Bl og _bl og;

public Blog getBlog() {
return _bl og;

}
public Cal endar getDatetine() {

267

Chapter 23. Example: Weblog Application

return _datetine;

}

public Long getld() {
return _id;

}

public String getText() {
return _text;

}

public String getTitle() {
return _title;

}

public void setBl og(Bl og bl og) {
_blog = bl og;

}

public void setDatetine(Cal endar cal endar) {
_datetine = cal endar

}

public void setld(Long |ongl) {
_id = 1longl;

}

public void setText(String string) {
_text = string;

}

public void setTitle(String string) {
_title = string;

}

2. Hibernate Mappings
The XML mappings should now be quite straightforward.

<?xm version="1.0""?>

<! DOCTYPE hi ber nat e- mappi ng PUBLI C
"-// Hi bernat e/ H bernate Mappi ng DTD 3. 0// EN'
"http://hibernate. sourcef orge. net/ hi ber nat e- mappi ng- 3. 0. dt d" >

<hi ber nat e- mappi ng package="eg">
<cl ass

nanme=" Bl og"
t abl e=" BLOGS" >

<id
nanme="i d"
col um="BLOG | D'>
<generator class="native"/>
</id>
<property

nane="nanme"
col unm=" NAME"

268

Hibernate Mappings

not - nul I ="t rue"
uni que="true"/>

<bag
name="itens"
i nverse="true"
or der - by="DATE_TI VE"
cascade="al | ">

<key col um="BLOG | D'/ >
<one-to-many cl ass="Bl oglteni/>

</ bag>
</cl ass>

</ hi ber nat e- mappi ng>

<?xm version="1.0"?>

<! DOCTYPE hi ber nat e- mappi ng PUBLI C
"-// Hi bernat e/ H bernate Mappi ng DTD 3. 0// EN'
"http://hibernate. sourceforge. net/ hi ber nat e- mappi ng- 3. 0. dt d" >

<hi ber nat e- mappi ng package="eg">

<cl ass
nanme=" Bl ogl t ent
t abl e="BLOG | TEMS"
dynami c- updat e="true" >

<id
name="i d"
col um="BLOG_| TEM | D' >
<generator class="native"/>
</id>
<property
name="title"
col umm="TI TLE"
not-nul |l ="true"/>
<property
nane="t ext"
col um="TEXT"
not-nul |l ="true"/>
<property

name="dat eti ne"
col um="DATE_TI ME"
not-nul |l ="true"/>

<many-t o- one
nanme=" bl og"

269

Chapter 23. Example: Weblog Application

col um="BLOG_| D'
not-null ="true"/>

</ cl ass>

</ hi ber nat e- nappi ng>

3. Hibernate Code

The following class demonstrates some of the kinds of things we can do with these classes,
using Hibernate.

package eg;

i mport java.util.Arraylist;
i nport java.util.Cal endar;
i mport java.util.lterator;
i mport java.util.List;

i mport org. hi bernate. H ber nat eExcepti on;

i mport org. hi bernate. Query;

i mport org. hi bernat e. Sessi on;

i mport org. hi bernate. Sessi onFact ory;

i mport org. hi bernate. Transacti on;

i mport org. hi bernate.cfg. Configuration;

i nport org. hi bernate.tool.hbn2ddl . SchemaExport ;

public class Bloghain {
private Sessi onFactory _sessions;

public void configure() throws Hi bernateException {
_sessions = new Configuration()
. addd ass(Bl og. cl ass)
. addd ass(Bl ogltem cl ass)
. bui | dSessi onFactory();

}

public void exportTabl es() throws Hi bernateException {
Configuration cfg = new Confi guration()
. addd ass(Bl og. cl ass)
.addd ass(Bl ogltem cl ass) ;
new SchenmaExport(cfg).create(true, true);

}

public Blog createBl og(String nanme) throws Hi bernateException {

Bl og bl og = new Bl og();
bl og. set Nane(nane) ;
bl og. setltems(new ArrayList());

Sessi on session = _sessions. openSessi on();
Transaction tx = null;
try {

270

Hibernate Code

tXx = session. begi nTransaction();
sessi on. per si st (bl og);
tx.commt();

}

catch (H bernat eException he) {
if (tx!'=null) tx.rollback();

t hrow he;
}
finally {

sessi on. cl ose();
}

return bl og;

public Bl ogltem createBl ogltem Bl og blog, String title, String text)
t hr ows Hi ber nat eExcepti on {

Bl ogltemitem = new Bl ogltem();
itemsetTitle(title);

item set Text (text);

i tem set Bl og(bl og);

item set Dateti ne(Cal endar. getl nstance());
bl og. getltenms().add(item;

Sessi on session = _sessions. openSessi on();
Transaction tx = null;
try {

tXx = session. begi nTransaction();
sessi on. updat e(bl og) ;
tx.conmt();

}

catch (H bernat eException he) {
if (tx!'=null) tx.rollback();

t hrow he;
}
finally {

sessi on. cl ose();
}

return item

public Bl ogltem createBl ogltem Long blogid, String title, String text)
t hrows Hi ber nat eExcepti on {

Bl ogltemitem = new Bl ogltem();
itemsetTitle(title);

item set Text (text);

item set Dateti ne(Cal endar. getl nstance());

Sessi on session = _sessions. openSessi on();
Transaction tx = null;
try {

tXx = session. begi nTransaction();

Bl og bl og = (Bl og) session. | oad(Bl og.cl ass, bl ogid);
i tem set Bl og(bl og);

bl og. getltens().add(item;

tx.conmt();

271

Chapter 23. Example: Weblog Application

}
catch (Hi bernat eException he) {

if (tx!=null) tx.rollback();

t hr ow he;
}
finally {

sessi on. cl ose();
}

return item

public void updateBl oglten(Blogltemitem String text)
t hrows Hi ber nat eExcepti on {

item set Text (text);

Sessi on session = _sessions. openSessi on();
Transaction tx = null;
try {

tx = session. begi nTransaction();
sessi on. update(item;
tx.conmt();

}

catch (H bernat eException he) {
if (tx!'=null) tx.rollback();

t hr ow he;
}
finally {

sessi on. cl ose();
}

public void updateBl ogltemLong item d, String text)
t hrows Hi ber nat eExcepti on {

Sessi on session = _sessi ons. openSessi on();
Transaction tx = null;
try {

tXx = session. begi nTransaction();
Blogltemitem = (Bloglten) session.|load(Blogltemclass, itemd);
item set Text (text);
tx.conmit();
}
catch (H bernat eException he) {
if (tx!'=null) tx.rollback();

t hr ow he;
}
finally {

sessi on. cl ose();
}

public List |istAllBl ogNamesAndltemCount s(int nax)
t hrows Hi ber nat eExcepti on {

Sessi on session = _sessions. openSessi on();
Transaction tx = null;

272

Hibernate Code

List result = null
try {
tx = session. begi nTransacti on();
Query g = session. createQuery(
"sel ect blog.id, blog.nane, count(blogltem " +
"fromBlog as blog " +
"l eft outer join blog.itens as blogltem" +
"group by bl og.name, blog.id " +
"order by max(bl ogltem datetinme)"
)
g. set MaxResul t s(max) ;
result = qg.list();
tx.conmt();
}
catch (Hi bernateException he) {
if (tx!=null) tx.rollback();

t hr ow he
}
finally {
sessi on. cl ose();
}

return result;

}

public Bl og get Bl ogAndAl | I t ens(Long bl ogi d)
t hrows Hi ber nat eException {

Sessi on session = _sessi ons. openSessi on();
Transaction tx = null
Bl og bl og = null
try {
tX = session. begi nTransaction();
Query g = session. createQuery(
"fromBlog as blog " +
"left outer join fetch blog.items " +
"where blog.id = :blogid"
)
g. set Paranet er (" bl ogi d", bl ogi d);
blog = (Blog) g.uniqueResult();
tx.conmt();
}
catch (Hi bernateException he) {
if (tx!'=null) tx.rollback();

t hr ow he
}
finally {
sessi on. cl ose();
}

return bl og;

}
public List |istBlogsAndRecentltens() throws Hi bernat eException {

Sessi on session = _sessi ons. openSessi on();
Transaction tx = null
List result = null

try {

273

Chapter 23. Example: Weblog Application

tXx = session. begi nTransaction();

Query g = session. createQuery(
"fromBlog as blog " +
"inner join blog.itens as blogltem" +
"where bl ogltem dateti me > : m nDate"

DE

Cal endar cal = Cal endar. getlnstance();
cal .rol | (Cal endar. MONTH, fal se);
g. set Cal endar (" m nDate", cal);

result = qg.list();
tx.conmt();

}

catch (H bernat eException he) {
if (tx!'=null) tx.rollback();

t hr ow he
}
finally {
sessi on. cl ose();
}

return result;

274

Chapter 24.

Example: Various Mappings

This chapters shows off some more complex association mappings.

1. Employer/Employee

The following model of the relationship between Enpl oyer and Enpl oyee uses an actual entity
class (Enpl oynent) to represent the association. This is done because there might be more
than one period of employment for the same two parties. Components are used to model
monetary values and employee names.

Employes

Name

Emplover ol o Employment -
-id : long -startDate : Date .
-hame : String -endDate : Date +employee
+getldl : lang -id : long
+setldi_id:longy +yettartbated : Date
+aetNamed : String +ietStartDatel_startDate:Date)
+setMamel_name:String) +getEndDated : Date
+setEndDatei_endDate Datel
+aetHourlyRated : Monetopsimount
+setHourlyRatelrate:MonetoryAmaunt)
+getldd : long
+setld_id:long)
+hourlyRatg

+getEmployerd : Employer
+setEmploveriemp:Employer
+aetEmployeed : Emplovee
+setEmployeeiempEmployes

-id : long
~taxfileNumber : String

~firstName : String

+getNamen : Name
+setilameiname Mame)

+getldd : long

+setldiid:long

+getTaxfileMumberd : String
+setTaxfileNumber_taxfileNumberString

Heres a possible mapping document:

<hi ber nat e- mappi ng>

MonetorpAmount

-amount : BigDecimal
—currency : Currency

+getAmounti ; BigDecimal
+setAmounti_amount:BigDecimal
+getCurrencyd @ Currency

+setCurrencyl_currency:Currencyd

<cl ass nane="Enpl oyer" tabl e="enpl oyers">
<id name="id">
<generat or cl ass="sequence">

<par am nane="sequence" >enpl oyer i d_seq</ par an®>
</ gener at or >

</id>

<property nane="nane"/>

</ cl ass>

<cl ass nane="Enpl oynent" tabl e="enpl oynent peri ods" >

<id name="id">

<gener at or cl ass="sequence">
<par am nane="sequence" >enpl oynent _i d_seq</ par an>
</ gener at or >

</id>

<property nane="startDate" colum="start_date"/>
<property nane="endDate" col utm="end_date"/>

+namel initial : char
—lastHame : String

+getFirstamed : String
+setFirstMamel_firstName:String)
+getlnitiald : char
+setlnitialinitial:chan
+getlastNamel : String
+setlastNamel_lastNameString

<conponent name="hourl yRate" cl ass="Monet aryAnmount" >
<property nanme="anount">

<col um name="hourly_rate" sqgl-type="NUMERI C(12,

</ property>

<property name="currency"

</ conponent >

| engt h="12"/>

2)" 1>

275

Chapter 24. Example: Various Mappings

<many-t o- one nanme="enpl oyer" col um="enpl oyer i d" not-null="true"/>
<many-t o- one nanme="enpl oyee" col um="enpl oyee_i d" not-null="true"/>
</ cl ass>

<cl ass nane="Enpl oyee" tabl e="enpl oyees" >
<id name="id">
<generat or cl ass="sequence">
<par am nane="sequence" >enpl oyee_i d_seq</ par an»
</ gener at or >
</id>
<property nane="taxfil eNunmber"/>
<component nane="nanme" cl ass="Nanme">
<property nane="first Nane"/>
<property nane="initial"/>
<property nane="I| ast Nane"/ >
</ conponent >
</ cl ass>

</ hi ber nat e- mappi ng>

And heres the table schema generated by SchemaExport .

create table enployers (
id BIG@ NT not null,
nane VARCHAR(255),
primary key (id)

)

create tabl e enpl oynent _periods (
id BIG NT not null,
hourly_rate NUMVERI C(12, 2),
currency VARCHAR(12),
enpl oyee_id BIG NT not null,
enpl oyer _id BIG NT not null,
end_dat e Tl MESTAMP,
start date TI MESTAMP,
primary key (id)

)

create tabl e enpl oyees (
id BIG@ NT not null,
firstName VARCHAR(255),
initial CHAR(1),
| ast Nane VARCHAR(255),
taxfil eNunmber VARCHAR(255),
primary key (id)

)

alter table enpl oynment_peri ods

add constraint enpl oynment _peri odsFKO foreign key (enployer_id)
ref erences enpl oyers
alter table enpl oynent _peri ods

add constraint enpl oyment _peri odsFK1 foreign key (enployee_id)

276

Author/Work

ref erences enpl oyees

create sequence enpl oyee_i d_seq
create sequence enpl oynent _i d_seq
create sequence enpl oyer _id_seq

2. Author/Work

Consider the following model of the relationships between Wr k, Aut hor and Per son. We
represent the relationship between Wor k and Aut hor as a many-to-many association. We
choose to represent the relationship between Aut hor and Per son as one-to-one association.
Another possibility would be to have Aut hor extend Per son.

Wark Author Persan

-id : long -id : long -id : long
—title : String 0.% 0. | _alias : String —name : String
+getldd : long Hewwarkes +authorg +9et1d0 : long +persof [Foetldd :long
+setld_id:lang) +setldi_id:lang +setldi_id:lang
+gethythorsd ; Set +getorksi ; Set +getMamed ; String
+sethuthorstemployeesSen +setiarkslemployers:Set +setNamel_name:String
+getTitled : String +getPersonh : Persan
+setTitle_title:String +setPersonipersan:Person

+gethliash : String

+:ethliasi_alias:String

Sahg Book
-tempa : float ~text :int
-genre : 5tring

+getTextn: int
+gethenred 2 5tring +setTexti_textiny
+settenrel_genrestring

+getTempod : float
+setTempoi_tempo:float)

The following mapping document correctly represents these relationships:

<hi ber nat e- mappi ng>
<cl ass nanme="Wor k" tabl e="works" discri m nator-val ue="W >

<id name="id" colum="id">
<generator class="native"/>
</id>
<di scri m nator colum="type" type="character"/>

<property nane="title"/>
<set name="aut hors" tabl e="aut hor_wor k">

<key col um name="wor k_i d"/>

<many-t o- many cl ass="Aut hor" col um nane="aut hor _i d"/>
</ set>

<subcl ass nane="Book" di scri m nator-val ue="B">
<property nane="text"/>
</ subcl ass>

277

Chapter 24. Example: Various Mappings

<subcl ass nane="Song" di scri m nator-val ue="S">
<property nane="tenpo"/>
<property nane="genre"/>
</ subcl ass>
</ cl ass>

<cl ass nane="Aut hor" t abl e="aut hors" >

<id nane="id" colum="id">

<l-- The Author nust have the sane identifier as the Person -->
<gener at or cl ass="assi gned"/ >
</id>

<property nane="alias"/>
<one-t o- one nane="person" constrai ned="true"/>

<set name="wor ks" tabl e="aut hor_work" inverse="true">
<key col um="aut hor _id"/>
<many-t o- many cl ass="Work" col um="work_id"/>

</ set >

</cl ass>

<cl ass nane="Person" tabl e="persons">
<id name="id" col um="id">
<generator class="native"/>
</id>
<property nane="nane"/>
</ cl ass>

</ hi ber nat e- nappi ng>

There are four tables in this mapping. wor ks, aut hor s and per sons hold work, author and
person data respectively. aut hor _wor k is an association table linking authors to works. Heres
the table schema, as generated by SchemaExport .

create table works (
id BIA NT not null generated by default as identity,
tenmpo FLOAT,
genr e VARCHAR(255),
text | NTECER,
title VARCHAR(255),
type CHAR(1) not null,
primary key (id)
)

create tabl e author_work (

author _id BIA NT not null,

work id BIG NT not null,

primary key (work_id, author_id)
)

create table authors (

278

Customer/Order/Product

id BIA NT not null generated by default as identity,
al i as VARCHAR(255),
primary key (id)

create table persons (
id BIANT not null generated by default as identity,
nane VARCHAR(255),
primary key (id)

alter table authors

add constraint aut horsFKO foreign key (id) references persons
alter tabl e author_work

add constrai nt author_wor kFKO foreign key (author_id) references authors
alter table author_work

add constraint aut hor_wor kFK1 foreign key (work_id) references works

3. Customer/Order/Product

Now consider a model of the relationships between Cust oner, Or der and Li nel t emand

Pr oduct . There is a one-to-many association between Cust oner and O der, but how should we
represent Or der / Li nel t em/ Product ? I've chosen to map Li nel t emas an association class
representing the many-to-many association between O der and Pr oduct . In Hibernate, this is
called a composite element.

Custamer Order Lineltem Product
- 0. — 1.% — 0. -

-id : long -id : lang -quantity : int -id : lang
-hame : 5tring +customer +orders [-date : Date Hlinelterfis |FaetQuantityt ; int +pr0dtﬂ -serialumber : String
+aetldo : long +aetldd : long +setuantityl_quantity:int +aetldd : long
+setld(_id:long +setldi_id:long) +getProductd ; Product +setld{_id:long
+getMamen : String +getlineltemsi ; List +setProductiproduct:Product) +aetierialMumberd : String
+setNamei_name:String +setlineltemsilineltems:List +setSerialNumber_serialNumber:String
+getdrdersi ; Set +getCustomerd : Customer
+setOrdersiorders:Set) +setCustomericustomer:Customen

+gethated : Date

+setbate_date:Datel

The mapping document:

<hi ber nat e- mappi ng>

<cl ass nane="Custoner" tabl e="custoners">
<id name="id">
<generator class="native"/>
</id>
<property nane="nane"/>
<set nane="orders" inverse="true">
<key col um="cust oner _i d"/>
<one-to-many class="Order"/>
</ set >
</ cl ass>

<cl ass nane="Order" tabl e="orders">
<id nane="id">
<generator class="native"/>

279

Chapter 24. Example: Various Mappings

</id>
<property nane="date"/>
<many-t o- one nanme="custonmer" col um="custoner_id"/>

<list nane="lineltens" table="line itens">
<key col um="order _id"/>
<list-index colum="Iline_nunber"/>

<conposi te-el ement cl ass="Lineltent>
<property nane="quantity"/>
<many-t o- one name="product" col um="product _id"/>
</ conposi t e- el emrent >
</list>
</ cl ass>

<cl ass nane="Product" tabl e="products">
<id name="id">
<generator class="native"/>
</id>
<property nane="seri al Nunber"/>
</ cl ass>

</ hi ber nat e- mappi ng>

custonmers, orders, | ine_itens and product s hold customer, order, order line item and
product data respectively. | i ne_i t ens also acts as an association table linking orders with
products.

create table custoners (
id BIANT not null generated by default as identity,
name VARCHAR(255),
primary key (id)

)

create table orders (
id BIANT not null generated by default as identity,
custoner _id Bl G NT,
dat e TI MESTAMP,
primary key (id)
)

create table line_itens (
| i ne_nunber | NTEGER not nul |,
order_id BIG NT not null,
product _id Bl G NT,
quantity | NTEGER,
primary key (order_id, |ine_nunber)

)

create tabl e products (
id BIG NT not null generated by default as identity,
seri al Number VARCHAR(255),
primary key (id)

)

alter table orders

280

Miscellaneous example mappings

add constraint ordersFKO foreign key (custoner_id) references custoners
alter table line_itens

add constraint line_itensFKO foreign key (product_id) references
product s
alter table line_itens

add constraint |line_itemsFKL foreign key (order_id) references orders

4. Miscellaneous example mappings

These examples are all taken from the Hibernate test suite. You will find many other useful
example mappings there. Look in the t est folder of the Hibernate distribution.

TODO: put words around this stuff

4.1. "Typed" one-to-one association

<cl ass nane="Person">
<id nane="nane"/ >
<one-t o-one nanme="address"
cascade="al | ">
<f or mul a>nane</ f or nul a>
<f or mul a>' HOVE' </ f or nul a>
</ one-t 0- one>
<one-t o- one nanme="rmai |l i ngAddr ess"
cascade="al | ">
<f or mul a>nane</ f or nul a>
<f or mul a>' MAI LI NG </ f or mul a>
</ one-t 0- one>
</ cl ass>

<cl ass nanme="Addr ess" batch-si ze="2"
check="addressType in (' MAILING, 'HOWE ,6 'BUSINESS)">
<conposite-id>
<key- many-t o- one nane="person"
col utm="per sonNang"/ >
<key- property nane="type"
col um="addr essType"/ >
</ conposi te-id>
<property nane="street" type="text"/>
<property nane="state"/>
<property nane="zip"/>
</ cl ass>

4.2. Composite key example

<cl ass nane="Cust oner" >

<id name="custoner|d"

| engt h="10">

<generat or cl ass="assi gned"/>
</id>

281

Chapter 24. Example: Various Mappings

<property nane="nane" not-null="true" |ength="100"/>
<property nane="address" not-null="true" |ength="200"/>

<list name="orders"
i nverse="true"
cascade="save- updat e" >
<key col um="custonerld"/>
<i ndex col um="or der Nunber"/ >
<one-to-many class="Order"/>
</list>

</ cl ass>

<cl ass nane="Order" tabl e="CustonerOrder" |azy="true">
<synchroni ze tabl e="Linelteni/>
<synchroni ze tabl e="Product"/ >

<conposite-id nane="id"
cl ass="Order $1 d" >
<key-property nanme="custonerld" |ength="10"/>
<key- property nane="or der Nunber"/ >
</ conposi te-id>

<property name="order Dat e"
t ype="cal endar _dat e"
not - nul I ="true"/>

<property nane="total ">
<f or nul a>
(select sum(li.quantity*p.price)
fromLineltemli, Product p
where |i.productld = p.productld
and |i.custonerld = custonerld
and |i.order Number = orderNunber)
</ formul a>
</ property>

<many-t o-one nane="custoner"
col um="cust oner | d"
i nsert="fal se"
updat e="f al se"
not-nul I ="true"/>

<bag name="lineltens"
fetch="joi n"
i nverse="true"
cascade="save- updat e" >
<key>
<col um nane="custoner| d"/>
<col um nane="or der Nunber"/ >
</ key>
<one-to-many cl ass="Linelteni/>
</ bag>

</ cl ass>

282

Many-to-many with shared composite key

<cl ass nanme="Lineltent >

<conposi te-id name="id"
cl ass="Li nel tensl d">
<key- property name="customnerld" |ength="10"/>
<key- property nanme="order Nunber"/>
<key- property nanme="productld" |ength="10"/>
</ conposi te-id>

<property nane="quantity"/>

<many-t o- one nanme="order"
i nsert="fal se"
updat e="f al se"
not - nul I ="true">
<col um nanme="cust oner|d"/>
<col um nane="or der Nunber "/ >
</ many-t o- one>

<many-t o- one nanme="product"
i nsert="fal se"
updat e="f al se"
not - nul I ="t rue"
col um="product | d"/>

</ cl ass>

<cl ass nane="Product" >
<synchroni ze tabl e="Li nelteni/>

<i d nanme="product|d"

| engt h="10">

<generator cl ass="assi gned"/>
</id>

<property nane="descri pti on"

not - nul I ="t rue"

| engt h="200"/ >
<property nane="price" |ength="3"/>
<property nane="nunber Avai |l abl e"/ >

<property nane="nunber Or der ed" >
<f or nul a>
(select sunm(li.quantity)
fromLineltemli
where |i.productld = productld)
</ formul a>
</ property>

</cl ass>

4.3. Many-to-many with shared composite key attribute

<cl ass nane="User" table=""User ">

283

Chapter 24. Example: Various Mappings

<conposi te-id>
<key- property nane="nane"/>
<key- property nanme="org"/>
</ conposi te-id>
<set name="groups" tabl e="User G oup">
<key>
<col um nane="user Nane"/ >
<col um nanme="org"/>
</ key>
<many-t o- many cl ass="G oup">
<col um name="gr oupNanme"/ >
<f or mul a>or g</ f or mul a>
</ many-t o- many>
</set>
</ cl ass>

<cl ass nanme="G oup" table=" G oup ">
<conposite-id>
<key- property nane="nane"/>
<key- property nane="org"/>
</ conposi te-id>
<property nanme="descri ption"/>
<set nanme="users" tabl e="User Goup" inverse="true">
<key>
<col um name="gr oupNanme"/ >
<col um nanme="org"/>
</ key>
<many-t o- many cl ass="User">
<col um nane="user Nane"/ >
<f or mul a>or g</ f or mul a>
</ many-t o- many>
</ set>
</ cl ass>

4.4. Content based discrimination

<cl ass nane="Person"
di scri m nat or-val ue="P">

<id name="id"
col um="person_i d"
unsaved- val ue="0">
<generator class="native"/>
</id>

<di scri m nat or
type="character">
<f or nul a>
case
when title is not null then 'E
when sal esperson is not null then 'C
else 'P
end

284

attribute

</forml a>
</ di scri m nat or >

<property nanme="nane"
not - nul I ="true"
| engt h="80"/>

<property nanme="sex"
not - nul I ="t r ue"
updat e="f al se"/ >

<conmponent nane="address" >
<property nane="address"/>
<property nane="zip"/>
<property name="country"/>
</ conponent >

<subcl ass nane="Enpl oyee"
di scri m nat or - val ue="E">
<property nane="title"
| engt h="20"/>
<property nane="sal ary"/>
<many-t o- one name="nmanager"/>
</ subcl ass>

<subcl ass nanme="Cust oner"
di scri m nat or-val ue="C"'>
<property nane="coments"/>
<many-t o- one nane="sal esperson"/>
</ subcl ass>

</cl ass>

4.5. Associations on alternate keys

<cl ass nane="Person">

<id name="id">
<generator class="hilo"/>
</id>

<property nane="nane" |ength="100"/>

<one-t o-one nanme="address"
property-ref="person"
cascade="al | "
fetch="join"/>

<set nanme="accounts"
i nverse="true">
<key col um="userld"
property-ref="userld"/>
<one-to-many cl ass="Account"/>
</ set>

285

Chapter 24. Example: Various Mappings

<property nane="userl|ld" |ength="8"/>
</ cl ass>
<cl ass nane="Address" >

<id name="id">
<generator class="hilo"/>
</id>

<property nane="address" | ength="300"/>

<property nane="zip" |ength="5"/>

<property nane="country" |ength="25"/>

<many-t o- one nanme="person" uni que="true" not-null="true"/>

</ cl ass>
<cl ass nanme="Account ">
<id nane="accountld" |ength="32">
<generat or class="uuid"/>
</id>
<many-t o- one nanme="user"
col um="user| d"
property-ref="userld"/>

<property nane="type" not-null="true"/>

</ cl ass>

286

Chapter 25.

Best Practices

Write fine-grained classes and map them using <conponent >.
Use an Addr ess class to encapsulate st r eet, subur b, st at e, post code. This encourages
code reuse and simplifies refactoring.

Declare identifier properties on persistent classes.
Hibernate makes identifier properties optional. There are all sorts of reasons why you
should use them. We recommend that identifiers be 'synthetic' (generated, with no business
meaning).

Identify natural keys.
Identify natural keys for all entities, and map them using <nat ur al - i d>. Implement
equal s() and hashCode() to compare the properties that make up the natural key.

Place each class mapping in its own file.
Don't use a single monolithic mapping document. Map com eg. Foo in the file
com eg/ Foo. hbm xni . This makes particularly good sense in a team environment.

Load mappings as resources.
Deploy the mappings along with the classes they map.

Consider externalising query strings.
This is a good practice if your queries call non-ANSI-standard SQL functions. Externalising
the query strings to mapping files will make the application more portable.

Use bind variables.
As in JDBC, always replace non-constant values by "?". Never use string manipulation to
bind a non-constant value in a query! Even better, consider using named parameters in
queries.

Don't manage your own JDBC connections.
Hibernate lets the application manage JDBC connections. This approach should be
considered a last-resort. If you can't use the built-in connections providers, consider
providing your own implementation of or g. hi ber nat e. connect i on. Connect i onPr ovi der .

Consider using a custom type.
Suppose you have a Java type, say from some library, that needs to be persisted but
doesn't provide the accessors needed to map it as a component. You should consider
implementing or g. hi ber nat e. User Type. This approach frees the application code from
implementing transformations to / from a Hibernate type.

Use hand-coded JDBC in bottlenecks.
In performance-critical areas of the system, some kinds of operations might benefit from
direct JDBC. But please, wait until you know something is a bottleneck. And don't assume
that direct JDBC is necessarily faster. If you need to use direct JDBC, it might be worth
opening a Hibernate Sessi on and using that JDBC connection. That way you can still use

287

Chapter 25. Best Practices

the same transaction strategy and underlying connection provider.

Understand Sessi on flushing.

Ina

Ina

From time to time the Session synchronizes its persistent state with the database.
Performance will be affected if this process occurs too often. You may sometimes minimize
unnecessary flushing by disabling automatic flushing or even by changing the order of
queries and other operations within a particular transaction.

three tiered architecture, consider using detached objects.

When using a servlet / session bean architecture, you could pass persistent objects loaded
in the session bean to and from the servlet / JSP layer. Use a new session to service each
request. Use Sessi on. nerge() or Sessi on. saveOr Updat e() to synchronize objects with
the database.

two tiered architecture, consider using long persistence contexts.

Database Transactions have to be as short as possible for best scalability. However, it is
often neccessary to implement long running application transactions, a single unit-of-work
from the point of view of a user. An application transaction might span several client
request/response cycles. It is common to use detached objects to implement application
transactions. An alternative, extremely appropriate in two tiered architecture, is to maintain
a single open persistence contact (session) for the whole lifecycle of the application
transaction and simply disconnect from the JDBC connection at the end of each request
and reconnect at the beginning of the subsequent request. Never share a single session
across more than one application transaction, or you will be working with stale data.

Don't treat exceptions as recoverable.

This is more of a necessary practice than a "best" practice. When an exception occurs, roll
back the Transact i on and close the Sessi on. If you don't, Hibernate can't guarantee that
in-memory state accurately represents persistent state. As a special case of this, do not use
Sessi on. | oad() to determine if an instance with the given identifier exists on the database;
use Sessi on. get () or a query instead.

Prefer lazy fetching for associations.

Use eager fetching sparingly. Use proxies and lazy collections for most associations to
classes that are not likely to be completely held in the second-level cache. For associations
to cached classes, where there is an a extremely high probability of a cache hit, explicitly
disable eager fetching using | azy="f al se". When an join fetching is appropriate to a
particular use case, use a query withaleft join fetch.

Use the open session in view pattern, or a disciplined assembly phase to avoid problems with
unfetched data.

Hibernate frees the developer from writing tedious Data Transfer Objects (DTO). In a
traditional EJB architecture, DTOs serve dual purposes: first, they work around the problem
that entity beans are not serializable; second, they implicitly define an assembly phase
where all data to be used by the view is fetched and marshalled into the DTOs before
returning control to the presentation tier. Hibernate eliminates the first purpose. However,
you will still need an assembly phase (think of your business methods as having a strict
contract with the presentation tier about what data is available in the detached objects)

288

unless you are prepared to hold the persistence context (the session) open across the view
rendering process. This is not a limitation of Hibernate! It is a fundamental requirement of
safe transactional data access.

Consider abstracting your business logic from Hibernate.
Hide (Hibernate) data-access code behind an interface. Combine the DAO and Thread
Local Session patterns. You can even have some classes persisted by handcoded JDBC,
associated to Hibernate via a User Type. (This advice is intended for "sufficiently large"
applications; it is not appropriate for an application with five tables!)

Don't use exotic association mappings.
Good usecases for a real many-to-many associations are rare. Most of the time you need
additional information stored in the "link table". In this case, it is much better to use two
one-to-many associations to an intermediate link class. In fact, we think that most
associations are one-to-many and many-to-one, you should be careful when using any
other association style and ask yourself if it is really neccessary.

Prefer bidirectional associations.
Unidirectional associations are more difficult to query. In a large application, almost all
associations must be navigable in both directions in queries.

289

290

Index

291

292

	Hibernate Reference Guide
	Table of Contents
	Chapter 1. Feedback
	Preface
	Chapter 2. Introduction to Hibernate
	1. Preface
	2. Part 1 - The first Hibernate Application
	2.1. The first class
	2.2. The mapping file
	2.3. Hibernate configuration
	2.4. Building with Ant
	2.5. Startup and helpers
	2.6. Loading and storing objects

	3. Part 2 - Mapping associations
	3.1. Mapping the Person class
	3.2. A unidirectional Set-based association
	3.3. Working the association
	3.4. Collection of values
	3.5. Bi-directional associations
	3.6. Working bi-directional links

	4. Part 3 - The EventManager web application
	4.1. Writing the basic servlet
	4.2. Processing and rendering
	4.3. Deploying and testing

	5. Summary

	Chapter 3. Architecture
	1. Overview
	2. Instance states
	3. JMX Integration
	4. JCA Support
	5. Contextual Sessions

	Chapter 4. Configuration
	1. Programmatic configuration
	2. Obtaining a SessionFactory
	3. JDBC connections
	4. Optional configuration properties
	4.1. SQL Dialects
	4.2. Outer Join Fetching
	4.3. Binary Streams
	4.4. Second-level and query cache
	4.5. Query Language Substitution
	4.6. Hibernate statistics

	5. Logging
	6. Implementing a NamingStrategy
	7. XML configuration file
	8. J2EE Application Server integration
	8.1. Transaction strategy configuration
	8.2. JNDI-bound SessionFactory
	8.3. Current Session context management with JTA
	8.4. JMX deployment

	Chapter 5. Persistent Classes
	1. A simple POJO example
	1.1. Implement a no-argument constructor
	1.2. Provide an identifier property (optional)
	1.3. Prefer non-final classes (optional)
	1.4. Declare accessors and mutators for persistent fields (optional)

	2. Implementing inheritance
	3. Implementing equals() and hashCode()
	4. Dynamic models
	5. Tuplizers

	Chapter 6. Basic O/R Mapping
	1. Mapping declaration
	1.1. Doctype
	1.1.1. EntityResolver

	1.2. hibernate-mapping
	1.3. class
	1.4. id
	1.4.1. Generator
	1.4.2. Hi/lo algorithm
	1.4.3. UUID algorithm
	1.4.4. Identity columns and sequences
	1.4.5. Assigned identifiers
	1.4.6. Primary keys assigned by triggers

	1.5. composite-id
	1.6. discriminator
	1.7. version (optional)
	1.8. timestamp (optional)
	1.9. property
	1.10. many-to-one
	1.11. one-to-one
	1.12. natural-id
	1.13. component, dynamic-component
	1.14. properties
	1.15. subclass
	1.16. joined-subclass
	1.17. union-subclass
	1.18. join
	1.19. key
	1.20. column and formula elements
	1.21. import
	1.22. any

	2. Hibernate Types
	2.1. Entities and values
	2.2. Basic value types
	2.3. Custom value types

	3. Mapping a class more than once
	4. SQL quoted identifiers
	5. Metadata alternatives
	5.1. Using XDoclet markup
	5.2. Using JDK 5.0 Annotations

	6. Generated Properties
	7. Auxiliary Database Objects

	Chapter 7. Collection Mapping
	1. Persistent collections
	2. Collection mappings
	2.1. Collection foreign keys
	2.2. Collection elements
	2.3. Indexed collections
	2.4. Collections of values and many-to-many associations
	2.5. One-to-many associations

	3. Advanced collection mappings
	3.1. Sorted collections
	3.2. Bidirectional associations
	3.3. Bidirectional associations with indexed collections
	3.4. Ternary associations
	3.5. Using an <idbag>

	4. Collection examples

	Chapter 8. Association Mappings
	1. Introduction
	2. Unidirectional associations
	2.1. many to one
	2.2. one to one
	2.3. one to many

	3. Unidirectional associations with join tables
	3.1. one to many
	3.2. many to one
	3.3. one to one
	3.4. many to many

	4. Bidirectional associations
	4.1. one to many / many to one
	4.2. one to one

	5. Bidirectional associations with join tables
	5.1. one to many / many to one
	5.2. one to one
	5.3. many to many

	6. More complex association mappings

	Chapter 9. Component Mapping
	1. Dependent objects
	2. Collections of dependent objects
	3. Components as Map indices
	4. Components as composite identifiers
	5. Dynamic components

	Chapter 10. Inheritance Mapping
	1. The Three Strategies
	1.1. Table per class hierarchy
	1.2. Table per subclass
	1.3. Table per subclass, using a discriminator
	1.4. Mixing table per class hierarchy with table per subclass
	1.5. Table per concrete class
	1.6. Table per concrete class, using implicit polymorphism
	1.7. Mixing implicit polymorphism with other inheritance mappings

	2. Limitations

	Chapter 11. Working with objects
	1. Hibernate object states
	2. Making objects persistent
	3. Loading an object
	4. Querying
	4.1. Executing queries
	4.1.1. Iterating results
	4.1.2. Queries that return tuples
	4.1.3. Scalar results
	4.1.4. Bind parameters
	4.1.5. Pagination
	4.1.6. Scrollable iteration
	4.1.7. Externalizing named queries

	4.2. Filtering collections
	4.3. Criteria queries
	4.4. Queries in native SQL

	5. Modifying persistent objects
	6. Modifying detached objects
	7. Automatic state detection
	8. Deleting persistent objects
	9. Replicating object between two different datastores
	10. Flushing the Session
	11. Transitive persistence
	12. Using metadata

	Chapter 12. Transactions And Concurrency
	1. Session and transaction scopes
	1.1. Unit of work
	1.2. Long conversations
	1.3. Considering object identity
	1.4. Common issues

	2. Database transaction demarcation
	2.1. Non-managed environment
	2.2. Using JTA
	2.3. Exception handling
	2.4. Transaction timeout

	3. Optimistic concurrency control
	3.1. Application version checking
	3.2. Extended session and automatic versioning
	3.3. Detached objects and automatic versioning
	3.4. Customizing automatic versioning

	4. Pessimistic Locking
	5. Connection Release Modes

	Chapter 13. Interceptors and events
	1. Interceptors
	2. Event system
	3. Hibernate declarative security

	Chapter 14. Batch processing
	1. Batch inserts
	2. Batch updates
	3. The StatelessSession interface
	4. DML-style operations

	Chapter 15. HQL: The Hibernate Query Language
	1. Case Sensitivity
	2. The from clause
	3. Associations and joins
	4. Forms of join syntax
	5. Refering to identifier property
	6. The select clause
	7. Aggregate functions
	8. Polymorphic queries
	9. The where clause
	10. Expressions
	11. The order by clause
	12. The group by clause
	13. Subqueries
	14. HQL examples
	15. Bulk update and delete
	16. Tips & Tricks
	17. Components
	18. Row value constructor syntax

	Chapter 16. Criteria Queries
	1. Creating a Criteria instance
	2. Narrowing the result set
	3. Ordering the results
	4. Associations
	5. Dynamic association fetching
	6. Example queries
	7. Projections, aggregation and grouping
	8. Detached queries and subqueries
	9. Queries by natural identifier

	Chapter 17. Native SQL
	1. Using a SQLQuery
	1.1. Scalar queries
	1.2. Entity queries
	1.3. Handling associations and collections
	1.4. Returning multiple entities
	1.4.1. Alias and property references

	1.5. Returning non-managed entities
	1.6. Handling inheritance
	1.7. Parameters

	2. Named SQL queries
	2.1. Using return-property to explicitly specify column/alias names
	2.2. Using stored procedures for querying
	2.2.1. Rules/limitations for using stored procedures

	3. Custom SQL for create, update and delete
	4. Custom SQL for loading

	Chapter 18. Filtering data
	1. Hibernate filters

	Chapter 19. XML Mapping
	1. Working with XML data
	1.1. Specifying XML and class mapping together
	1.2. Specifying only an XML mapping

	2. XML mapping metadata
	3. Manipulating XML data

	Chapter 20. Improving performance
	1. Fetching strategies
	1.1. Working with lazy associations
	1.2. Tuning fetch strategies
	1.3. Single-ended association proxies
	1.4. Initializing collections and proxies
	1.5. Using batch fetching
	1.6. Using subselect fetching
	1.7. Using lazy property fetching

	2. The Second Level Cache
	2.1. Cache mappings
	2.2. Strategy: read only
	2.3. Strategy: read/write
	2.4. Strategy: nonstrict read/write
	2.5. Strategy: transactional

	3. Managing the caches
	4. The Query Cache
	5. Understanding Collection performance
	5.1. Taxonomy
	5.2. Lists, maps, idbags and sets are the most efficient collections to update
	5.3. Bags and lists are the most efficient inverse collections
	5.4. One shot delete

	6. Monitoring performance
	6.1. Monitoring a SessionFactory
	6.2. Metrics

	Chapter 21. Toolset Guide
	1. Automatic schema generation
	1.1. Customizing the schema
	1.2. Running the tool
	1.3. Properties
	1.4. Using Ant
	1.5. Incremental schema updates
	1.6. Using Ant for incremental schema updates
	1.7. Schema validation
	1.8. Using Ant for schema validation

	Chapter 22. Example: Parent/Child
	1. A note about collections
	2. Bidirectional one-to-many
	3. Cascading lifecycle
	4. Cascades and unsaved-value
	5. Conclusion

	Chapter 23. Example: Weblog Application
	1. Persistent Classes
	2. Hibernate Mappings
	3. Hibernate Code

	Chapter 24. Example: Various Mappings
	1. Employer/Employee
	2. Author/Work
	3. Customer/Order/Product
	4. Miscellaneous example mappings
	4.1. "Typed" one-to-one association
	4.2. Composite key example
	4.3. Many-to-many with shared composite key attribute
	4.4. Content based discrimination
	4.5. Associations on alternate keys

	Chapter 25. Best Practices
	Index

