JBoss Cache Tree Cache 1.4.1

A Structured, Replicated,
Transactional Cache

4.3

Ben Wang, Bela Ban, Manik Surtani, Brian Stansberry, Daniel

Huang
ISBN: N/A
Publication date:

JBoss Cache Tree Cache 1.4.1

This book is about the JBoss Cache Tree Cache.

JBoss Cache Tree Cache 1.4.1: A Structured, Replicated,

Transactional Cache

Author Ben Wang, Bela Ban, Manik
Surtani, Brian Stansberry,
Daniel Huang

Copyright © 2008 Red Hat, Inc

Copyright © 2008 Red Hat, Inc. This material may only be distributed subject to the terms and conditions set forth in the
Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License (which is presently available at
http://creativecommons.org/licenses/by-nc-sa/3.0/).

Red Hat and the Red Hat "Shadow Man" logo are registered trademarks of Red Hat, Inc. in the United States and other
countries.

All other trademarks referenced herein are the property of their respective owners.
The GPG fingerprint of the security@redhat.com key is:

CA 20 86 86 2B D6 9D FC 65 F6 EC C4 21 91 80 CD DB 42 A6 OE

1801 Varsity Drive

Raleigh, NC 27606-2072

USA

Phone: +1 919 754 3700

Phone: 888 733 4281

Fax: +1 919 754 3701

PO Box 13588

Research Triangle Park, NC 27709
USA

http://creativecommons.org/licenses/by-nc-sa/3.0/

JBoss Cache Tree Cache 1.4.1

[(= = Vo < vii

I 11 o T [T 4o o I PP 1
1. What is @ Tre@CaChe? ... 1

2. TreeCache BASICS ... ccuuiiiiiei e 1

B AN 411 (= ox 11] S 3
3. BaASIC AP o e 5
O 111 (=] £=T ol 0= Tod [T PP 9
I T Yo | T o T 9

2. Clustered Cache - Using Replicationccooieiiiiiiiiiiiii e 9

2.1. Replicated Caches and TranSactionscc.coveeviiiiiieiiiiineeeee e 9

A2 =1 T [0 VA = L= o] o7 11T o NN 10

3. Clustered Cache - Using Invalidationccooiiiiiiiiiiii e 14

5. Transactions and CONCUITENCYccuuuueiiruiieeeiie ettt e ettt e et e e et eeaae s 15
1. CONCUITENT ACCESS ...euieeneei ettt ettt et et e e e e e e e e e e e en e enas 15

L LOCKS e 15

1.2. PeSSIMISHC I0CKING ...uiiiiiiieiiii e 15

1.3. OptimIstiC I0CKING ... 17

2. Transactional SUPPOITuuiiiiii e 18

0 = 1] o [N 19

6. EVICHION POIICIES .. et e e eaa e 21
1. EVIction POlICY PIUGIN ... 21

2. TreeCache Eviction Policy Configurationccoovviiiiiiiiiiiiiicic e 36

3. TreeCache LRU eviction policy implementationcooooiiiiiiiiiiinieeeeenn. 39

4. TreeCache FIFO eviction policy implementationccccooeeiiiiinieiiiiinneeiiinnn. 39

5. TreeCache MRU eviction policy implementationccccoeeiiiiiiiiiiiineeins 40

6. TreeCache LFU eviction policy implementationcccooovviiiiiiiiiiiiinneeiiien, 40
%= ol o T= T I = o oY PP 43
1. The CachelLoader INtErfaceooouuiiiiiiiiii e 48

2. Configuration Via XIMLuiiiii e 49

3. CaChe PASSIVALIONcvviiciii e e e e e e e 52

4. CaChELOAUET USE CASESietniiiiieiii et e et e e e e e et e e e e ean s 53

4.1. Local cache With StOrecocuiiviiiiii e 53

4.2. Replicated caches with all nodes sharing the same store 53

4.3. Replicated caches with only one node having a storecccccccu. 54

4.4. Replicated caches with each node having its own store 54

4.5. Hierarchical Caches ... 55

4.6. TcpDelegatingCacheLoadervviiiiiiiieiiiiiie e 56

4.7. RmiDelegatingCachelLoadercccooeiiiiiiiiiiiii e, 58

5. IDBC-based CaCheLOAdEriiiuuiiiiiaiii e 59

5.1. JDBCCacheLoader configurationccievieiiiiiniiiiiiineecieeeciee 60

8. TreeCacheMarshallercoo i e 63
1. BASIC USAOE .ieiiiiiiiii ettt 63

2. Region Activation/INacCtivVationccccuiiiiiiiii e e 64

2.1. Example usage of Region Activation/Inactivationccccoeeeveennnnne. 67

3. Region Activation/Inactivation with a CachelLoadercccooeveeieiiiieinneennnn. 69

4. Performance over Java Serializationc..ocueieiiiiiiiiiieeeieeeeee e 70

JBoss Cache Tree Cache 1.4.1

5. Backward compatibilityooiiiimiiii 70
9. SHALE TTANSIEE ... et 71
1. Types of State TransTer ... e 71
2. When State Transfer OCCUISiuuiiiiee e 72
10. Version Compatibility and Interoperabilityccooiiiiiiiiii e, 75
i OTo] o1 1o 18] =1 1 o] o H PP 77
1. Sample XML-Based Configurationcccoveiiiiiiiiiiiinieiiin e 77
2. Definition of XML attributesouviiiiiiiiii e 81
3. OVErTIdING OPLIONS ..eeuiiiiii ettt e s 85
12. Management INfOrMAatioNcoouiiiiiiii e e e e e e ean s 87
1. JB0OSS CAChe MBEANSccovuuiiiiiiieiiei ettt et 87
2. JB0SS CaChe StatiStiCS ...iuuuiiiiiiiiii e 87
3. Receiving Cache NOLIfiCAtIONSccevuiiiiiieiii e e 89
4. Accessing Cache MBeans in a Standalone Environmentc.c.cccoivvevneennnn. 91
13. Running JBoss Cache within JBoss Application Servercooovvevevinneiiiiiniecennnn. 93
1. RUNNING @S @N MBEANiiviiiiii it e e e e e e e aeas 93
1o 1= PR 95

vi

Preface

This and its accompanying documents describe JBoss Cache's TreeCache, a tree-structured
replicated, transactional cache. JBoss Cache's PojoCache, an "object-oriented" cache that is
the AOP-enabled subclass of TreeCache, allowing for Plain Old Java Objects (POJOs) to be
inserted and replicated transactionally in a cluster, is described separately in a similar user
guide.

The TreeCache is fully configurable. Aspects of the system such as replication mechanisms,
transaction isolation levels, eviction policies, and transaction managers are all configurable. The
TreeCache can be used in a standalone fashion - independent of JBoss Application Server or
any other application server. PojoCache on the other hand requires both TreeCache and the
JBossAOP standalone subsystem. PojoCache, documented separately, is the first in the market
to provide a POJO cache functionality.

This document is meant to be a user guide to explain the architecture, api, configuration, and
examples for JBoss Cache's TreeCache. Good knowledge of the Java programming language
along with a string appreciation and understanding of transactions and concurrent threads is
presumed. No prior knowledge of JBoss Application Server is expected or required.

If you have questions, use the user forum ! linked on the JBoss Cache website? . We also
provide a mechanism for tracking bug reports and feature requests on the JBoss JIRA issue
tracker 3. If you are interested in the development of JBoss Cache or in translating this
documentation into other languages, we'd love to hear from you. Please post a message on the
user forum or contact us on the developer mailing list 4

JBoss Cache is an open-source product based on LGPL. Commercial development support,
production support and training for JBoss Cache is available through JBoss Inc.® JBoss Cache
is a product in JBoss Professional Open Source JEMS® (JBoss Enterprise Middleware Suite).

1 http://www.jboss.com/index.html?module=bb&op=viewforum&f=157
2 http://labs.jboss.com/jbosscache

8 http://jira.jooss.com

4 http://lists.jboss.org

5 http://mww.jboss.com

6 http://www.jboss.com/products/index

Vii

http://www.jboss.com/index.html?module=bb&op=viewforum&f=157
http://labs.jboss.com/jbosscache
http://www.jboss.com/index.html?module=bb&op=viewforum&f=157
http://labs.jboss.com/jbosscache
http://jira.jboss.com
http://jira.jboss.com
http://jira.jboss.com
http://lists.jboss.org
http://lists.jboss.org
http://www.jboss.com
http://www.jboss.com
http://www.jboss.com/products/index
http://www.jboss.com/products/index

viii

Chapter 1.

Introduction

1. What is a TreeCache?

A TreeCache is a tree-structured, replicated, transactional cache from JBoss Cache. Tr eeCache
is the backbone for many fundamental JBoss Application Server clustering services, including -
in certain versions - clustering JNDI, HTTP and EJB sessions, and clustering JMS.

In addition to this, Tr eeCache can be used as a standalone transactional and replicated cache
or even an object oriented data store, may be embedded in other J2EE compliant application
servers such as BEA WebLogic or IBM WebSphere, servlet containers such as Tomcat, or even
in Java applications that do not run from within an application server.

2. TreeCache Basics

The structure of a Tr eeCache is a tree with nodes. Each node has a name and zero or more
children. A node can only have 1 parent; there is currently no support for graphs. A node can be
reached by navigating from the root recursively through children, until the requested node is
found. It can also be accessed by giving a fully qualified name (FQN), which consists of the
concatenation of all node names from the root to the node in question.

A Tr eeCache can have multiple roots, allowing for a number of different trees to be presentin a
single cache instance. Note that a one level tree is essentially a HashMap. Each node in the tree
has a map of keys and values. For a replicated cache, all keys and values have to be

Seri al i zabl e. Serializability is not a requirement for Poj oCache, where reflection and
aspect-oriented programming is used to replicate any type.

A TreeCache can be either local or replicated. Local trees exist only inside the Java VM in which
they are created, whereas replicated trees propagate any changes to all other replicated trees
in the same cluster. A cluster may span different hosts on a network or just different JVMs on a
single host.

The first version of Tr eeCache was essentially a single HashMap that replicated. However, the
decision was taken to go with a tree structured cache because (a) it is more flexible and efficient
and (b) a tree can always be reduced to a map, thereby offering both possibilities. The
efficiency argument was driven by concerns over replication overhead, and was that a value
itself can be a rather sophisticated object, with aggregation pointing to other objects, or an
object containing many fields. A small change in the object would therefore trigger the entire
object (possibly the transitive closure over the object graph) to be serialized and propagated to
the other nodes in the cluster. With a tree, only the modified nodes in the tree need to be
serialized and propagated. This is not necessarily a concern for Tr eeCache, but is a vital
requirement for Poj oCache (as we will see in the separate Poj oCache documentation).

When a change is made to the Tr eeCache, and that change is done in the context of a
transaction, then we defer the replication of changes until the transaction commits successfully.
All modifications are kept in a list associated with the transaction for the caller. When the
transaction commits, we replicate the changes. Otherwise, (on a rollback) we simply undo the

Chapter 1. Introduction

changes locally and release any locks, resulting in zero replication traffic and overhead. For
example, if a caller makes 100 modifications and then rolls back the transaction, we will not
replicate anything, resulting in no network traffic.

If a caller has no transaction associated with it (and isolation level is not NONE - more about
this later), we will replicate right after each modification, e.g. in the above case we would send
100 messages, plus an additional message for the rollback. In this sense, running without a
transaction can be thought of as analogous as running with auto-commit switched on in JDBC
terminology, where each operation is committed automatically.

There is an API for plugging in different transaction managers: all it requires is to get the
transaction associated with the caller's thread. Several Tr ansact i onManager Lookup
implementations are provided for popular transaction managers, including a

DumyTr ansact i onManager for testing.

Finally, we use pessimistic locking of the cache by default, with optimistic locking as a
configurable option. With pessimistic locking, we can configure the local locking policy
corresponding to database-style transaction isolation levels, i.e., SERIALIZABLE,
REPEATABLE, READ_COMMITTED, READ_UNCOMMITTED and NONE. More on transaction
isolation levels will be discussed later. Note that the cluster-wide isolation level is
READ-UNCOMMITTED by default as we don't acquire a cluster-wide lock on touching an object
for which we don’t yet have a lock (this would result in too high an overhead for messaging).

With optimistic locking, isolation levels are ignored as each transaction effectively maintains a
copy of the data with which it works on and then attempts to merge back into the tree structure
upon transaction completion. This results in a near-serializable degree of data integrity, applied
cluster-wide, for the minor performance penalty incurred when validating workspace data at
commit time, and the occasional transaction commit failure due to validation failures at commit
time.

Chapter 2.

Architecture

Figure 2.1. Schematic TreeCache architecture

The architecture is shown above. The example shows 2 Java VMs, each has created an
instance of Tr eeCache. These VMs can be located on the same machine, or on 2 different
machines. The setup of the underlying group communication subsystem is done using
JGroupsl.

Any modification (see API below) in one cache will be replicated to the other cache? and vice
versa. Depending on the transactional settings, this replication will occur either after each
modification or at the end of a transaction (at commit time). When a new cache is created, it can
optionally acquire the contents from one of the existing caches on startup.

1 http://www.jgroups.org
2 Note that you can have more than 2 caches in a cluster.

http://www.jgroups.org
http://www.jgroups.org

Chapter 3.

Basic API

Here's some sample code before we dive into the API itself:

TreeCache tree = new TreeCache();

tree. set d ust er Name(" deno-cl uster");

tree.setd usterProperties("default.xm"); // uses defaults if not provided
tree. set CacheMode(Tr eeCache. REPL_SYNC) ;

tree.createService(); // not necessary, but is same as MBean |ifecycle
tree.startService(); // kick start tree cache

tree.put("/a/b/c", "nane", "Ben");

tree.put("/a/b/c/d", "uid", new |Integer(322649));

Integer tnp = (Integer) tree.get("/a/b/c/d", "uid");
tree.remove("/al/b");

tree. stopService();

tree.destroyService(); // not necessary, but is same as MBean |ifecycle

The sample code first creates a Tr eeCache instance and then configures it. There is another
constructor which accepts a number of configuration options. However, the Tr eeCache can be
configured entirely from an XML file (shown later) and we don't recommend manual
configuration as shown in the sample.

The cluster name, properties of the underlying JGroups stack, and cache mode (synchronous

replication) are configured first (a list of configuration options is shown later). Then we start the
Tr eeCache. If replication is enabled, this will make the Tr eeCache join the cluster, and acquire
initial state from an existing node.

Then we add 2 items into the cache: the first element creates a nhode "a" with a child node "b"
that has a child node "c". (Tr eeCache by default creates intermediary nodes that don't exist).
The key "name" is then inserted into the "/a/b/c" node, with a value of "Ben".

The other element will create just the subnode "d" of "c" because "/a/b/c" already exists. It binds
the integer 322649 under key "uid".

The resulting tree looks like this:

Figure 3.1. Sample Tree Nodes

The Tr eeCache has 4 nodes "a", "b", "c" and "d". Nodes "/a/b/c" has values "name" associated
with "Ben" in its map, and node "/a/b/c/d" has values "uid" and 322649.

Each node can be retrieved by its absolute name (e.g. "/a/b/c") or by navigating from parent to
children (e.g. navigate from "a" to "b", then from "b" to "c").

The next method in the example gets the value associated with key="uid" in node "/a/b/c/d",
which is the integer 322649.

The remove() method then removes node "/a/b" and all subnodes recursively from the cache. In

Chapter 3. Basic API

this case, nodes "/a/b/c/d", "/a/b/c" and "/a/b" will be removed, leaving only "/a".

Finally, the Tr eeCache is stopped. This will cause it to leave the cluster, and every node in the
cluster will be notified. Note that Tr eeCache can be stopped and started again. When it is
stopped, all contents will be deleted. And when it is restarted, if it joins a cache group, the state
will be replicated initially. So potentially you can recreate the contents.

In the sample, replication was enabled, which caused the 2 put() and the 1 remove() methods to
replicated their changes to all nodes in the cluster. The get() method was executed on the local
cache only.

Keys into the cache can be either strings separated by slashes ("), e.g. "/a/b/c", or they can be
fully qualified names Fgns . An Fgn is essentially a list of Objects that need to implement
hashCode() and equals(). All strings are actually transformed into Fgns internally. Fgns are
more efficient than strings, for example:

String nl = "/300/322649";
Fgn n2 = new Fgn(new Obj ect{new I nt eger (300), new | nteger (322649)});

In this example, we want to access a node that has information for employee with id=322649 in
department with id=300. The string version needs two map lookups on Strings, whereas the Fgn
version needs two map lookups on Integers. In a large hashtable, the hashCode() method for
String may have collisions, leading to actual string comparisons. Also, clients of the cache may
already have identifiers for their objects in Object form, and don't want to transform between
Object and Strings, preventing unnecessary copying.

Note that the modification methods are put() and remove(). The only get method is get().

There are 2 put() methods? : put (Fgn node, Object key, Object key) and put (Fgn node,
Map val ues) . The former takes the node name, creates it if it doesn't yet exist, and put the key
and value into the node's map, returning the previous value. The latter takes a map of keys and
values and adds them to the node's map, overwriting existing keys and values. Content that is
not in the new map remains in the node's map.

There are 3 remove() methods: r enove(Fgn node, Object key), remove(Fgn node) and
renoveDat a(Fqn node) . The first removes the given key from the node. The second removes
the entire node and all subnodes, and the third removes all elements from the given node's
map.

The get methods are: get (Fgn node) and get (Fgn node, Obj ect key). The former returns a
Node? object, allowing for direct navigation, the latter returns the value for the given key for a
node.

1 Plus their equivalent helper methods taking a String as node name.
2 This is mainly used internally, and we may decide to remove public access to the Node in a future release.

6

Also, the Tr eeCache has a number of getters and setters. Since the APl may change at any
time, we recommend the Javadoc for up-to-date information.

Chapter 4.

Clustered Caches

The Tr eeCache can be configured to be either local (standalone) or clustered. If in a cluster, the
cache can be configured to replicate changes, or to invalidate changes. A detailed discussion
on this follows.

1. Local Cache

Local caches don't join a cluster and don't communicate with other nodes in a cluster. Therefore
their elements don't need to be serializable - however, we recommend making them
serializable, enabling a user to change the cache mode at any time.

2. Clustered Cache - Using Replication

Replicated caches replicate all changes to the other Tr eeCache instances in the cluster.
Replication can either happen after each modification (no transactions), or at the end of a
transaction (commit time).

Replication can be synchronous or asynchronous . Use of either one of the options is
application dependent. Synchronous replication blocks the caller (e.g. on a put()) until the
modifications have been replicated successfully to all nodes in a cluster. Asynchronous
replication performs replication in the background (the put() returns immediately). Tr eeCache
also offers a replication queue, where modifications are replicated periodically (i.e.
interval-based), or when the queue size exceeds a number of elements, or a combination
thereof.

Asynchronous replication is faster (no caller blocking), because synchronous replication
requires acknowledgments from all nodes in a cluster that they received and applied the
modification successfully (round-trip time). However, when a synchronous replication returns
successfully, the caller knows for sure that all modifications have been applied at all nodes,
whereas this may or may not be the case with asynchronous replication. With asynchronous
replication, errors are simply written to a log. Even when using transactions, a transaction may
succeed but replication may not succeed on all Tr eeCache instances.

2.1. Replicated Caches and Transactions

When using transactions, replication only occurs at the transaction boundary - i.e., when a
transaction commits. This results in minimising replication traffic since a single modification os
broadcast rather than a series of individual modifications, and can be a lot more efficient than
not using transactions. Another effect of this is that if a transaction were to roll back, nothing is
broadcast across a cluster.

Depending on whether you are running your cluster in asynchronous or synchronous mode,
JBoss Cache will use either a single phase or two phase commit! protocol, respectively.

1 http://en.wikipedia.org/wiki/Two-phase_commit_protocol

http://en.wikipedia.org/wiki/Two-phase_commit_protocol
http://en.wikipedia.org/wiki/Two-phase_commit_protocol

Chapter 4. Clustered Caches

2.1.1. One Phase Commits

Used when your cache mode is REPL_ASYNC. All modifications are replicated in a single call,
which instructs remote caches to apply the changes to their local in-memory state and commit

locally. Remote errors/rollbacks are never fed back to the originator of the transaction since the
communication is asynchronous.

2.1.2. Two Phase Commits

Used when your cache mode is REPL_SYNC. Upon committing your transaction, JBoss Cache
broadcasts a prepare call, which carries all modifications relevant to the transaction. Remote
caches then acquire local locks on their im-memory state and apply the modifications. Once all
remote caches respond to the prepare call, the originator of the transaction broadcasts a
commit. This instructs all remote caches to commit their data. If any of the caches fail to
respond to the prepare phase, the originator broadcasts a rollback.

Note that although the prepare phase is synchronous, the commit and rollback phases are
asynchronous. This is because Sun's JTA specification2 does not specify how transactional
resources should deal with failures at this stage of a transaction; and other resources
participating in the transaction may have indeterminate state anyway. As such, we do away with
the overhead of synchronous communication for this phase of the transaction. That said, they
can be forced to be synchronous using the SyncConmi t Phase and SyncRol | backPhase
configuration options.

2.2. Buddy Replication

Buddy Replication allows you to suppress replicating your data to all instances in a cluster.
Instead, each instance picks one or more 'buddies’ in the cluster, and only replicates to these
specific buddies. This greatly helps scalability as there is no longer a memory and network
traffic impact every time another instance is added to a cluster.

One of the most common use cases of Buddy Replication is when a replicated cache is used by
a servlet container to store HTTP session data. One of the pre-requisites to buddy replication
working well and being a real benefit is the use of session affinity, also known as sticky sessions
in HTTP session replication speak. What this means is that if certain data is frequently
accessed, it is desirable that this is always accessed on one instance rather than in a
round-robin fashion as this helps the cache cluster optimise how it chooses buddies, where it
stores data, and minimises replication traffic.

If this is not possible, Buddy Replication may prove to be more of an overhead than a benefit.

2.2.1. Selecting Buddies

Buddy Replication uses an instance of a or g. j boss. cache. buddyr epl i cat i on. BuddyLocat or
which contains the logic used to select buddies in a network. JBoss Cache currently ships with a
single implementation, or g. j boss. cache. buddyr epl i cati on. Next Menber BuddyLocat or,

2 http://java.sun.com/products/jta/

10

http://java.sun.com/products/jta/
http://java.sun.com/products/jta/

Buddy Replication

which is used as a default if no implementation is provided. The Next Menber BuddyLocat or
selects the next member in the cluster, as the name suggests, and guarantees an even spread
of buddies for each instance.

The Next Menber BuddyLocat or takes in 2 parameters, both optional.

* nunBuddi es - specifies how many buddies each instance should pick to back its data onto.
This defaults to 1.

i gnoreCol ocat edBuddi es - means that each instance will try to select a buddy on a different
physical host. If not able to do so though, it will fall back to colocated instances. This defaults
totrue.

2.2.2. BuddyPools

Also known as replication groups, a buddy pool is an optional construct where each instance in
a cluster may be configured with a buddy pool name. Think of this as an 'exclusive club
membership' where when selecting buddies, BuddyLocat or s would try and select buddies
sharing the same buddy pool hame. This allows system administrators a degree of flexibility and
control over how buddies are selected. For example, a sysadmin may put two instances on two
separate physical servers that may be on two separate physical racks in the same buddy pool.
So rather than picking an instance on a different host on the same rack, BuddyLocat or s would
rather pick the instance in the same buddy pool, on a separate rack which may add a degree of
redundancy.

2.2.3. Failover

In the unfortunate event of an instance crashing, it is assumed that the client connecting to the

cache (directly or indirectly, via some other service such as HTTP session replication) is able to
redirect the request to any other random cache instance in the cluster. This is where a concept
of Data Gravitation comes in.

Data Gravitation is a concept where if a request is made on a cache in the cluster and the
cache does not contain this information, it then asks other instances in the cluster for the data. If
even this fails, it would (optionally) ask other instances to check in the backup data they store
for other caches. This means that even if a cache containing your session dies, other instances
will still be able to access this data by asking the cluster to search through their backups for this
data.

Once located, this data is then transferred to the instance which requested it and is added to
this instance's data tree. It is then (optionally) removed from all other instances (and backups)
so that if session affinity is used, the affinity should now be to this new cache instance which
has just taken ownership of this data.

Data Gravitation is implemented as an interceptor. The following (all optional) configuration
properties pertain to data gravitation.

11

Chapter 4. Clustered Caches

2.

Fi

dat aGravi t ati onRemoveOnFi nd - forces all remote caches that own the data or hold
backups for the data to remove that data, thereby making the requesting cache the new data
owner. If setto f al se an evict is broadcast instead of a remove, so any state persisted in
cache loaders will remain. This is useful if you have a shared cache loader configured.
Defaults to t r ue.

dat aGravit ati onSear chBackupTr ees - Asks remote instances to search through their
backups as well as main data trees. Defaults to t r ue. The resulting effect is that if this is t r ue
then backup nodes can respond to data gravitation requests in addition to data owners.

aut oDat aGr avi t at i on - Whether data gravitation occurs for every cache miss. My default
this is set to f al se to prevent unnecessary network calls. Most use cases will know when it
may need to gravitate data and will pass in an Opt i on to enable data gravitation on a
per-invocation basis. If aut oDat aGravi t ati on is t r ue this Opti on is unnecessary.

2.4. Implementation

BuddyManager TreeCache

org.jboss.cache.buddyreplication org.jboss.cache

BuddyGroup

BaseRpcinterceptor

org.jboss.cache buddyreplication orgjboss.cache.interceptors

DataGravitatorinterceptor

org.jboss.cache.inferceptors

BuddyLocator

org.jboss. cache buddyreplication

MextMemberBuddylLocator

org.jboss.cache buddyreplication

gure 4.1. Class diagram of the classes involved in buddy replication and

how they are related to each other

12

Buddy Replication

2.2.5. Configuration

<l-- Buddy Replication config -->
<attribute name="BuddyReplicati onConfi g">

<confi g>
<l -- Enabl es buddy replication. This is the ONLY mandatory confi guration
el enent here. -->

<buddyRepl i cat i onEnabl ed>t r ue</ buddyRepl i cati onEnabl ed>

<I-- These are the default val ues anyway -->
<buddyLocat or Cl ass>

org.j boss. cache. buddyr epl i cati on. Next Menber BuddyLocat or
</ buddyLocat or Cl ass>

<I-- nunBuddi es is the nunber of backup nodes each node mai ntains.
i gnor eCol ocat edBuddi es nmeans that each node will *try* to select a buddy on
a different
physi cal host. |If not able to do so though, it will fall back to col ocated
nodes. -->
<buddyLocat or Properti es>
nunBuddies = 1
i gnor eCol ocat edBuddi es = true
</ buddyLocat or Properti es>

<I-- Away to specify a preferred replication group. |If specified, we try
to pick a

buddy who shares the sane pool nane (falling back to other buddies if not
avai | abl e).

This allows the sysdmin to hint at backup buddi es are picked, so for
exanpl e, nodes may be

hinted to pick buddies on a different physical rack or power supply for
added fault tolerance.

o=

<buddyPool Nane>myBuddyPool Repl i cat i onG oup</ buddyPool Nane>

<l-- Conmmuni cation timeout for inter-buddy group organi sati on nmessages (such
as assi gni ng
to and removing from groups, defaults to 1000. -->

<buddyCommuni cat i onTi meout >2000</ buddyConmmuni cat i onTi meout >

<I-- \Wether data is renpved fromold owners when gravitated to a new owner.
Defaults to true. -->
<dat aGravi t at i onRenpveOnFi nd>t r ue</ dat aG avi t at i onRenoveOnFi nd>

<!-- \Wet her backup nodes can respond to data gravitation requests, or only
the data owner
i s supposed to respond. Defaults to true. -->

<dat aGravi t ati onSear chBackupTr ees>t r ue</ dat aG avi t at i onSear chBackupTr ees>

<I-- Whether all cache misses result in a data gravitation request.

Defaults to fal se,

requiring callers to enable data gravitation on a per-invocation basis using
the Options API.

13

Chapter 4. Clustered Caches

oo D
<aut oDat aGr avi t ati on>f al se</ aut oDat aGr avi t ati on>

</ confi g>
</attribute>

3. Clustered Cache - Using Invalidation

If a cache is configured for invalidation rather than replication, every time data is changed in a
cache other caches in the cluster receive a message informing them that their data is now stale
and should be evicted from memory. Invalidation, when used with a shared cache loader (see
chapter on Cache Loaders) would cause remote caches to refer to the shared cache loader to
retrieve modified data. The benefit of this is twofold: network traffic is minimised as invalidation
messages are very small compared to replicating updated data, and also that other caches in
the cluster look up modified data in a lazy manner, only when needed.

Invalidation messages are sent after each modification (no transactions), or at the end of a
transaction, upon successful commit. This is usually more efficient as invalidation messages
can be optimised for the transaction as a whole rather than on a per-modification basis.

Invalidation too can be synchronous or asynchronous, and just as in the case of replication,
synchronous invalidation blocks until all caches in the cluster receive invalidation messages and
have evicted stale data while asynchronous invalidation works in a 'fire-and-forget' mode, where
invalidation messages are broadcast but doesn't block and wait for responses.

14

Chapter 5.

Transactions and Concurrency

1. Concurrent Access

JBoss Cache uses a pessimistic locking scheme by default to prevent concurrent access to the
same data. Optimistic locking may alternatively be used, and is discussed later.

1.1. Locks

Locking is done internally, on a node-level. For example when we want to access "/a/b/c", a lock
will be acquired for nodes "a", "b" and "c". When the same transaction wants to access
"la/b/c/d", since we already hold locks for "a", "b" and "c", we only need to acquire a lock for "d".

Lock owners are either transactions (call is made within the scope of an existing transaction) or
threads (no transaction associated with the call). Regardless, a transaction or a thread is
internally transformed into an instance of @ obal Tr ansact i on, which is used as a globally
unique ID for modifications across a cluster. E.g. when we run a two-phase commit protocol
(see below) across the cluster, the A obal Tr ansact i on uniquely identifies the unit of work
across a cluster.

Locks can be read or write locks. Write locks serialize read and write access, whereas read-only
locks only serialize read access. When a write lock is held, no other write or read locks can be
acquired. When a read lock is held, others can acquire read locks. However, to acquire write
locks, one has to wait until all read locks have been released. When scheduled concurrently,
write locks always have precedence over read locks. Note that (if enabled) read locks can be
upgraded to write locks.

Using read-write locks helps in the following scenario: consider a tree with entries "/a/b/n1" and
"la/b/n2". With write-locks, when Tx1 accesses "/a/b/n1", Tx2 cannot access "/a/b/n2" until Tx1
has completed and released its locks. However, with read-write locks this is possible, because
Tx1 acquires read-locks for "/a/b" and a read-write lock for "/a/b/n1". Tx2 is then able to acquire
read-locks for "/a/b" as well, plus a read-write lock for "/a/b/n2". This allows for more
concurrency in accessing the cache.

1.2. Pessimistic locking

By default, JBoss Cache uses pessimistic locking. Locking is not exposed directly to user.
Instead, a transaction isolation level which provides different locking behaviour is configurable.

1.2.1. Isolation levels

JBoss Cache supports the following transaction isolation levels, analogous to database ACID
isolation levels. A user can configure an instance-wide isolation level of NONE,
READ_UNCOMMITTED, READ_COMMITTED, REPEATABLE_READ, or SERIALIZABLE.
REPEATABLE_READ is the default isolation level used.

15

Chapter 5. Transactions and Concurrency

1. NONE. No transaction support is needed. There is no locking at this level, e.g., users will
have to manage the data integrity. Implementations use no locks.

2. READ_UNCOMMITTED. Data can be read anytime while write operations are exclusive.
Note that this level doesn't prevent the so-called "dirty read" where data modified in Tx1 can
be read in Tx2 before Tx1 commits. In other words, if you have the following sequence,

Tx1 Tx2
W
R

using this isolation level will not Tx2 read operation. Implementations typically use an
exclusive lock for writes while reads don't need to acquire a lock.

3. READ_COMMITTED. Data can be read any time as long as there is no write. This level
prevents the dirty read. But it doesn’t prevent the so-called ‘non-repeatable read’ where one
thread reads the data twice can produce different results. For example, if you have the
following sequence,

Tx1 Tx2
R
"
R

where the second read in Tx1 thread will produce different result.

Implementations usually use a read-write lock; reads succeed acquiring the lock when there
are only reads, writes have to wait until there are no more readers holding the lock, and
readers are blocked acquiring the lock until there are no more writers holding the lock. Reads
typically release the read-lock when done, so that a subsequent read to the same data has to
re-acquire a read-lock; this leads to nonrepeatable reads, where 2 reads of the same data
might return different values. Note that, the write only applies regardless of transaction state
(whether it has been committed or not).

4. REPEATABLE_READ. Data can be read while there is no write and vice versa. This level
prevents "non-repeatable read" but it does not prevent the so-called "phantom read" where
new data can be inserted into the tree from the other transaction. Implementations typically
use a read-write lock. This is the default isolation level used.

5. SERIALIZABLE. Data access is synchronized with exclusive locks. Only 1 writer or reader
can have the lock at any given time. Locks are released at the end of the transaction.
Regarded as very poor for performance and thread/transaction concurrency.

1.2.2. Insertion and Removal of Nodes

By default, before inserting a new node into the tree or removing an existing node from the tree,

16

Optimistic locking

JBoss Cache will attempt to acquire a write lock on the new node's parent node. This approach
treats child nodes as an integral part of a parent node's state. This approach provide greater
correctness, but at a cost of lesser concurrency if nodes are frequently added or removed. For
use cases where this greater correctness is not meaningful, JBoss Cache provides a
configuration option LockPar ent For Chi | dl nsert Renove. If this is set to f al se, insertions and
removals of child nodes only require the acquisition of a read lock on the parent node.

1.3. Optimistic locking

The motivation for optimistic locking is to improve concurrency. When a lot of threads have a lot
of contention for access to the data tree, it can be inefficient to lock portions of the tree - for
reading or writing - for the entire duration of a transaction as we do in pessimistic locking.
Optimistic locking allows for greater concurrency of threads and transactions by using a
technique called data versioning, explained here. Note that isolation levels (if configured) are
ignored if optimistic locking is enabled.

1.3.1. Architecture

Optimistic locking treats all method calls as transactional®. Even if you do not invoke a call
within the scope of an ongoing transaction, JBoss Cache creates an implicit transaction and
commits this transaction when the invocation completes. Each transaction maintains a
transaction workspace, which contains a copy of the data used within the transaction.

For example, if a transaction calls get("/a/b/c"), nodes a, b and c are copied from the main data
tree and into the workspace. The data is versioned and all calls in the transaction work on the
copy of the data rather than the actual data. When the transaction commits, it's workspace is
merged back into the underlying tree by matching versions. If there is a version mismatch - such
as when the actual data tree has a higher version than the workspace, perhaps if another
transaction were to access the same data, change it and commit before the first transaction can
finish - the transaction throws a Rol | backExcept i on when committing and the commit fails.

Optimistic locking uses the same locks we speak of above, but the locks are only held for a very
short duration - at the start of a transaction to build a workspace, and when the transaction
commits and has to merge data back into the tree.

So while optimistic locking may occasionally fail if version validations fail or may run slightly
slower than pessimistic locking due to the inevitable overhead and extra processing of
maintaining workspaces, versioned data and validating on commit, it does buy you a
near-SERIALIZABLE degree of data integrity while maintaining a very high level of concurrency.

1.3.2. Configuration

Optimistic locking is enabled by using the NodeLockingScheme XML attribute, and setting it to
"OPTIMISTIC":

1 Because of this requirement, you must always have a transaction manager configured when using optimistic locking.

17

Chapter 5. Transactions and Concurrency

<l--
Node | ocki ng schene:
OPTI M STI C
PESSI M STI C (def aul t)

-->
<attribute nane="NodelLocki ngSchene">O0PTI M STI C</ attri bute>

2. Transactional Support

JBoss Cache can be configured to use transactions to bundle units of work, which can then be
replicated as one unit. Alternatively, if transaction support is disabled, it is equivalent to setting
AutoCommit to on where modifications are potentially2 replicated after every change (if
replication is enabled).

What JBoss Cache does on every incoming call (e.g. put()) is:

1. get the transaction associated with the thread

2. regqister (if not already done) with the transaction manager to be notified when a transaction
commits or is rolled back.

In order to do this, the cache has to be configured with an instance of a
Transact i onManager Lookup which returns a j avax. t ransact i on. Tr ansact i onManager .

JBoss Cache ships with JBossTr ansact i onManager Lookup and

Generi cTransact i onManager Lookup. The JBossTr ansact i onManager Lookup is able to bind to
a running JBoss Application Server and retrieve a Tr ansact i onManager while the

Generi cTransact i onManager Lookup is able to bind to most popular Java EE application
servers and provide the same functionality. A dummy implementation -

DumyTr ansact i onManager Lookup - is also provided, which may be used for standalone JBoss
Cache applications and unit tests running outside a Java EE Application Server. Being a
dummy, however, this is just for demo and testing purposes and is not recommended for
production use.

The implementation of the JBossTr ansact i onManager Lookup is as follows:

public class JBossTransacti onManager Lookup i npl ement s
Tr ansact i onManager Lookup {

publ i ¢ JBossTransacti onManager Lookup() {}
publ i c Transacti onManager get Transacti onManager () throws Exception {

oj ect tnp=new I nitial Context().|ookup("java:/Transacti onManager");
return (Transacti onManager)t np;

}

2 Depending on whether interval-based asynchronous replication is used

18

Example

The implementation looks up the JBoss Transaction Manager from JNDI and returns it.

When a call comes in, the Tr eeCache gets the current transaction and records the modification
under the transaction as key. (If there is no transaction, the modification is applied immediately
and possibly replicated). So over the lifetime of the transaction all modifications will be recorded
and associated with the transaction. Also, the Tr eeCache registers with the transaction to be
notified of transaction committed or aborted when it first encounters the transaction.

When a transaction rolls back, we undo the changes in the cache and release all locks.

When the transaction commits, we initiate a two-phase commit protocol3 . in the first phase, a
PREPARE containing all modifications for the current transaction is sent to all nodes in the
cluster. Each node acquires all necessary locks and applies the changes, and then sends back
a success message. If a node in a cluster cannot acquire all locks, or fails otherwise, it sends
back a failure message.

The coordinator of the two-phase commit protocol waits for all responses (or a timeout,
whichever occurs first). If one of the nodes in the cluster responds with FAIL (or we hit the
timeout), then a rollback phase is initiated: a ROLLBACK message is sent to all nodes in the
cluster. On reception of the ROLLBACK message, every node undoes the changes for the
given transaction, and releases all locks held for the transaction.

If all responses are OK, a COMMIT message is sent to all nodes in the cluster. On reception of
a COMMIT message, each node applies the changes for the given transaction and releases all
locks associated with the transaction.

When we referred to 'transaction’, we actually mean a global representation of a local
transaction, which uniquely identifies a transaction across a cluster.

2.1. Example

Let's look at an example of how to use JBoss Cache in a standalone (i.e. outside an application
server) fashion with dummy transactions:

Properties prop = new Properties();

prop. put (Cont ext . | NI TI AL_CONTEXT_FACTCRY,

"org.]j boss. cache. transacti on. DunmyCont ext Fact ory");

User Transaction tx=(UserTransacti on)new

I nitial Context(prop).|ookup("UserTransaction");

TreeCache tree = new TreeCache();

PropertyConfi gurator config = new PropertyConfigurator();
config.configure(tree, "META-INF/ repl Sync-service.xm");
tree.createService(); // not necessary
tree.startService(); // kick start tree cache

try {

8 Only with synchronous replication or invalidation.

19

Chapter 5. Transactions and Concurrency

tx. begi n();
tree.put("/classes/cs-101", "description", "the basics");
tree. put ("/cl asses/cs-101", "teacher", "Ben");

tx.commit();

}

cat ch(Thr owabl e ex) ({
try { tx.rollback(); } catch(Throwable t) {}

}

The first lines obtain a user transaction using the 'JEE way' via JNDI. Note that we could also
say

User Transacti on tx = new
DummyUser Tr ansact i on(Durmy Tr ansact i onManager . get | nst ance()) ;

Then we create a new TreeCache and configure it using a PropertyConfigurator class and a
configuration XML file (see below for a list of all configuration options).

Next we start the cache. Then, we start a transaction (and associate it with the current thread
internally). Any methods invoked on the cache will now be collected and only applied when the
transaction is committed. In the above case, we create a node "/classes/cs-101" and add 2
elements to its map. Assuming that the cache is configured to use synchronous replication, on
transaction commit the modifications are replicated. If there is an exception in the methods (e.g.
lock acquisition failed), or in the two-phase commit protocol applying the modifications to all
nodes in the cluster, the transaction is rolled back.

20

Chapter 6.

Eviction Policies

Eviction policies specify the behavior of a node residing inside the cache, e.g., life time and
maximum numbers allowed. Memory constraints on servers mean caches cannot grow
indefinitely, so policies need to be in place to restrict the size of the cache in memory.

1. Eviction Policy Plugin

The design of the JBoss Cache eviction policy framework is based on the loosely coupled
observable pattern (albeit still synchronous) where the eviction region manager will register a
TreeCachelLi st ener to handle cache events and relay them back to the eviction policies.
Whenever a cached node is added, removed, evicted, or visited, the eviction registered
TreeCachelLi st ener will maintain state statistics and information will be relayed to each
individual Eviction Region. Each Region can define a different Evi cti onPol i cy implementation
that will know how to correlate cache add, remove, and visit events back to a defined eviction
behavior. It's the policy provider's responsibility to decide when to call back the cache "evict"
operation.

There is a single eviction thread (timer) that will run at a configured interval. This thread will
make calls into each of the policy providers and inform it of any Tr eeCacheli st ener
aggregated adds, removes and visits (gets) to the cache during the configured interval. The
eviction thread is responsible for kicking off the eviction policy processing (a single pass) for
each configured eviction cache region.

In order to implement an eviction policy, the following interfaces must be implemented:
org.jboss.cache.eviction.EvictionPolicy, org.jboss.cache.eviction.EvictionAlgorithm,
org.jboss.cache.eviction.EvictionQueue and org.jboss.cache.eviction.EvictionConfiguration.
When compounded together, each of these interface implementations define all the underlying
mechanics necessary for a complete eviction policy implementation.

21

Chapter 6. Eviction Policies

EvictionTimerTask
-regionsToProcess
+run{)

1

)

RegionManager

+evictionTimerTask : EvictionTimerTask

+createRegion(in fgn : String, in element) : Region

+configure(in treecache : TreeCacha)
+removeRegion(in fgn : String)
+hasRegioniin fgn : String) : boolean
+getRegion{in fgn : String) : Region

+ereateRegion(in fon : String, in evictionPolicy : EvictionPolicy, in evictionConfiguration - EvictionCorfiguration) : Region

-

>

Region

+rodehModifyr)
+nodeRamoved])
+nodeCreated|) HgetEvictionPolicy() : EviclionPolicy
+podeVisited() +sethddedMode() : Fgn
+setRemovedMode() - Fgn
q HsetVisitedMode() : Fgn
winierfacen winteracen 1 rgetEvictianConfiguration()
TreeGacheListener EvictionConfiguration ¥ r_,
+nodeModify() +parseXMLConfigiin alament) 1
+nodeRemoved) vinterface»EvictionPolicy
+qodeCre§red|’) F_\ +auict()
+nodeVisited() LRUConfiguration LRUPalicy |‘IE> +HgetEviciionAlgarithm() | EvictionAlgonithm
. tmaxModes - int 1
HdleTimeSeconds : int 1
1 i ainterfaces EvictionAlgorithm
; r +procass(in region : Ragion)
TreeCache LRUAIgorithm +getEvictionQueue() : EviclionQuews
: Obi 1
Hputl} - Object
+get() : Object ,.
Hremovel) - Object
+atEvictionRegionManager|) : RegionManager
d =g gerl) g 29 winterfaces
EvictionQueue

Figure 6.1. TreeCache eviction UML Diagram

public interface EvictionPolicy

{

/**

* Evict a node formthe underlying cache.

*

* @aram fgn Dat aNode corresponds to this fqn.

* @hrows Exception

*/

LRUQueusa

voi d evict(Fgn fgn) throws Excepti on;

/**

* Return children nanmes as bjects

*

* @aram fqgn

* @eturn Child nanes under given fqgn

+gatFirstNodeEntry() : NodeEntry
+getNodeEntryfin fgn : Fgn) : NodeEniry
+containsNodeEntry() : boolean
+removeNodeEntry(in nodeEntry ; NodeEnitry)
+addModeEntryiin nodeEntry | NodeEnfry)
+aizaf) : nt

+oisar()

MNodeEntry

-modifiedTimeStamp : long
-creationTimeStamp : long
-numberOfMNodeyisits - int

22

Eviction Policy Plugin

*/
Set get Chi |l drenNanes(Fgn fqn);

/**

* |s this a | eaf node?

*

* @aram fqgn

* @eturn true/false if | eaf node.
*/

bool ean hasChil d(Fgn fqgn);

Obj ect get CacheData(Fgn fqgn, Object key);

/**
* Method called to configure this inplenentation.
*/

voi d confi gure(TreeCache cache);

/**
* Get the associated EvictionAl gorithmused by the EvictionPolicy.
* <p/>
* This rel ationship should be 1-1.
*
* @eturn An EvictionAl gorithminpl enentation.
*/
Evi cti onAl gorithm get Evi cti onAl gorithm();

/**
* The EvictionConfiguration inplenentation class used by this
Evi ctionPol i cy.
*
* @eturn EvictionConfiguration inplenmentati on class.
*/
Cl ass get Evi cti onConfi gurationC ass();

public interface EvictionAl gorithm
{
/**
* Entry point for evictin algorithm This is an api called by the
Evi cti onTi ner Task
* to process the node events in waiting and actual pruning, if
necessary.
*
* @aramregion Region that this algorithmw || operate on.
*/
voi d process(Regi on regi on) throws EvictionException;

/**
* Reset the whole eviction queue. Queue nay needs to be reset due to

corrupted state,
* for exanple.

*

* @aramregion Region that this algorithmw ||l operate on.

23

Chapter 6. Eviction Policies

*/
voi d reset Evi cti onQueue(Regi on regi on);

/**

* Cet the EvictionQueue inplenmentation used by this algorithm

*

* @eturn the EvictionQueue inplenentation.
*/
Evi cti onQueue get Evi cti onQueue();

public interface EvictionQueue

{

/**

* Get the first entry in the queue.

* <p/>

* |f there are no entries in queue, this method will return null.

* <p/>

* The first node returned is expected to be the first node to evict.

*

* @eturn first NodeEntry in queue.

*/

publ i ¢ NodeEntry getFirst NodeEntry();

/**

* Retrieve a node entry by Fqgn.

* <p/>

* This will return null if the entry is not found.

*

* @aramfgn Fgn of the node entry to retrieve.

* @eturn Node Entry object associated with given Fgn param

*/

publ i c NodeEntry get NodeEntry(Fgn fqn);

publ i c NodeEntry get NodeEntry(String faqn);

/**

* Check if queue contains the given NodeEntry.

*

* @aramentry NodeEntry to check for existence in queue.

* @eturn true/false if NodeEntry exists in queue.

*/

publ i ¢ bool ean cont ai nsNodeEnt ry(NodeEntry entry);

/**

* Renpve a NodeEntry from queue.

* <p/>

* |f the NodeEntry does not exist in the queue, this method will return
normal | y.

*

* @aramentry The NodeEntry to remove from queue.
*/
public void removeNodeEnt ry(NodeEntry entry);

24

Eviction Policy Plugin

/**

* Add a NodeEntry to the queue.

*

* @aramentry The NodeEntry to add to queue.
*

/
publ i c voi d addNodeEnt ry(NodeEntry entry);

/**

* Cet the size of the queue.

*

* @eturn The nunber of itens in the queue.
*/
public int size();

/**
* Clear the queue.
*/
public void clear();

public interface EvictionConfiguration

{

public static final int WAKEUP_DEFAULT = 5;

public static final String ATTR = "attribute";
public static final String NAME = "nanme";

public static final String REGA ON = "regi on";
public static final String WAKEUP_| NTERVAL_SECONDS =

"wakeUpl nt er val Seconds" ;

exanpl e
*

public static final String MAX NODES = "nmaxNodes";
public static final String TIME TO | DLE SECONDS = "ti nmeTol dl eSeconds";
public static final String TIME_TO LI VE SECONDS = "ti neToLi veSeconds";
public static final String MAX_AGE_SECONDS = "maxAgeSeconds";
public static final String M N _NODES = "ni nNodes";

c

public static final String REG ON POLI CY_CLASS = "policyd ass";

* Parse the XML configuration for the given specific eviction region.
* <p/>
* The el enent paraneter should contain the entire region bl ock. An

of an entire El enent of the region would be:
* <p/>

* <regi on nane="abhc">

* <attribute nane="naxNodes">10</attri bute>

* </regi on>

* @aram el enent DOM el enent for the region. <region

nanme="abc" ></r egi on>

* @hrows ConfigureException
*/

25

Chapter 6. Eviction Policies

public void parseXM.Confi g(El ement el enent) throws ConfigureExcepti on;

Note that:

» The EvictionConfiguration class ‘parseXMLConfig(Element)' method expects only the DOM
element pertaining to the region the policy is being configured for.

« The EvictionConfiguration implementation should maintain getter and setter methods for
configured properties pertaining to the policy used on a given cache region. (e.g. for
LRUConfiguration there is a int getMaxNodes() and a setMaxNodes(int))

Alternatively, the implementation of a new eviction policy provider can be further simplified by
extending BaseEvictionPolicy and BaseEvictionAlgorithm. Or for properly sorted
EvictionAlgorithms (sorted in eviction order - see LFUAIgorithm) extending
BaseSortedEvictionAlgorithm and implementing SortedEvictionQueue takes care of most of the
common functionality available in a set of eviction policy provider classes

publ i c abstract class BaseEvictionPolicy inplenents EvictionPolicy

{
protected static final Fqn ROOT = new Fgn("/");

prot ected TreeCache cache_;

publ i ¢ BaseEvi cti onPolicy()

{
}

/** EvictionPolicy interface inplenmentation */

/**

* Evict the node under given Fgn from cache.
*

* @aramfqgn The fqn of a node in cache.

* @hrows Exception

*/
public void evict(Fgn fgn) throws Exception
{
cache_.evict(fqgn);
}
/**

* Return a set of child nanes under a given Fgn.
*
* @aramfgn Get child names for given Fgn in cache.
* @eturn Set of children nane as Objects
*/
public Set get Chil drenNanmes(Fgn fqn)
{
try

26

Eviction Policy Plugin

{
return cache_. get Chi | drenNanes(fqn);
}
catch (CacheException e)
{
e.printStackTrace();
}
return null;
}
publ i ¢ bool ean hasChil d(Fgn fgn)
{
return cache_. hasChil d(fqn);
}
publ i c Obj ect getCacheData(Fgn fgn, Object key)
{
try
{
return cache_. get(fqgn, key);
}
catch (CacheException e)
{
e.printStackTrace();
}
return null;
}
public void configure(TreeCache cache)
{
thi s. cache_ = cache;
}

publ i c abstract class BaseEvictionAl gorithminplenments EvictionAl gorithm
{

private static final Log log =
LogFact ory. get Log(BaseEvi cti onAl gorithm cl ass);

prot ect ed Regi on region;
prot ect ed BoundedBuf fer recycl eQueue;
protected Evicti onQueue evicti onQueue;

/**

* This method will create an EvictionQueue inplenentation and prepare it
for use.

*

* @aramregion Region to setup an eviction queue for.

* @eturn The created Evicti onQueue to be used as the eviction queue for
this algorithm

* @hrows EvictionException

* @ee EvictionQueue

*/

protected abstract Evicti onQueue setupEvi cti onQueue(Regi on regi on) throws

27

Chapter 6. Eviction Policies

Evi cti onExcepti on;

/**

* This method will check whether the given node shoul d be evicted or

not .

*

* @aram ne NodeEntry to test eviction for.
* @eturn True if the given node should be evicted. False if the given

node shoul d not

* be evicted.
*/
prot ect ed abstract bool ean shoul dEvi ct Node(NodeEntry ne);

prot ect ed BaseEvi cti onAl gorithm()
{

recycl eQueue = new BoundedBuffer();

}

protected void initialize(Region region) throws EvictionException
{

this.region = region;

evi cti onQueue = set upEvicti onQueue(region);

* Process the given region.

* <p/>

* Eviction Processing enconpasses the follow ng:

* <p/>

* - Add/ Renove/ Vi sit Nodes

* - Prune according to Eviction Al gorithm

* - Enpty/Retry the recycle queue of previously evicted but | ocked

(during actual

* cache eviction)

*nodes.

*

* @aramregion Cache region to process for eviction.

* @hrows EvictionException

*/

public void process(Region region) throws EvictionException
{

if (this.region == null)

{
}

this.initialize(region);

thi s. processQueues(region);
thi s. enpt yRecycl eQueue();
this. prune();

}

public void resetEvicti onQueue(Regi on regi on)

{
}

/**

* Get the underlying EvictionQueue inplenentation.

28

Eviction Policy Plugin

*

* @eturn the EvictionQueue used by this algorithm
* @ee EvictionQueue

*/

public EvictionQueue getEvicti onQueue()

{
return this.evictionQueue;
}
/**
* Event processing for Evict/Add/Visiting of nodes.
* <p/>

* - On AddEvents a new el enent is added into the eviction queue
* - On RenmpveEvents, the renpved elenent is renoved fromthe eviction

queue.
* - On VisitEvents, the visited node has its eviction statistics updated
(idleTine,

* nunber O NodeVi si sts, etc..)
*
* @aramregion Cache region to process for eviction.
* @hrows EvictionException
*/
protected void processQueues(Regi on regi on) throws EvictionException
{
Evi ct edEvent Node node;
int count = O;
whi |l e ((node = region.takelLast EventNode()) != null)
{
int event Type = node. get Event ();
Fgn fgn = node. get Fgn();

count ++;
switch (event Type)
{
case EvictedEvent Node. ADD EVENT:
thi s. processAddedNodes(f gn);
br eak;
case Evi ct edEvent Node. REMOVE_EVENT:
thi s. processRenmovedNodes(fqn);
br eak;
case Evi ct edEvent Node. VI SI T_EVENT:
this. processVisitedNodes(fqn);

br eak;
def aul t:
throw new Runti neException("Illegal Eviction Event type " +
event Type) ;
}
}
if (log.isTraceEnabl ed())
{
| og.trace("processed " + count + " node events");
}

}

protected void evict(NodeEntry ne)

29

Chapter 6. Eviction Policies

{
/1 NodeEntry ne = evicti onQueue. get NodeEntry(fqn);
if (ne !'=null)
{
evi cti onQueue. renoveNodeEnt ry(ne) ;
if (!'this.evictCacheNode(ne.getFgn()))
{
try
{
recycl eQueue. put (ne) ;
}
catch (I nterruptedException e)
{
e.printStackTrace();
}
}
}
}
/**

* Evict a node from cache.

*

* @aram fgn node corresponds to this fqgn
* @eturn True if successful

*/

prot ect ed bool ean evi ct CacheNode(Fgn f gn)

{
if (log.isTraceEnabl ed())

{

log.trace("Attenpting to evict cache node with fgn of " + fqn);

}

Evi cti onPolicy policy = region.getEvictionPolicy();
// Do an eviction of this node

try
{
policy.evict(fqgn);
}
catch (Exception e)
{
if (e instanceof Ti meout Excepti on)
{
|l og.warn("eviction of " + fqgn + " tined out. WIIl retry
later.");
return false;
}
e.printStackTrace();
return fal se;
}

if (log.isTraceEnabl ed())
{

l og.trace("Eviction of cache node with fgn of " + fgn + "
successful ") ;

}

return true;

30

Eviction Policy Plugin

}

/**

* Process an Added cache node
*

* @aram fgn FON of the added node

* @hrows EvictionException

*/

prot ected void processAddedNodes(Fgn fqn) throws Evicti onException

{
if (log.isTraceEnabl ed())

{
}

l og.trace("Addi ng node " + fgn + " to eviction queue");

|l ong stanp = SystemcurrentTimeM I lis();
NodeEntry ne = new NodeEntry(fqgn);
ne. set Modi fi edTi meSt anp(st anp) ;
ne. set Nunber O NodeVi sits(1);
/!l add it to the node map and eviction queue
i f (evictionQueue.contai nsNodeEntry(ne))
{
if (log.isTraceEnabl ed())
{
| og. trace(" Queue already contains " + ne.getFgn() + " processing
it as visited");
}
this. processVisitedNodes(ne. get Fqn());
return;

}

evi cti onQueue. addNodeEnt ry(ne) ;

if (log.isTraceEnabl ed())
{

}

| og. trace(ne.getFgn() + " added successfully to eviction queue");

}

/**

* Renpve a node from cache.

*

* This method will renove the node fromthe eviction queue as well as

* evict the node from cache.

*

* |f a node cannot be renpved from cache, this nethod will renove it
fromthe

* eviction queue and place the elenent into the recycl eQueue. Each node
in the recycle

* queue will get retried until proper cache eviction has taken pl ace.

*

* Because Evicti onQueues are collections, when iterating them from an
iterator, use

* jterator.renmove() to avoid Concurrent Modificati onExceptions. Use the
bool ean

* paraneter to indicate the calling context.

*

31

Chapter 6. Eviction Policies

* @aram fgn FON of the renpved node
* @hrows EvictionException
=
prot ected voi d processRenpvedNodes(Fgn fqgn) throws EvictionException
{
if (log.isTraceEnabl ed())
{
|l og.trace("Renoving node " + fgqn + " fromevicti on queue and
attenpting eviction");

}
NodeEntry ne = evi cti onQueue. get NodeEnt ry(fqn);
if (ne !'=null)
{
evi cti onQueue. renobveNodeEnt ry(ne) ;
}
if (log.isTraceEnabl ed())
{
log.trace(fgn + " renoved from evicti on queue");
}
}
/**

* Visit a node in cache.
* <p/>
* This method will update the numVisits and nodifi edTi nestanp properties
of the Node.
* These properties are used as statistics to determine eviction (LRU,
LFU, MRU, etc..)
* <p/>
* *Note* that this nethod updates Node Entries by reference and does not
put them back
* into the queue. For sone sorted collections, a renove, and a re-add is
required to
* maintain the sorted order of the el ements.
*
* @aramfgn FON of the visited node.
* @hrows EvictionException
*/
protected void processVi sitedNodes(Fgn fgn) throws EvictionException
{
NodeEntry ne = evi cti onQueue. get NodeEnt ry(fqn);
if (ne == null)
{
thi s. processAddedNodes(fqn);
return;
}
/Il note this method will visit and nodify the node statistics by
r ef er ence!
/Il if a collection is only guaranteed sort order by adding to the
col | ecti on,
// this inplementation will not guarantee sort order.
ne. set Nunber Of NodeVi si t s(ne. get Number Of NodeVi sits() + 1);
ne. set Modi fi edTi meSt anp(System currentTimeM I 1is());

32

Eviction Policy Plugin

/**

* Enpty the Recycle Queue.

* <p/>

* This method will go through the recycle queue and retry to evict the
nodes from cache.

*

* @hrows EvictionException

*/

protected voi d enptyRecycl eQueue() throws EvictionException

{

while (true)
{
Fgn fgn;
try
{
fgn = (Fgn) recycl eQueue. pol | (0);
}
catch (InterruptedException e)
{
e.print StackTrace();
br eak;
}
if (fqgn == null)
{
if (log.isTraceEnabl ed())
{
| og.trace("Recycl e queue is enpty");
}
br eak;
}
if (log.isTraceEnabl ed())
{
| og.trace("enptying recycle bin. Evict node " + fqgn);
}
[l Still doesn't work
if (!evictCacheNode(fqgn))
{
try
{
recycl eQueue. put (fgn);
}
catch (I nterruptedException e)
{
e. print StackTrace();
}
br eak;
}

}

protected void prune() throws EvictionException

{
NodeEntry entry;

33

Chapter 6. Eviction Policies

while ((entry = evictionQueue. getFirstNodeEntry()) !'= null)
{
if (this.shoul dEvi ct Node(entry))
{
this.evict(entry);
}
el se
{
br eak;
}
}
}
}
Note that:

« The BaseEvictionAlgorithm class maintains a processing structure. It will process the ADD,
REMOVE, and VISIT events queued by the Region (events are originated from the
EvictionTreeCacheListener) first. It also maintains an collection of items that were not
properly evicted during the last go around because of held locks. That list is pruned. Finally,
the EvictionQueue itself is pruned for entries that should be evicted based upon the
configured eviction rules for the region.

public abstract class BaseSortedEvicti onAl gorithm extends
BaseEvi cti onAl gorithm
i mpl enents EvictionAl gorithm

{

private static final Log log =
LogFact ory. get Log(BaseSort edEvi cti onAl gorithm cl ass);

public void process(Region region) throws EvictionException

{
}

super . process(regi on);

protected voi d processQueues(Regi on region) throws EvictionException

{

bool ean evi cti onNodesMbdi fi ed = fal se;

Evi ct edEvent Node node;
int count = O;
whil e ((node = region.takelLast Event Node()) != null)
{
i nt event Type = node. get Event ();
Fgn fgn = node. get Fgn();

count ++;
switch (event Type)

{
case EvictedEvent Node. ADD EVENT:

34

Eviction Policy Plugin

t hi s. processAddedNodes(fgn);
evi cti onNodesModi fied = true;
br eak;

case EvictedEvent Node. REMOVE EVENT:
t hi s. processRenmovedNodes(fqn);
br eak;

case Evi ct edEvent Node. VI SI T_EVENT:
thi s. processVi sit edNodes(fqn);
evi cti onNodesMbdi fi ed = true;

br eak;
def aul t:
t hrow new Runti meException("Il1|egal Eviction Event type "
+ event Type) ;
}
}
if (log.isTraceEnabl ed())
{
| og.trace("Eviction nodes visited or added requires resort of
queue " +
evi cti onNodeshbdi fi ed);
}

this.resortEvicti onQueue(evi cti onNodesModi fi ed);

if (log.isTraceEnabl ed())
{

| og.trace("processed " + count + " node events");

}
}

/**
* This method is called to resort the queue after add or visit events
have occurred.
*
* |f the parameter is true, the queue needs to be resorted. If it is
fal se, the queue
* does not need resorting.
*
* @©@aram evi cti onQueuehModi fied True if the queue was added to or
vi si sted during event
* processing.
*/
protected void resortEvicti onQueue(bool ean evi cti onQueueMdi fi ed)
{
Il ong begin = SystemcurrentTimeM | lis();
((SortedEvi cti onQueue) evictionQueue).resortEvictionQueue();
long end = SystemcurrentTineM | lis();

if (log.isTraceEnabl ed())
{
long diff = end - begin;
log.trace("Took " + diff + "ns to sort queue with " +
get Evi cti onQueue() . si ze()
+ " elements");

35

Chapter 6. Eviction Policies

Note that:

» The BaseSortedEvictionAlgorithm class will maintain a boolean through the algorithm
processing that will determine if any new nodes were added or visited. This allows the
Algorithm to determine whether to resort the eviction queue items (in first to evict order) or to
skip the potentially expensive sorting if there have been no changes to the cache in this
region.

public interface SortedEvictionQueue extends EvictionQueue

{

/**

* Provide contract to resort a sorted queue
*/
public void resortEvicti onQueue();

Note that:

» The SortedEvictionQueue interface defines the contract used by the
BaseSortedEvictionAlgorithm abstract class that is used to resort the underlying queue.
Again, the queue sorting should be sorted in first to evict order. The first entry in the list
should evict before the last entry in the queue. The last entry in the queue should be the last
entry that will require eviction.

2. TreeCache Eviction Policy Configuration

TreeCache 1.2.X allows a single eviction policy provider class to be configured for use by all
regions. As of TreeCache 1.3.x each cache region can define its own eviction policy provider or
it can use the eviction policy provider class defined at the cache level (1.2.x backwards
compatibility)

Here is an example of a legacy 1.2.x EvictionPolicyConfig element to configure TreeCache for
use with a single eviction policy provider

<attribute
name="Evi cti onPol i cyCl ass" >or g. j boss. cache. evi cti on. LRUPol i cy</attri bute>

<I-- Specific eviction policy configurations. This is LRU -->
<attribute name="EvictionPolicyConfig">
<confi g>

<attribute nanme="wakeUpl nt erval Seconds" >5</attri but e>

36

TreeCache Eviction Policy Configuration

<l-- Cache w de default -->
<regi on name="/_default_">
<attri bute nane="nmaxNodes" >5000</attri bute>

<attribute name="ti neToLi veSeconds">1000</attri bute>

</ regi on>
<regi on name="/org/j boss/data">
<attribute nane="nmaxNodes">5000</attri bute>

<attribute name="ti neToLi veSeconds">1000</attri bute>

</regi on>
<regi on nanme="/org/j boss/test/data">
<attribute nane="nmaxNodes">5</attri bute>
<attribute nane="ti neToLi veSeconds" >4</attri but e>
</regi on>
<regi on name="/test/">
<attribute nane="nmaxNodes">10000</attri bute>
<attribute nane="ti neToLi veSeconds" >5</attri but e>
</regi on>
<r egi on nanme="/ maxAgeTest/">
<attribute nane="naxNodes">10000</attri bute>
<attribute nane="ti meToLi veSeconds">8</attri but e>
<attri bute nane="nmaxAgeSeconds">10</attri bute>
</regi on>
</ confi g>
</attribute>

Here is an example of configuring a different eviction provider per region

<attribute name="EvictionPolicyConfig">

<config>
<attribute nane="wakeUpl nt erval Seconds" >5</attri but e>
<l-- Cache w de default -->

<regi on name="/_defaul t_
pol i cyd ass="org. j boss. cache. evi cti on. LRUPol i cy" >
<attribute nane="nmaxNodes">5000</attri bute>
<attribute nane="ti neTolLi veSeconds">1000</attri but e>
</regi on>
<regi on name="/org/j boss/data"
pol i cyd ass="org. j boss. cache. evi cti on. LFUPol i cy" >
<attribute nane="naxNodes">5000</attri bute>
<attribute nane="m nNodes">1000</attri bute>
</regi on>
<regi on name="/org/j boss/test/data"
pol i cyd ass="org. j boss. cache. evi cti on. Fl FOPol i cy" >
<attribute nane="nmaxNodes">5</attri bute>
</regi on>
<regi on name="/test/"
pol i cyd ass="org. j boss. cache. evi cti on. MRUPol i cy" >
<attribute nanme="naxNodes">10000</attri bute>
</regi on>
<regi on name="/maxAgeTest/"
pol i cyd ass="org. j boss. cache. evi cti on. LRUPol i cy" >
<attribute nane="naxNodes">10000</attri bute>
<attribute nane="ti meToLi veSeconds" >8</attri but e>

37

Chapter 6. Eviction Policies

<attribute nane="naxAgeSeconds">10</attri bute>
</ regi on>
</confi g>
</attribute>

Lastly, an example of mixed mode. In this scenario the regions that have a specific policy
defined will use that policy. Those that do not will default to the policy defined on the entire
cache instance.

<attribute
nanme="Evi cti onPol i cyd ass" >or g. j boss. cache. evi cti on. LRUPol i cy</attri bute>

<I-- Specific eviction policy configurations. This is LRU -->
<attribute name="EvictionPolicyConfig">
<config>
<attribute nane="wakeUpl nt erval Seconds" >5</attri but e>
<I-- Cache w de default -->

<regi on name="/_default_">
<attri bute nane="nmaxNodes">5000</attri bute>
<attribute nane="ti neTolLi veSeconds">1000</attri but e>
</regi on>
<regi on name="/org/j boss/dat a"
pol i cyCl ass="org. j boss. cache. evi cti on. Fl FOPol i cy" >
<attribute nane="nmaxNodes">5000</attri bute>
</ regi on>
<regi on name="/test/"
pol i cyd ass="org. j boss. cache. evi cti on. MRUPol i cy" >
<attribute nane="nmaxNodes">10000</attri bute>
</ regi on>
<r egi on nane="/ maxAgeTest/">
<attribute nane="maxNodes" >10000</attri but e>
<attribute nane="ti meToLi veSeconds">8</attri but e>
<attribute nane="naxAgeSeconds">10</attri bute>
</ regi on>
</ confi g>
</attribute>

TreeCache now allows reconfiguration of eviction policy providers programatically at runtime.
An example of how to reconfigure at runtime and how to set an LRU region to have maxNodes
to 12345 timeToLiveSeconds to 500 and maxAgeSeconds to 1000 programatically.

/! note this is just to show that a running TreeCache instance nust
be

/1 retrieved sonehow. How it is inplenented is up to the
i mpl enent or .

TreeCache cache = get Runni ngTreeCachel nst ance() ;

org.j boss. cache. evi cti on. Regi onManager regi onManager =
cache. get Evi ct i onRegi onManager () ;

38

TreeCache LRU eviction policy

org. j boss. cache. evi cti on. Regi on regi on =
r egi onManager . get Regi on("/ myRegi onNane") ;
Evi cti onConfi guati on config = regi on. get Evi cti onConfiguration();
((LRUConfi guration)config).set MaxNodes(12345);
((LRUConfi guration)config).setTi meToLi veSeconds(500) ;
((LRUConfi guration)config).set MaxAgeSeconds(1000) ;

3. TreeCache LRU eviction policy implementation

TreeCache has implemented a LRU eviction policy, or g. j boss. cache. evi cti on. LRUPol i cy,
that controls both the node lifetime and age. This policy guarantees O(n) = 1 for adds, removals
and lookups (visits). It has the following configuration parameters:

« wakeUpl nt er val Seconds. This is the interval (in seconds) to process the node events and
also to perform sweeping for the size limit and age-out nodes.

* Regi on. Region is a group of nodes that possess the same eviction policy, e.g., same expired
time. In TreeCache, region is denoted by a fgn, e.g., / conpany/ per sonnel , and it is
recursive. In specifying the region, the order is important. For example, if / or g/ j boss/ t est is
specified before / or g/ j boss/ t est / dat a, then any node under / or g/ j boss/t est/ dat a
belongs to the first region rather than the second. Note also that whenever eviction policy is
activated, there should always be a/ _def aul t _ region which covers all the eviction policies
not specified by the user. In addition, the region configuration is not programmable, i.e., all
the policies have to be specified via XML configuration.

» maxNodes. This is the maximum number of nodes allowed in this region. 0 denotes no limit.

e tineToLi veSeconds. Time to idle (in seconds) before the node is swept away. 0 denotes
no limit.

* maxAgeSeconds. Time an object should exist in TreeCache (in seconds) regardless of idle

time before the node is swept away. 0 denotes no limit.

Please see the above section for an example.

4. TreeCache FIFO eviction policy implementation

TreeCache has implemented a FIFO eviction policy, or g. j boss. cache. evi cti on. FI FOPol i cy,
that will control the eviction in a proper first in first out order. This policy guarantees O(n) = 1 for
adds, removals and lookups (visits). It has the following configuration parameters:

» wakeUpl nt er val Seconds. This is the interval (in seconds) to process the node events and
also to perform sweeping for the size limit and age-out nodes.

* Regi on. Region is a group of nodes that possess the same eviction policy, e.g., same expired

39

Chapter 6. Eviction Policies

time. In TreeCache, region is denoted by a fgn, e.g., / conpany/ per sonnel , and it is
recursive. In specifying the region, the order is important. For example, if / or g/ j boss/ t est is
specified before / or g/ j boss/ t est / dat a, then any node under / or g/ j boss/t est/ dat a
belongs to the first region rather than the second. Note also that whenever eviction policy is
activated, there should always be a/ _def aul t _ region which covers all the eviction policies
not specified by the user. In addition, the region configuration is not programmabile, i.e., all
the policies have to be specified via XML configuration.

» maxNodes. This is the maximum number of nodes allowed in this region. Any integer less
than or equal to 0 will throw an exception when the policy provider is being configured for
use.

Please read the above section for an example.

5. TreeCache MRU eviction policy implementation

TreeCache has implemented a MRU eviction policy, or g. j boss. cache. evi cti on. MRUPol i cy,
that will control the eviction in based on most recently used algorithm. The most recently used
nodes will be the first to evict with this policy. This policy guarantees O(n) = 1 for adds,
removals and lookups (visits). It has the following configuration parameters:

* wakeUpl nt er val Seconds. This is the interval (in seconds) to process the node events and
also to perform sweeping for the size limit and age-out nodes.

* Regi on. Region is a group of nodes that possess the same eviction policy, e.g., same expired
time. In TreeCache, region is denoted by a fgn, e.g., / conpany/ per sonnel , and it is
recursive. In specifying the region, the order is important. For example, if / or g/ j boss/ t est is
specified before / or g/ j boss/ t est / dat a, then any node under / or g/ j boss/t est/ dat a
belongs to the first region rather than the second. Note also that whenever eviction policy is
activated, there should always be a/ _def aul t _ region which covers all the eviction policies
not specified by the user. In addition, the region configuration is not programmabile, i.e., all
the policies have to be specified via XML configuration.

» maxNodes. This is the maximum number of nodes allowed in this region. Any integer less
than or equal to 0 will throw an exception when the policy provider is being configured for
use.

Please read the above section for an example.

6. TreeCache LFU eviction policy implementation

TreeCache has implemented a LFU eviction policy, or g. j boss. cache. evi cti on. LFUPol i cy,
that will control the eviction in based on least frequently used algorithm. The least frequently

used nodes will be the first to evict with this policy. Node usage starts at 1 when a node is first
added. Each time it is visted, the node usage counter increments by 1. This number is used to
determine which nodes are least frequently used. LFU is also a sorted eviction algorithm. The

40

implementation

underlying EvictionQueue implementation and algorithm is sorted in ascending order of the
node visits counter. This class guarantees O(n) = 1 for adds, removal and searches. However,
when any number of nodes are added/visited to the queue for a given processing pass, a single
O(n) = n*log(n) operation is used to resort the queue in proper LFU order. Similarly if any nodes
are removed or evicted, a single O(n) = n pruning operation is necessary to clean up the
EvictionQueue. LFU has the following configuration parameters:

« wakeUpl nt er val Seconds. This is the interval (in seconds) to process the node events and
also to perform sweeping for the size limit and age-out nodes.

* Regi on. Region is a group of nodes that possess the same eviction policy, e.g., same expired
time. In TreeCache, region is denoted by a fgn, e.g., / conpany/ per sonnel , and it is
recursive. In specifying the region, the order is important. For example, if / or g/ j boss/ t est is
specified before / or g/ j boss/ t est / dat a, then any node under / or g/ j boss/t est/ dat a
belongs to the first region rather than the second. Note also that whenever eviction policy is
activated, there should always be a/ _def aul t _ region which covers all the eviction policies
not specified by the user. In addition, the region configuration is not programmabile, i.e., all
the policies have to be specified via XML configuration.

» maxNodes. This is the maximum number of nodes allowed in this region. A value of O for
maxNodes means that there is no upper bound for the configured cache region.

* mi nNodes. This is the minimum number of nodes allowed in this region. This value
determines what the eviction queue should prune down to per pass. e.g. If minNodes is 10
and the cache grows to 100 nodes, the cache is pruned down to the 10 most frequently
used nodes when the eviction timer makes a pass through the eviction algorithm.

Please read the above section for an example.

41

42

Chapter 7.

Cache Loaders

JBoss Cache can use a cache loader to back up the in-memory cache to a backend datastore.
If JBoss Cache is configured with a cache loader, then the following features are provided:

« Whenever a cache element is accessed, and that element is not in the cache (e.g. due to
eviction or due to server restart), then the cache loader transparently loads the element into
the cache if found in the backend store.

« Whenever an element is modified, added or removed, then that modification is persisted in
the backend store via the cache loader. If transactions are used, all modifications created
within a transaction are persisted. To this end, the cache loader takes part in the two phase
commit protocol run by the transaction manager.

Currently, the cache loader API looks similar to the TreeCache API. In the future, they will both
implement the same interface. The goal is to be able to form hierarchical cache topologies,
where one cache can delegate to another, which in turn may delegate to yet another cache.

As of JBossCache 1.3.0, you can now define several cache loaders, in a chain. The impact is
that the cache will look at all of the cache loaders in the order they've been configured, until it
finds a valid, non-null element of data. When performing writes, all cache loaders are written to
(except if the ignoreModifications element has been set to true for a specific cache loader. See
the configuration section below for details.

The cache loader interface is defined in org.jboss.cache.loader.CachelLoader as follows (edited
for brevity):

public interface CacheLoader extends Service {

/**

* Sets the configuration. WIl be called before {@ink #create()} and
{@ink #start()}

* @aram props A set of properties specific to a given CachelLoader

*/

voi d set Confi g(Properties props);

voi d set Cache(TreeCache c);

/**

* Returns a list of children nanes, all nanes are <enprel ative</enp.
Returns null if

* the parent node is not found.

* The returned set nust not be nodified, e.g. use
Col | ecti ons. unnodi fi abl eSet (s) to

* return the result

* @aram fgn The FON of the parent

* @eturn Set<String> A list of children. Returns null if no children
nodes are present,

* or the parent is not present

43

Chapter 7. Cache Loaders

*/
Set get Chi |l drenNanes(Fgn fqgn) throws Excepti on;

/**

* Returns the value for a given key. Returns null if the node doesn't
exi st, or the val ue

* is not bound

*/

oj ect get (Fgn nane, Object key) throws Exception;

/**
* Returns all keys and values fromthe persistent store, given a fully
qual i fi ed nane.

*

* NOTE that the expected return value of this method has changed from
JBossCache 1.2.x

* and before! This will affect cache |oaders witten prior to
JBossCache 1.3.0 and such

* i npl ementati ons shoul d be checked for conpliance with the behavi our
expect ed.

*

* @ar am nane

* @eturn Map<Cbj ect, Cbj ect> of keys and val ues for the given node.
Returns null if the

* node is not found. |If the node is found but has no attributes, this
nmet hod returns

* an enpty Map.

* @hrows Exception

*/

Map get (Fgn nane) throws Exception;

/**

* Checks whether the CachelLoader has a node with Fgn
* @eturn True if node exists, fal se otherw se

*/

bool ean exi sts(Fgn nane) throws Exception;

/**

* Inserts key and value into the attributes hashmap of the given node.
If the node does

* not exist, all parent nodes fromthe root down are created
automatical ly

*/

voi d put (Fgn nane, Object key, Object value) throws Exception;

/**

* Inserts all elenents of attributes into the attributes hashmap of the
gi ven node,

* overwiting existing attributes, but not clearing the existing hashmap
bef ore

* insertion (making it a union of existing and new attri butes)

* |f the node does not exist, all parent nodes fromthe root down are

44

created
* automatically
* @aram nane The fully qualified name of the node
* @aramattributes A Map of attributes. Can be null
*/
voi d put (Fgn nane, Map attributes) throws Exception;

/**
* |nserts all nodifications to the backend store. Overwite whatever is
already in
* the datastore.
* @aram nodi fications A List<Mdification> of nodifications
* @hrows Exception
*/
voi d put (List nodifications) throws Exception;

/** Renoves the given key and value fromthe attributes of the given
node.

* No-op if node doesn't exist */

voi d renove(Fgn nane, Object key) throws Exception;

/**

* Renoves the given node. If the node is the root of a subtree, this
will recursively

* renove all subnodes, depth-first

*/

voi d renove(Fgn name) throws Exception;

/** Renoves all attributes froma given node, but doesn't delete the node
itself */
voi d renoveDat a(Fgn nane) throws Excepti on;

/**

* Prepare the nodifications. For exanple, for a DB-based CachelLoader:

*

* Create a |local (JDBC) transaction

* Associate the local transaction with tx (tx is the key)

* Execute the corespondi ng SQL statenents against the DB (statenents
derived from

*modi fi cati ons)

*

* For non-transactional CacheLoader (e.g. file-based), this could be a
nul | operation

* @aramtXx The transaction, just used as a hashmap key

* @aram nodi fications List<Modification> a list of all nodifications
wi thin the given

* transaction

* @ar am one_phase Persist imediately and (for exanple) commt the
| ocal JDBC
* transaction as well. Wen true, we won't get a {@ink #commt (Cbject)}

or
* {@ink #rollback(Object)} method call |ater
*/
voi d prepare(Ooject tx, List nodifications, bool ean one_phase) throws
Excepti on;

45

Chapter 7. Cache Loaders

/**

* Conmit the transaction. A DB-based CachelLoader woul d | ook up the | ocal
JDBC transacti on

* associated with tx and commit that transaction

* Non-transacti onal CachelLoaders could sinply wite the data that was
previ ously saved

* transiently under the given tx key, to (for exanple) a file system
(note this only holds if

* the previous prepare() did not define one_phase=true

*/

voi d comit(Object tx) throws Exception;

/**

* Roll the transaction back. A DB-based CachelLoader woul d | ook up the
| ocal JDBC

* transaction associated with tx and roll back that transaction

*/

voi d rol | back(Obj ect tx);

/**

* Fetch the entire state for this cache from secondary storage (disk,
DB) and return

* it as a byte buffer. This is for initialization of a new cache froma
renot e cache.

* The new cache would then call storeEntireState()

* todo: define binary format for exchanging state

*/

byte[] | oadEntireState() throws Exception;

/** Store the given state in secondary storage. Overwite whatever is
currently in storage */
voi d storeEntireState(byte[] state) throws Exception;

}

NOTE: the contract defined by the CacheLoader interface has changed from JBoss Cache
1.3.0 onwards, specifically with the get (Fgn f gn) method. Special care must be taken with
custom CachelLoader implementations to ensure this new contract is still adhered to. See the
javadoc above on this method for details, or visit this wiki page! for more discussion on this.

CachelLoader implementations that need to support partial state transfer should also implement
the subinterface org.jboss.cache.loader.ExtendedCachelLoader:

public interface ExtendedCachelLoader extends CachelLoader

{

/**

* Fetch a portion of the state for this cache from secondary storage

* (disk, DB) and return it as a byte buffer.

* This is for activation of a portion of new cache froma renpte cache.
* The new cache would then call {@ink #storeState(byte[], Fgn)}.

1 http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossCacheCachelLoaders

46

http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossCacheCacheLoaders
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossCacheCacheLoaders

*

* @aram subtree Fqn nanming the root (i.e. highest |evel parent) node of

* the subtree for which state is requested.
*

* @ee org.|boss. cache. TreeCache#acti vat eRegi on(St ri ng)

*/

byte[] | oadState(Fgn subtree) throws Exception;

/**

* Store the given portion of the cache tree's state in secondary
st or age.

* OQverwite whatever is currently in secondary storage. |If the
transferred

* state has Fgns equal to or children of paraneter subtree

* then no special behavior is required. O herw se, ensure that

* the state is integrated under the given 'subtree'. Typically

* in the latter case 'subtree' would be the Fgn of the buddy

* packup region for a buddy group; e.g.

* |f the the transferred state had Fqns starting with "/a" and
* 'subtree' was "/_BUDDY_BACKUP_/192.168. 1.2:5555" then the

* state should be stored in the |ocal persistent store under

* "/ _BUDDY_BACKUP_/ 192. 168. 1. 2: 5555/ a"

* @aram state the state to store

* @aram subtree Fgn naming the root (i.e. highest |evel parent) node of

* the subtree included in 'state'. |If the Fgns

* of the data included in 'state' are not

* al ready children of 'subtree', then their

* Fgns should be altered to make them chil dren of
* ‘subtree' before they are persisted

*/

voi d storeState(byte[] state, Fgn subtree) throws Exception

/**

* Sets the {@ink Regi onManager} this object shoul d use to manage
* marshal | i ng/ unnarshal | i ng of different regions using different
* cl assl oaders.

*

* NOTE: This method is only intended to be used by the TreeCache

i nst ance

* this cache | oader is associated wth.

*

* @ar am manager the regi on manager to use, or null

*/
voi d set Regi onManager (Regi onManager nanager) ;

NOTE: If a cache loader is used along with buddy replication, the cache loader must implement

Ext endedCacheLoader unless its Fet chPer si st ent St at e property is set to false.

NOTE: the contract defined by the Ext endedCacheLoader interface has changed from JBoss

47

Chapter 7. Cache Loaders

Cache 1.4.0 onwards, specifically with the requirement that data passed to st or eSt at e method
be integrated under the given subtree, even if that data didn't originate in that subtree. This
behavior is necessary to properly support buddy replication. Special care must be taken with
custom ExtendedCachelLoader implementations to ensure this new contract is still adhered to.

1. The CachelLoader Interface

The interaction between JBoss Cache and a CachelLoader implementation is as follows. When
CacheLoader Confi gur at i on (see below) is non-null, an instance of each configured
cachel oader is created when the cache is created. Since CacheLoader extends Ser vi ce,

public interface Service {
voi d create() throws Exception;

void start() throws Exception;
voi d stop();

voi d destroy();

CachelLoader. creat e() and CacheLoader. start () are called when the cache is started.
Correspondingly, st op() and destroy() are called when the cache is stopped.

Next, set Confi g() and set Cache() are called. The latter can be used to store a reference to
the cache, the former is used to configure this instance of the CachelLoader. For example, here
a database CachelLoader could establish a connection to the database.

The Cacheloader interface has a set of methods that are called when no transactions are used:
get (), put (), renove() and renoveDat a() : they get/set/remove the value immediately. These
methods are described as javadoc comments in the above interface.

Then there are three methods that are used with transactions: prepare(), commit () and

rol | back() . The prepare() method is called when a transaction is to be committed. It has a
transaction object and a list of modfications as argument. The transaction object can be used as
a key into a hashmap of transactions, where the values are the lists of modifications. Each
modification list has a number of Modi fi cati on elements, which represent the changes made
to a cache for a given transaction. When pr epar e() returns successfully, then the
CachelLoader must be able to commit (or rollback) the transaction successfully.

Currently, the TreeCache takes care of calling prepare(), commit() and rollback() on the
Cacheloaders at the right time. We intend to make both the TreeCache and the CachelLoaders
XA resources, so that instead of calling those methods on a loader, the cache will only enlist the
loader with the TransactionManager on the same transaction.

The conmi t () method tells the CachelLoader to commit the transaction, and the r ol | back()
method tells the CachelLoader to discard the changes associated with that transaction.

The last two methods are | oadEntireState() and storeEntireState(). The first method

48

Configuration via XML

asks the CachelLoader to get the entire state the backend store manages and return it as a byte
buffer, and the second tells a CachelLoader to replace its entire state with the byte buffer
argument. These methods are used for scenarios where each JBossCache node in a cluster
has its own local data store, e.g. a local DB, and - when a new node starts - we have to initialize
its backend store with the contents of the backend store of an existing member. See below for
deails.

The Ext endedCacheLoader methods are also related to state transfer. The | oadSt at e(Fgn)
method is called when the cache is preparing a partial state transfer -- that is, the transfer of just
the portion of the cache loader's state that is rooted in the given Fgn. The st oreSt at e(byte[],
Fgn) method is then invoked on the cache loader of the node that is receiving the state transfer.
Partial state transfers occur when the cache's act i vat eRegi on() APl is used and during the
formation of buddy groups if buddy replication is used.

2. Configuration via XML

The CacheLoader is configured as follows in the JBossCache XML file:

<l--
e e
<!-- Defines TreeCache configuration
-->
<l--
e]
<nbean code="org.j boss. cache. TreeCache"
nanme="j boss. cache: servi ce=Tr eeCache" >
<I-- New 1.3.x cache | oader config block -->
<attribute nane="CachelLoader Confi guration">
<confi g>
<I-- if passivation is true, only the first cache |oader is

used;
the rest are ignored -->
<passi vat i on>f al se</ passi vati on>

<I-- comma delimted FONs to preload -->
<pr el oad>/ </ pr el oad>
<!-- are the cache | oaders shared in a cluster? -->

<shar ed>f al se</ shar ed>

<I-- we can now have multiple cache |oaders, which get
chai ned -->
<l-- the 'cachel oader' el enent nay be repeated -->
<cachel oader >
<cl ass>org. j boss. cache. | oader. JDBCCachelLoader </ cl ass>
<l-- sanme as the old CachelLoaderConfig attribute -->
<properties>
cache. jdbc. dri ver=com nysql . j dbc. Dri ver
cache. jdbc. url =j dbc: nysql : / /1 ocal host : 3306/ j bossdb
cache. j dbc. user =r oot
cache. j dbc. passwor d=
</ properties>
<I-- whether the cache | oader wites are asynchronous

49

Chapter 7. Cache Loaders

<async>f al se</ async>

<I-- only one cache | oader in the chain may set
f et chPersi stent St ate
to true.
An exception is thrown if nore than one cache | oader
sets this
to true. -->
<f et chPer si st ent St at e>t rue</ f et chPer si st ent St at e>
<I-- determ nes whether this cache | oader ignores wites
- defaults
to false. -->
<i gnor eModi fi cati ons>f al se</i gnoreMdi fi cati ons>
<I-- if set to true, purges the contents of this cache

| oader when
the cache starts up.
Defaults to false. -->
<pur geOnSt ar t up>f al se</ purgeOnSt art up>
</ cachel oader >

</ confi g>
</attribute>

</ nbean>

Note: In JBossCache releases prior to 1.3.0, the cache loader configuration block used to look
like this. Note that this form is DEPRECATED and you will have to replace your cache loader
configuration with a block similar to the one above.

<l ==

e e e e e e e e e e e e S
<!-- Defines TreeCache configuration

-->
<l ==

e e e e e e e e e e e e e e e -

<nmbean code="org. | boss. cache. TreeCache"
nanme="j boss. cache: servi ce=Tr eeCache" >
<attribute
nanme=" CachelLoader C ass" >or g. j boss. cache. | oader . bdbj e. Bdbj eCachelLoader
</attribute>
<l-- attribute
nanme="CachelLoader C ass" >or g. j boss. cache. | oader . Fi | eCacheLoader
</attribute -->
<attri bute nane="CachelLoader Confi g" replace="fal se">
| ocati on=c:\\tnp\\ bdbj e
</attribute>
<attri bute nane="CachelLoader Shared">true</attri bute>
<attribute nane="CachelLoader Prel oad">/</attri bute>
<attri bute nane="CachelLoader Fet chTransi ent St at e" >f al se</attri but e>
<attri bute nane="CachelLoader Fet chPersi stent State">true</attri bute>
<attribute nane="CachelLoader Asynchronous">true</attri bute>
</ mbean>

50

Configuration via XML

The CacheLoader d ass attribute defines the class of the CachelLoader implementation. (Note
that, because of a bug in the properties editor in JBoss, backslashes in variables for Windows
filenames might not get expanded correctly, so replace="false" may be necessary).

The currently available implementations shipped with JBossCache are:

* Fi | eCacheLoader, which is a simple filesystem-based implementation. The
<cachel oader ><pr operti es> element needs to contain a "location" property, which maps to
a directory where the file is located (e.g., "location=c:\\tmp").

* Bdbj eCacheLoader, which is a CacheLoader implementation based on the Sleepycat DB
Java Edition. The <cachel oader ><pr operti es> element needs to contain a "location"
property, which maps to a directory,where the database file for Sleepycat resides (e.qg.,
"location=c:\\tmp").

« JDBCCachelLoader, which is a CachelLoader implementation using JDBC to access any
relational database. The <cachel oader ><pr operti es> element contains a number of
properties needed to connect to the database such as username, password, and connection
URL. See the section on JDBCCachelLoader for more details.

e Local Del egat i ngCacheLoader , which enables loading from and storing to another local
(same VM) TreeCache.

* TcpDel egat i ngCachelLoader , which enables loading from and storing to a remote (different
VM) TreeCache using TCP as the transport mechanism. This CachelLoader is available in
JBossCache version 1.3.0 and above.

e O ust eredCachelLoader, which allows querying of other caches in the same cluster for
in-memory data via the same clustering protocols used to replicate data. Writes are not
'stored' though, as replication would take care of any updates needed. You need to specify a
property called "ti meout ", a long value telling the cache loader how many milliseconds to
wait for responses from the cluster before assuming a null value. For example, "t i meout =
3000" would use a timeout value of 3 seconds. This CachelLoader is available in JBossCache
version 1.3.0 and above.

Note that the Sleepycat implementation is much more efficient than the filesystem-based
implementation, and provides transactional guarantees, but requires a commercial license if
distributed with an application (see http://www.sleepycat.com/jeforjbosscache for details).

An implementation of CachelLoader has to have an empty constructor due to the way it is
instantiated.

The properti es element defines a configuration specific to the given implementation. The
filesystem-based implementation for example defines the root directory to be used, whereas a
database implementation might define the database URL, nhame and password to establish a
database connection. This configuration is passed to the CachelLoader implementation via
CachelLoader . set Confi g(Properti es). Note that backspaces may have to be escaped.

51

Chapter 7. Cache Loaders

Analogous to the CacheLoader Confi g attribute in pre-1.3.0 configurations.

pr el oad allows us to define a list of nodes, or even entire subtrees, that are visited by the
cache on startup, in order to preload the data associated with those nodes. The default ("/")
loads the entire data available in the backend store into the cache, which is probably not a good
idea given that the data in the backend store might be large. As an example, / a,

/ product / cat al ogue loads the subtrees / a and / pr oduct / cat al ogue into the cache, but
nothing else. Anything else is loaded lazily when accessed. Preloading makes sense when one
anticipates using elements under a given subtree frequently. Note that preloading loads all
nodes and associated attributes from the given node, recursively up to the root node.
Analogous to the CacheLoader Pr el oad attribute in pre-1.3.0 configurations.

f et chPer si st ent St at e determines whether or not to fetch the persistent state of a cache
when joining a cluster. Only one configured cache loader may set this property to true; if more
than one cache loader does so, a configuration exception will be thrown when starting your
cache service. Analogous to the CacheLoader Fet chPer si st ent St at e attribute in pre-1.3.0
configurations.

async determines whether writes to the cache loader block until completed, or are run on a
separate thread so writes return immediately. If this is set to true, an instance of

org. j boss. cache. | oader. AsyncCachelLoader is constructed with an instance of the actual
cache loader to be used. The AsyncCacheLoader then delegates all requests to the underlying
cache loader, using a separate thread if necessary. See the Javadocs on

org. j boss. cache. | oader. AsyncCacheLoader for more details. If unspecified, the async
element defaults to false. Analogous to the CachelLoader Asynchr onous attribute in pre-1.3.0
configurations.

Note on using the async element: there is always the possibility of dirty reads since all writes
are performed asynchronously, and it is thus impossible to guarantee when (and even if) a write
succeeds. This needs to be kept in mind when setting the async element to true.

i gnor eModi fi cati ons determines whether write methods are pushed down to the specific
cache loader. Situations may arise where transient application data should only reside in a file
based cache loader on the same server as the in-memory cache, for example, with a further
shared JDBC cache loader used by all servers in the network. This feature allows you to write to
the 'local' file cache loader but not the shared JDBC cache loader. This property defaults to

f al se, so writes are propagated to all cache loaders configured.

pur geOnSt at up empties the specified cache loader (if i gnor eModi fi cati ons is f al se) when
the cache loader starts up.

3. Cache passivation

A CachelLoader can be used to enforce node passivation and activation on eviction in a
TreeCache.

Cache Passivation is the process of removing an object from in-memory cache and writing it to
a secondary data store (e.g., file system, database) on eviction. Cache Activation is the process
of restoring an object from the data store into the in-memory cache when it's needed to be used.

52

CachelLoader use cases

In both cases, the configured CachelLoader will be used to read from the data store and write to
the data store.

When the eviction policy in effect calls evict() to evict a node from the cache, if passivation is
enabled, a notification that the node is being passivated will be emitted to the tree cache
listeners and the node and its children will be stored in the cache loader store. When a user
calls get() on a node that was evicted earlier, the node is loaded (lazy loaded) from the cache
loader store into the in-memory cache. When the node and its children have been loaded,
they're removed from the cache loader and a notification is emitted to the tree cache listeners
that the node has been activated.

To enable cache passivation/activation, you can set passi vat i on to true. The default is false.
You set it via the XML cache configuration file. The XML above shows the passi vati on
element when configuring a cache loader. When passivation is used, only the first cache loader
configured is used. All others are ignored.

4. CacheLoader use cases

4.1. Local cache with store

This is the simplest case. We have a JBossCache instance, whose mode is LOCAL, therefore no
replication is going on. The CacheLoader simply loads non-existing elements from the store and
stores modifications back to the store. When the cache is started, depending on the pr el oad
element, certain data can be preloaded, so that the cache is partly warmed up.

When using PojoCache, this means that entire POJOs can be stored to a database or a
filesystem, and when accessing fields of a POJO, they will be lazily loaded using the
Cacheloader to access a backend store. This feature effectively provides simple persistency for
any POJO.

4.2. Replicated caches with all nodes sharing the same store

The following figure shows 2 JBossCache nodes sharing the same backend store:

Figure 7.1. 2 nodes sharing a backend store

Both nodes have a CachelLoader that accesses a common shared backend store. This could for
example be a shared filesystem (using the FileCachelLoader), or a shared database. Because
both nodes access the same store, they don't necessarily need state transfer on
startup.zRather, theFet chl nMenor y St at e attribute could be set to false, resulting in a ‘cold’
cache, that gradually warms up as elements are accessed and loaded for the first time. This
would mean that individual caches in a cluster might have different in-memory state at any given
time (largely depending on their preloading and eviction strategies).

When storing a value, the writer takes care of storing the change in the backend store. For

2 Of course they can enable state transfer, if they want to have a warm or hot cache after startup.

53

Chapter 7. Cache Loaders

example, if nodel made change C1 and node2 C2, then nodel would tell its CachelLoader to
store C1, and node2 would tell its CachelLoader to store C2.

4.3. Replicated caches with only one node having a store

Figure 7.2. 2 nodes but only one accesses the backend store

This is a similar case as the previous one, but here only one node in the cluster interacts with a
backend store via its CacheLoader. All other nodes perform in-memory replication. A use case
for this is HTTP session replication, where all nodes replicate sessions in-memory, and - in
addition - one node saves the sessions to a persistent backend store. Note that here it may
make sense for the CachelLoader to store changes asynchronously, that is not on the caller's
thread, in order not to slow down the cluster by accessing (for example) a database. This is a
non-issue when using asynchronous replication.

4.4. Replicated caches with each node having its own store

Figure 7.3. 2 nodes each having its own backend store

Here, each node has its own datastore. Modifications to the cache are (a) replicated across the
cluster and (b) persisted using the CacheLoader. This means that all datastores have exactly
the same state. When replicating changes synchronously and in a transaction, the two phase
commit protocol takes care that all modifications are replicated and persisted in each datastore,
or none is replicated and persisted (atomic updates).

Note that currently JBossCache is not an XAResource, that means it doesn't implement
recovery. When used with a TransactionManager that supports recovery, this functionality is not
available.

The challenge here is state transfer: when a new node starts it needs to do the following:

1. Tell the coordinator (oldest node in a cluster) to send it the state

2. The coordinator then needs to wait until all in-flight transactions have completed. During this
time, it will not allow for new transactions to be started.

3. Then the coordinator asks its CachelLoader for the entire state using | oadEntireState(). It
then sends back that state to the new node.

4. The new node then tells its CachelLoader to store that state in its store, overwriting the old
state. This is the CacheLoader . st oreEnti reSt at e() method

5. As an option, the transient (in-memory) state can be transferred as well during the state

54

Hierarchical caches

transfer.

6. The new node now has the same state in its backend store as everyone else in the cluster,
and modifications received from other nodes will now be persisted using the local
CachelLoader.

4 5. Hierarchical caches

If you need to set up a hierarchy within a single VM, you can use the

Local Del egat i ngCacheLoader . This type of hierarchy can currently only be set up
programmatically. The code below shows how a first-level cache delegates to a local
second-level cache:

TreeCache firstLevel, secondLevel;
Local Del egati ngCacheLoader cache_| oader;

/'l create and configure firstLevel
firstLevel =new TreeCache();

/] create and configure secondLevel
secondLevel =new Tr eeCache() ;

/] create Del egati ngCachelLoader
cache_| oader =new Local Del egat i ngCachelLoader (secondLevel);

/|l set CachelLoader in firstlLevel
firstLevel.set CacheLoader (cache_| oader);

/] start secondLevel
secondLevel . start Servi ce();

[l start firstLevel
firstLevel.startService();

If you need to set up a hierarchy across VMs but within a cluster, you can use the

RpcDel egat i ngCacheLoader , which delegates all cache loading requests from non-coordinator
caches to the cluster's coordinator cache. The coordinator cache is the first cache in the cluster
to come online. Note that if the coordinator cache leaves the cluster for any reason, the second
cache in the cluster to come online becomes the coordinator and so on. The XML below shows
how to configure a cluster using RpcDel egat i ngCachelLoader :

<nmbean code="org. | boss. cache. TreeCache"
nane="j boss. cache: servi ce=TreeCache" >

55

Chapter 7. Cache Loaders

<attribute nane="CachelLoader Confi guration">
<confi g>
<passi vat i on>f al se</ passi vati on>
<pr el oad>/ son®e/ st uf f </ pr el oad>
<cachel oader >
<cl ass>org. j boss. cache. | oader . RpcDel egat i ngCachelLoader </ cl ass>

<I-- whether the cache | oader wites are asynchronous -->
<async>f al se</ async>
<!-- only one cache |oader in the chain nay set

fetchPersistentState to true.
An exception is thrown if nmore than one cache | oader sets

this to true.

o=

<f et chPer si st ent St at e>f al se</f et chPer si st ent St at e>

<I-- determ nes whether this cache | oader ignores wites -
defaults to false.

—a =

<i gnor eModi f i cati ons>f al se</i gnoreMbdi fi cati ons>

<I-- if set to true, purges the contents of this cache | oader
when

the cache starts up.

Defaults to false. -->

<pur geOnSt art up>f al se</ purgeOnSt art up>

</ cachel oader >
</ confi g>

</attribute>

</ nbean>

Note that currently (JBossCache 1.3.0) this cache loader is not well supported, and has not
been tested. We suggest to use TcpDelegatingCachelLoader instead (see next).

4.6. TcpDelegatingCacheLoader

This cache loader allows to delegate loads and stores to another instance of JBossCache,
which could reside (a)in the same address space, (b) in a different process on the same host, or
(c) in a different process on a different host. Option (a) is mostly used for unit testing, and the
envisaged use is (b) and (c).

A TcpDelegatingCacheLoader talks to a remote TcpCacheServer, which can be a standalone
process, or embedded as an MBean inside JBoss. The TcpCacheServer has a reference to
another JBossCache, which it can create itself, or which is given to it (e.g. by JBoss, using
dependency injection).

The TcpDelegatingCachelLoader is configured with the host and port of the remote
TcpCacheServer, and uses this to communicate to it.

An example set of a TcpCacheServer running inside of JBoss is shown below:

56

TcpDelegatingCachelLoader

<server>
<cl asspat h codebase="./1ib" archi ves="jboss-cache.jar"/>

<mbean code="org.jboss. cache. | oader.tcp. TcpCacheServer"
nane="j boss. cache: servi ce=TcpCacheSer ver" >
<depends optional -attri but e- nane="Cache"
proxy-type="attri bute">j boss. cache: servi ce=Tr eeCache</ depends>
<attribute
nanme="Bi ndAddr ess" >${j boss. bi nd. addr ess: | ocal host}</attri but e>
<attribute name="Port">7500</attri bute>
<attribute nane="MBeanSer ver Nane"></attri but e>
<I--<attribute
nanme=" CacheNane" >j boss. cache: servi ce=TreeCache</ attri but e>-->
</ mbean>

</ server >

The BindAddress and Port define where its server socket is listening on, and an existing
JBossCache MBean is injected into it (assigned to 'Cache’). This means that all requests from
the TcpDelegatingCachelLoader will be received by this instance and forwarded to the
JBossCache MBean.

Note that there is also a 'Config' attribute which points to a config XML file for JBossCache. If it
is set, then the TcpCacheServer will create its own instance of JBossCache and configure it
according to the Config attribute.

The client side looks as follow:

<attribute nanme="CachelLoader Confi guration">
<confi g>
<cachel oader >
<cl ass>or g. j boss. cache. | oader. tcp. TcpDel egati ngCacheLoader </ cl ass>
<properties>
host =I ocal host
port=7500
</ properties>
</ cachel oader >
</ confi g>
</attribute>

This means this instance of JBossCache will delegate all load and store requests to the remote
TcpCacheServer running at localhost:7500.

A typical use case could be multiple replicated instance of JBossCache in the same cluster, all
delegating to the same TcpCacheServer instance. The TcpCacheServer might itself delegate to
a database via JDBCCachelLoader, but the point here is that - if we have 5 nodes all accessing
the same dataset - they will load the data from the TcpCacheServer, which has do execute one
SQL statement per unloaded data set. If the nodes went directly to the database, then we'd
have the same SQL executed multiple times. So TcpCacheServer serves as a natural cache in

57

Chapter 7. Cache Loaders

front of the DB (assuming that a network round trip is faster than a DB access (which usually
also include a network round trip)).

To alleviate single point of failure, we could combine this with a ChainingCachelLoader, where
the first CachelLoader is a ClusteredCachelLoader, the second a TcpDelegatingCachelLoader,
and the last a JDBCachelLoader, effectively defining our cost of access to a cache in increasing
order of cost.

4.7. RmiDelegatingCachelLoader

Similar to the TcpDelegatingCacheLoader, the RmiDelegatingCacheLoader uses RMI as a
method of communicating with a remote cache.

An RmiDelegatingCacheLoader talks to a remote RmiCacheServer, which is a standalone
process. The RmiCacheServer has a reference to another JBossCache, which it can create
itself, or which is given to it (e.g. by JBoss, using dependency injection).

The RmiDelegatingCachelLoader is configured with the host, port of the remote RMI server and
the bind name of the RmiCacheServer, and uses this to communicate.

An example set of an RmiCacheServer running inside of JBoss is shown below:

<server>
<cl asspat h codebase="./1ib" archives="jboss-cache.jar"/>

<nmbean code="org. | boss. cache. | oader.rm . Rm CacheServer"
nanme="j boss. cache: servi ce=Rm CacheServer" >
<depends optional -attri but e- name="Cache"
proxy-type="attri bute">j boss. cache: servi ce=Tr eeCache</ depends>
<!-- the address and port of the RM server. -->
<attribute
nanme="Bi ndAddr ess" >${j boss. bi nd. addr ess: | ocal host}</attri but e>
<attribute nane="Port">1098</attri bute>
<attri bute nane="Bi ndNane" >M/Rm CacheServer</attribute>
<attri bute nane="MBeanServer Name"></attri but e>
<I--<attribute
name="CacheNane" >j boss. cache: servi ce=TreeCache</attri but e>-->
</ mbean>

</ server >

The BindAddress and Port should point to an already-running RMI server and the BindName is
the name the object is bound to in the RMI server. An existing JBossCache MBean is injected
into it (assigned to 'Cache’). This means that all requests from the TcpDelegatingCachelLoader
will be received by this instance and forwarded to the JBossCache MBean.

Note that there is also a 'Config' attribute which points to a config XML file for JBossCache. If it
is set, then the RmiCacheServer will create its own instance of JBossCache and configure it

58

JDBC-based CachelLoader

according to the Config attribute.

The client side looks as follow:

<attribute nane="CachelLoader Confi guration">
<confi g>
<cachel oader >
<cl ass>or g. j boss. cache. | oader. Rm Del egat i ngCachelLoader </ cl ass>
<properties>
host =| ocal host
port=1098
name=MyRm CacheSer ver
</ properties>
</ cachel oader >
</ confi g>
</attribute>

This means this instance of JBossCache will delegate all load and store requests to the remote
RmiCacheServer running as MyRmiCacheServer on an RMI server running on localhost:1098.

Very similar use case scenarios that apply to TcpDelegatingCachelLoaders above apply to
RmiDelegatingCachelLoaders as well.

5.JDBC-based CacheLoader

JBossCache is distributed with a JDBC-based CachelLoader implementation that stores/loads
nodes' state into a relational database. The implementing class is
org.j boss. cache. | oader. JDBCCachelLoader .

The current implementation uses just one table. Each row in the table represents one node and
contains three columns:

 column for FQN (which is also a primary key column)

 column for node contents (attribute/value pairs)

 column for parent FQN

FQN's are stored as strings. Node content is stored as a BLOB. WARNING: TreeCache does
not impose any limitations on the types of objects used in FQN but this implementation of
Cacheloader requires FQN to contain only objects of type j ava. | ang. St ri ng. Another
limitation for FQN is its length. Since FQN is a primary key, its default column type is VARCHAR

which can store text values up to some maximum length determined by the database. FQN is
also subject to any maximum primary key length restriction imposed by the database.

See h'[tp://wiki.jboss.org/wiki/Wiki.jsp’?page:JDBCCacheLoader3 for configuration tips with

8997

59

???
???

Chapter 7. Cache Loaders

specific database systems.
5.1. JIDBCCacheLoader configuration

5.1.1. Table configuration

Table and column names as well as column types are configurable with the following properties.

« cache.jdbc.table.name - the name of the table. The default value is 'jbosscache'.

« cache.jdbc.table.primarykey - the name of the primary key for the table. The default value is
'ijbosscache_pk'.

« cache.jdbc.table.create - can be true or false. Indicates whether to create the table during
startup. If true, the table is created if it doesn't already exist. The default value is true.

» cache.jdbc.table.drop - can be true or false. Indicates whether to drop the table during
shutdown. The default value is true.

 cache.jdbc.fgn.column - FQN column name. The default value is ‘fgn'.
» cache.jdbc.fgn.type - FQN column type. The default value is 'varchar(255)".
« cache.jdbc.node.column - node contents column name. The default value is 'node’'.

» cache.jdbc.node.type - node contents column type. The default value is 'blob'. This type must
specify a valid binary data type for the database being used.

5.1.2. DataSource

If you are using JBossCache in a managed environment (e.g., an application server) you can
specify the INDI hame of the DataSource you want to use.

» cache.jdbc.datasource - JINDI name of the DataSource. The default value is ‘java:/DefaultDS'.

5.1.3. JDBC driver

If you are not using DataSource you have the following properties to configure database access
using a JDBC driver.

 cache.jdbc.driver - fully qualified JDBC driver name.

 cache.jdbc.url - URL to connect to the database.

« cache.jdbc.user - user name to connect to the database.

« cache.jdbc.password - password to connect to the database.

60

JDBCCachelLoader configuration

5.1.4. Configuration example

Below is an example of a JDBC CachelLoader using Oracle as database. The
CachelLoaderConfiguration XML element contains an arbitrary set of properties which define the
database-related configuration.

<attribute nane="CachelLoader Confi guration">
<confi g>
<passi vat i on>f al se</ passi vati on>
<pr el oad>/ son®e/ st uf f </ pr el oad>
<cachel oader >
<cl ass>or g. j boss. cache. | oader. JDBCCacheLoader </ cl ass>
<I-- same as the old CacheLoaderConfig attribute -->
<properties>
cache. j dbc. t abl e. nane=j bosscache
cache. jdbc. tabl e.create=true
cache. jdbc. t abl e. dr op=t rue
cache. jdbc. t abl e. pri mar ykey=j bosscache_pk
cache. j dbc. f gn. col um=f gn
cache. jdbc. f qn. t ype=var char (255)
cache. j dbc. node. col uim=node
cache. j dbc. node. t ype=bl ob
cache. j dbc. par ent . col utm=par ent
cache. jdbc. dri ver=oracl e.jdbc. Oacl eDri ver
cache. jdbc. url =j dbc: oracl e: t hi n: @ ocal host : 1521: JBOSSDB
cache. j dbc. user =SCOTT
cache. j dbc. passwor d=TI GER
</ properties>

<I-- whether the cache | oader wites are asynchronous -->
<async>f al se</ async>
<I-- only one cache |oader in the chain may set

fetchPersistentState to true
An exception is thrown if nmore than one cache | oader sets
this to true.

-->

<f et chPer si st ent St at e>t rue</ f et chPer si st ent St at e>

<I-- determ nes whether this cache | oader ignores wites -
defaults to fal se

-->

<i gnor eModi f i cati ons>f al se</i gnor eMbdi fi cati ons>

<I-- if set to true, purges the contents of this cache | oader
when the cache

starts up. Defaults to false. -->

<pur geOnSt ar t up>f al se</ purgeOnSt art up>
</ cachel oader >
</ confi g>
</attribute>

As an alternative to configuring the entire JDBC connection, the name of an existing data
source can be given:

<attribute nane="CachelLoader Confi guration">
<confi g>

61

Chapter 7. Cache Loaders

<passi vat i on>f al se</ passi vati on>
<pr el oad>/ sone/ st uf f </ pr el oad>
<cachel oader >
<cl ass>org. j boss. cache. | oader. JDBCCachelLoader </ cl ass>
<l-- same as the old CachelLoaderConfig attribute -->
<properties>
cache. j dbc. dat asour ce=j ava: / Def aul t DS
</ properties>

<I-- whether the cache | oader wites are asynchronous -->
<async>f al se</ async>
<I-- only one cache | oader in the chain may set

fetchPersistentState to true
An exception is thrown if nore than one cache | oader sets
this to true.

-->

<f et chPer si st ent St at e>t rue</ f et chPer si st ent St at e>

<I-- determ nes whether this cache | oader ignores wites -
defaults to fal se

oo D

<i gnor eModi fi cati ons>f al se</i gnoreMdi fi cati ons>

<I-- if set to true, purges the contents of this cache | oader
when the cache

starts up. Defaults to false. -->

<pur geOnSt art up>f al se</ purgeOnSt art up>
</ cachel oader >
</ confi g>
</attribute>

62

Chapter 8.

TreeCacheMarshaller

Rather than using standard Java serialization to serialize j ava. | ang. ref | ect . Met hod objects
and their parameters when remote caches talk to each other to replicate data, JBoss Cache
uses its own mechanism to marshall and unmarshall data called the Tr eeCacheMar shal | er.

In addition to providing the performance and efficiency enhancements over standard Java
serialization, The Tr eeCacheMar shal | er also performs one other function. In order to
deserialize an object replicated to it from a remote cache, a cache instance needs to have
access to the classloader that defines the object's class. This is simple if the cache's own
classloader can access the required classes, but for situations where JBoss Cache is used as a
service supporting clients that use different classloaders, the Tr eeCacheMar shal | er can be
configured to use different classloaders on a per-region basis by allowing application code to
register a classloader that should be used to handle replication for a portion of the tree.

1. Basic Usage

Tr eeCache exposes the following basic API for controlling the behavior of
TreeCacheMar shal | er:

/**

* Sets whether marshal |l ing uses scoped class | oaders on a per region basis.
*

* This property nmust be set to true before any call to

* {@ink #registerd assLoader(String, Cl asslLoader)} or

* {@ink #activateRegion(String)}

* @aram i sTrue
*/
voi d set UseRegi onBasedMar shal | i ng(bool ean i sTrue);

/**

* Cets whether marshalling uses scoped class | oaders on a per region basis.
*/

bool ean get UseRegi onBasedMar shal | i ng() ;

/**

* Registers the given classl oader with TreeCacheMarshal | er for
* use in unmarshal ling replicated objects for the specified region.
*
* @aram fgn The fgn region. This fgn and its children will use this
cl assl oader for
* (un)marshal | i ng.
* @aramcl The class | oader to use
*
* @hrows Regi onNaneConflictException if fgn is a descendant of
* an FQN that already has a cl assl oader regi stered.
* @hrows |1l egal StateException if useMarshalling is fal se
*/
voi d regi sterC assLoader (String fqn, C assLoader cl) throws
Regi onNanmeConf | i ct Excepti on;

63

Chapter 8. TreeCacheMarshaller

/**
* Instructs the TreeCacheMarshaller to no | onger use a speci al
cl assl oader to unnarshal replicated objects for the specified region.

*
*
* @aramfqgn The fqn of the root node of region.
*
*

@ hr ows Regi onNot FoundException if no cl assl oader has been registered for
* fqgn.
* @hrows Il egal StateException if useMarshalling is false
*/
voi d unregi sterd assLoader(String fgn) throws Regi onNot FoundExcepti on;

Property UseRegi onBasedMar shal | i ng controls whether classloader-based marshalling should
be used. This property should be set as part of normal cache configuration, typically in the
cache's XML configuration file:

<attribute nane="UseRegi onBasedMarshal | i ng">true</attri bute>

Anytime after UseRegi onBasedMar shal | i ng is set to t r ue, the application code can call

regi st erd assLoader to associate a classloader with the portion of the cache rooted in a
particular FQN. Once registered, the classloader will be used to unmarshal any replication traffic
related to the node identified by the FQN or to any of its descendants.

At this time, r egi st er d assLoader only supports String-based FQNSs.

Note that it is illegal to register a classloader for an FQN that is a descendant of an FQN for
which a classloader has already been registered. For example, if classloader X is registered for
FQN / a, a Regi onNaneConf | i ct Except i on will be thrown if an attempt is made to register
classloader Y for FQN / a/ b.

Method unr egi st er O assLoader is used to remove the association between a classloader and
a particular cache region. Be sure to call this method when you are done using the cache with a
particular classloader, or a reference to the classloader will be held, causing a memory leak!

2. Region Activation/Inactivation

The basic API discussed above is helpful, but in situations where applications with different
classloaders are sharing a cache, the lifecycle of those applications will typically be different
from that of the cache. The result of this is that it is difficult or impossible to register all required
classloaders before a cache is started. For example, consider the following scenario:

1. TreeCache on machine A starts.

2. On A a classloader is registered under FOQN /x.

3. Machine B starts, so TreeCache on B starts.

64

Region Activation/Inactivation

4. An object is put in the machine A cache under FQN /x/1.
5. Replication to B fails, as the required classloader is not yet registered.

6. On B a classloader is registered under FQN /x, but too late to prevent the replication error.

Furthermore, if any objects had been added to server A before server B was started, the initial
transfer of state from A to B would have failed as well, as B would not be able to unmarshal the
transferred objects.

To resolve this problem, if region-based marshalling is used a cache instance can be configured
to ignore replication events for a portion of the tree. That portion of the tree is considered
"inactive". After the needed classloader has been registered, the portion of the tree can be
"activated". Activation causes the following events to occur:

* Any existing state for that portion of the tree is transferred from another node in the cluster
and integrated into the local tree.

« TreeCacheMarshaller begins normal handling of replication traffic related to the portion of the
tree.

In addition to the basic marshalling related API discussed above, TreeCache exposes the
following API related to activating and inactivating portions of the cache:

/**

* Sets whether the entire tree is inactive upon startup, only respondi ng

* to replication nessages after {@ink #activateRegion(String)} is

* called to activate one or nore parts of the tree.

* <p>

* This property is only relevant if {@ink #get UseRegi onBasedMar shal | i ng()}

* true.

*

*/
public void setlnactiveOnStartup(bool ean i nactiveOnStartup);

/**

* CGets whether the entire tree is inactive upon startup, only responding

* to replication messages after {@ink #activateRegion(String)} is

* called to activate one or nore parts of the tree.

* <p>

* This property is only relevant if {@ink #get UseRegi onBasedMar shal | i ng()}

* true.
*/
publ i ¢ bool ean islnactiveOnStartup();

/**

* Causes the cache to transfer state for the subtree rooted at
* subtreeFgn and to begin accepting replication nessages

65

Chapter 8. TreeCacheMarshaller

* for that subtree.

* NOTE: This method will cause the creation of a node

* in the local tree at subtreeFgn whether or not that

* node exists anywhere else in the cluster. |If the node does not exist

* el sewhere, the |local node will be enpty. The creation of this node will
* not be replicated.

* @©@aram subtreeFgn Fgn string indicating the uppernost node in the
* portion of the tree that should be activated.

* @hrows Regi onNot Enpt yException if the node subtreeFgn
* exists and has either data or children

* @hrows |1l egal StateException if useRegi onBasedMarshalling is fal se
*/
public void activateRegi on(String subtreeFqgn)
t hr ows Regi onNot Enpt yExcepti on, Regi onNaneConfl i ct Excepti on,
CacheExcepti on;

* Causes the cache to stop accepting replication events for the subtree
* rooted at subtreeFgn and evict all nodes in that subtree.

* @aram subtreeFgn Fgn string indicating the uppernost node in the
* portion of the tree that shoul d be acti vat ed.

* @hrows Regi onNaneConflict Exception if subtreeFgn indicates

* a node that is part of another subtree that is being specially

* managed (either by activate/inactiveRegion()

* or by registerC assLoader())

* @hrows CacheException if there is a problem evicting nodes

* @hrows |1l egal StateException if useRegi onBasedMarshalling is false
*/

public void inactivateRegi on(String subtreeFgn) throws

Regi onNaneConf | i ct Excepti on,

CacheExcepti on;

Property | nacti veOnSt ar t up controls whether the entire cache should be considered inactive
when the cache starts. In most use cases where region activation is needed, this property would
be set to true. This property should be set as part of normal cache configuration, typically in the
cache's XML configuration file:

<attribute nane="lnacti veOnStartup">true</attri bute>

When | nacti veOnSt ar t up is set to true, no state transfer will be performed on startup, even if
property Fet chl nMenor ySt at e is true.

When act i vat eRegi on() is invoked, each node in the cluster will be queried to see if it has
active state for that portion of the tree. If one does, it will return the current state, which will then
be integrated into the tree. Once state is transferred from one node, no other nodes will be

66

Example usage of Region

asked for state. This process is somewhat different from the initial state transfer process that
occurs at startup when property Fet chl nMenor ySt at e is set to true. During initial state transfer,
only the oldest member of the cluster is queried for state. This approach is inadequate for
region activation, as it is possible that the oldest member of the cluster also has the region
inactivated, and thus cannot provide state. So, each node in the cluster is queried until one
provides state.

Before requesting state from other nodes, act i vat eRegi on() will confirm that there is no
existing data in the portion of the tree being activated. If there is any, a
Regi onNot Enpt yExcept i on will be thrown.

It is important to understand that when a region of the tree is marked as inactive, this only
means replication traffic from other cluster nodes related to that portion of the tree will be
ignored. It is still technically possible for objects to be placed in the inactive portion of the tree
locally (via a put call), and any such local activity will be replicated to other nodes. TreeCache
will not prevent this kind of local activity on an inactive region, but, as discussed above

acti vat eRegi on() will throw an exception if it discovers data in a region that is being activated.

2.1. Example usage of Region Activation/Inactivation

As an example of the usage of region activation and inactivation, let's imagine a scenario where
a TreeCache instance is deployed as a shared MBean service by deploying a - servi ce. xm in
the JBoss / depl oy directory. One of the users of this cache could be a web application, which
when started will register its classloader with the TreeCache and activate its own region of the
cache.

First, the XML configuration file for the shared cache service would be configured as follows
(only relevant portions are shown):

<?xm version="1.0" encodi ng="UTF-8" ?>
<server >
<cl asspat h codebase="./lib" archi ves="jboss-cache.jar, jgroups.jar" />

<nmbean code="org. | boss. cache. TreeCache"
nanme="com xyz. cache: servi ce=Shar edCache" >

<l-- Configure Marshalling -->
<attribute nane="get UseRegi onBasedMar shal | i ng">true</attri but e>
<attribute name="InactiveOnStartup">true</attribute>

</ mhean>

67

Chapter 8. TreeCacheMarshaller

</ server>

For the webapp, registering/unregistering the classloader and activating/inactivating the app's
region in the cache are tasks that should be done as part of initialization and destruction of the
app. So, using a Ser vl et Cont ext Li st ener to manage these tasks seems logical. Following is
an example listener:

package exanpl e;

i mport javax. managenent. Mal f or mredQbj ect NanmeExcept i on;
i nport javax. managenent. Cbj ect Nane;

i mport javax.servlet. Servl et Cont ext Event;

i mport javax.servlet. Servl et Cont ext Li st ener;

i nport org.jboss. cache. TreeCacheMBean;
i mport org.jboss. nk.util.MeanProxyExt;

public class Activel nactiveRegi onExanpl e i npl ements Servl et Cont ext Li st ener

{

private TreeCacheMBean cache;

public void contextlnitialized(ServletContextEvent arg0) ({

try {
findCache();

cache. regi ster Cl assLoader ("/ exanpl e",
Thr ead. current Thread() . get Cont ext Cl assLoader ());
cache. acti veRegi on("/ exanpl e") ;

}
catch (Exception e) {

/1 ... handl e exception
}

}

public voi d cont ext Destroyed(Servl et Cont ext Event arg0) {
cache. i nacti vat eRegi on("/ exanpl e");
cache. unregi st erd assLoader ("/ exanpl e") ;

}

private void findCache() throws Ml fornedCbj ect NaneExcepti on {
/! Find the shared cache service in JMX and create a proxy to it
Chj ect Nanme cacheServi ceNanme_ = new
Ohj ect Name(" com xyz. cache: servi ce=Shar edCache") ;
[/l Create Proxy-Object for this service
cache = (TreeCacheMBean) MBeanProxyExt.creat e(TreeCacheMBean. cl ass,
cacheServi ceNane_);
}
}

The listener makes use of the JBoss utility class MBeanPr oxyExt to find the TreeCache in IMX

68

Activation/Inactivation

and create a proxy to it. (See the "Running and using TreeCache inside JBoss" section below
for more on accessing a TreeCache). It then registers its classloader with the cache and
activates its region. When the webapp is being destroyed, it inactivates its region and
unregisters its classloader (thus ensuring that the classloader isn't leaked via a reference to it
held by TreeCacheMarshaller).

Note the order of the method calls in the example class -- register a classloader before
activating a region, and inactivate the region before unregistering the classloader.

3. Region Activation/Inactivation with a CacheLoader

The activateRegion()/inactivateRegion() APl can be used in conjunction with a CachelLoader as
well, but only if the cache loader implementation implements interface

org. j boss. cache. | oader . Ext endedCacheLoader . This is a subinterface of the normal
CacheLoader interface. It additionally specifies the following methods needed to support the
partial state transfer that occurs when a region is activated:

* Fetch a portion of the state for this cache from secondary storage

* (disk, DB) and return it as a byte buffer.

* This is for activation of a portion of new cache froma renote cache.
* The new cache would then call {@ink #storeState(byte[], Fgn)}.

* @aram subtree Fqn naming the root (i.e. highest |evel parent) node of
* the subtree for which state is requested.

* @ee org.]jboss. cache. TreeCache#acti vat eRegi on(St ri ng)
*/
byte[] | oadState(Fgn subtree) throws Exception;

/**

* Store the given portion of the cache tree's state in secondary
st or age.
* QOverwite whatever is currently in secondary storage.
*
* @aram state the state to store
* @aram subtree Fqn naming the root (i.e. highest |evel parent) node of
* the subtree included in state.
*/
voi d storeState(byte[] state, Fgn subtree) throws Exception;

* Sets the Regi onManager this object should use to nanage
* marshal | i ng/ unmarshal i ng of different regions using different
* cl assl oaders.

* NOTE: This nmethod is only intended to be used
* by the TreeCache instance this cache |oader is
* associ ated wth.

* @ar am manager the regi on manager to use, or null.
*/

69

Chapter 8. TreeCacheMarshaller

voi d set Regi onManager (Regi onManager nanager) ;

JBossCache currently comes with two implementations of ExtendedCachelLoader,

Fi | eExt endedCacheLoader and JDBCExt endedCachelLoader . These classes extend
FileCachelLoader and JDBCCacheloader, respectively, implementing the extra methods in the
extended interface.

4. Performance over Java serialization

To achieve the performance and efficiency gains, the Tr eeCacheMar shal | er uses a number of
techniques including method ids for known methods and magic numbers for known internal
class types which drastically reduces the size of calls to remote caches, greatly improving
throughput and reducing the overhead of Java serialization.

To make things even faster, the Tr eeCacheMar shal | er uses JBoss Serialization?, a highly
efficient drop-in replacement for Java serialization for user-defined classes. JBoss Serialization
is enabled and always used by default, although this can be disabled, causing the marshalling
of user-defined classes to revert to Java serialization. JBoss Serialization is disabled by passing
inthe - Dseri al i zati on. j boss=f al se environment variable into your JVM.

5. Backward compatibility

Marshalling in JBoss Cache is now versioned. All communications between caches contain a
version short which allows JBoss Cache instances of different versions to communicate with
each other. Up until JBoss Cache 1.4.0, all versions were able to communicate with each other
anyway since they all used simple serialization of or g. j gr oups. Met hodCal | objects, provided
they all used the same version of JGroups. This requirement (more a requirement of the
JGroups messaging layer than JBoss Cache) still exists, even though with JBoss Cache 1.4.0,
we've moved to a much more efficient and sophisticated marshalling mechanism.

JBoss Cache 1.4.0 and future releases of JBoss Cache will always be able to unmarshall data

from previous versions of JBoss Cache. For JBoss Cache 1.4.0 and future releases to marshall
data in a format that is compatible with older versions, however, you would have to start JBoss

Cache with the following configuration attribute:

<I-- takes values such as 1.2.3, 1.2.4 and 1.3.0 -->
<attribute nanme="ReplicationVersion">1.2.4</attribute>

1 http://labs.jboss.org/portal/index.html?ctrl:id=page.default.info&project=serialization

70

http://labs.jboss.org/portal/index.html?ctrl:id=page.default.info&project=serialization
http://labs.jboss.org/portal/index.html?ctrl:id=page.default.info&project=serialization

Chapter 9.

State Transfer

"State Transfer" refers to the process by which a JBoss Cache instance prepares itself to begin
providing a service by acquiring the current state from another cache instance and integrating
that state into its own state.

1. Types of State Transfer

The state that is acquired and integrated can consist of two basic types:

1. "Transient" or "in-memory" state. This consists of the actual in-memory state of another
cache instance -- the contents of the various in-memory nodes in the cache that is providing
state are serialized and transferred; the recipient deserializes the data, creates
corresponding nodes in its own in-memory tree, and populates them with the transferred
data.

"In-memory" state transfer is enabled by setting the cache's Fet chl nMenor ySt at e property
totrue.

2. "Persistent" state. Only applicable if a non-shared cache loader is used. The state stored in
the state-provider cache's persistent store is deserialized and transferred; the recipient
passes the data to its own cache loader, which persists it to the recipient's persistent store.

"Persistent" state transfer is enabled by setting a cache loader's

CachelLoader Fet chPer si st ent St at e property to t r ue. If multiple cache loaders are
configured in a chain, only one can have this property set to true; otherwise you will get an
exception at startup.

Persistent state transfer with a shared cache loader does not make sense, as the same
persistent store that provides the data will just end up receiving it. Therefore, if a shared
cache loader is used, the cache will not allow a persistent state transfer even if a cache
loader has CachelLoader Fet chPer si stent St at e settotrue.

Which of these types of state transfer is appropriate depends on the usage of the cache.

1. If a write-through cache loader is used, the current cache state is fully represented by the
persistent state. Data may have been evicted from the in-memory state, but it will still be in
the persistent store. In this case, if the cache loader is not shared, persistent state transfer is
used to ensure the new cache has the correct state. In-memory state can be transferred as
well if the desire is to have a "hot" cache -- one that has all relevant data in memory when the
cache begins providing service. (Note that the "CachelLoaderPreload” configuration
parameter can be used as well to provide a "warm" or "hot" cache without requiring an
in-memory state transfer. This approach somewhat reduces the burden on the cache
instance providing state, but increases the load on the persistent store on the recipient side.)

2. If a cache loader is used with passivation, the full representation of the state can only be

71

Chapter 9. State Transfer

2.

obtained by combining the in-memory (i.e. non-passivated) and persistent (i.e. passivated)
states. Therefore an in-memory state transfer is necesssary. A persistent state transfer is
necessary if the cache loader is not shared.

. If no cache loader is used and the cache is solely a write-aside cache (i.e. one that is used to

cache data that can also be found in a persistent store, e.g. a database), whether or not
in-memory state should be transferred depends on whether or not a "hot" cache is desired.

When State Transfer Occurs

If either in-memory or persistent state transfer is enabled, a full or partial state transfer will be
done at various times, depending on how the cache is used. "Full" state transfer refers to the
transfer of the state related to the entire tree -- i.e. the root node and all nodes below it. A
"partial” state transfer is one where just a portion of the tree is transferred -- i.e. a node at a
given Fgn and all nodes below it.

If either in-memory or persistent state transfer is enabled, state transfer will occur at the
following times:

1.

Initial state transfer. This occurs when the cache is first started (as part of the processing of
the st art () method). This is a full state transfer. The state is retrieved from the cache
instance that has been operational the longest. If there is any problem receiving or integrating
the state, the cache will not start.

Initial state transfer will occur unless:

a. The cache's I nacti veOnSt ar t up property is t r ue. This property is used in conjunction
with region-based marshalling; see below for more on this.

b. Buddy replication is used. See below for more on state transfer with buddy replication.

. Partial state transfer following region activation. Only relevant when region-based marshalling

is used. Here a special classloader is needed to unmarshal the state for a portion of the tree.
State transfer cannot succeed until the application registers this classloader with the cache.
Once the application registers its classloader, it calls act i vat eRegi on(Stri ng fqn). As part
of the region activation process, a partial state transfer of the relevant subtree's state is
performed. The state is requested from the oldest cache instance in the cluster; if that
instance responds with no state, state is requested from each instance one by one until one
provides state or all instances have been queried.

Typically when region-based marshalling is used, the cache's I nacti veOnSt ar t up property
is set to t rue. This suppresses initial state transfer, which would fail due to the inability to
deserialize the transferred state.

. Buddy replication. When buddy replication is used, initial state transfer is disabled. Instead,

when a cache instance joins the cluster, it becomes the buddy of one or more other
instances, and one or more other instances become its buddy. Each time an instance

72

When State Transfer Occurs

determines it has a new buddy providing backup for it, it pushes it's current state to the new
buddy. This "pushing" of state to the new buddy is slightly different from other forms of state
transfer, which are based on a "pull" approach (i.e. recipient asks for and receives state).
However, the process of preparing and integrating the state is the same.

This "push" of state upon buddy group formation only occurs if the I nacti veOnSt art up
property is setto f al se. If it is t r ue, state transfer amongst the buddies only occurs when
the application calls act i vat eRegi on(Stri ng fqgn) on the various members of the group.

Partial state transfer following an act i vat eRegi on() call is slightly different in the buddy
replication case as well. Instead of requesting the partial state from one cache instance, and
trying all instances until one responds, with buddy replication the instance that is activating a
region will request partial state from each instance for which it is serving as a backup.

73

74

Chapter 10.

Version Compatibility and
Interoperability

While this is not absolutely guaranteed, generally speaking within a major version, releases of
JBoss Cache are meant to be compatible and interoperable. Compatible in the sense that it
should be possible to upgrade an application from one version to another by simply replacing
the jars. Interoperable in the sense that if two different versions of JBoss Cache are used in the
same cluster, they should be able to exchange replication and state transfer messages. Note
however that interoperability requires use of the same JGroups version in all nodes in the
cluster. In most cases, the version of JGroups used by a version of JBoss Cache can be
upgraded.

Inthe 1.2.4 and 1.2.4.SP1 releases, API compatibility and interoperability with previous
releases was broken. The primary purpose of the 1.2.4.SP2 release was to restore API
compatibility and interoperability. Note, however, that restoring APl compatibility with earlier
releases meant that 1.2.4.SP2 is not completely APl compatible with the other two 1.2.4
releases. If you have built applications on top of 1.2.4 or 1.2.4.SP1, please recompile before
upgrading to 1.2.4.SP2 in order to be sure you have no issues.

Beginning in 1.2.4.SP2, a new configuration attribute Repl i cat i onVer si on has been added.
This attribute needs to be set in order to allow interoperability with previous releases. The value
should be set to the release name of the version with which interoperability is desired, e.g.
"1.2.3". If this attribute is set, the wire format of replication and state transfer messages will
conform to that understood by the indicated release. This mechanism allows us to improve
JBoss Cache by using more efficient wire formats while still providing a means to preserve
interoperability.

In a rare usage scenario, multiple different JBoss Cache instances may be operating on each
node in a cluster, but not all need to interoperate with a version 1.2.3 cache, and thus some
caches will not be configured with Repl i cati onVer si on set to 1.2.3. This can cause problems
with serialization of Fgn objects. If you are using this kind of configuration, are having problems
and are unwilling to set Repl i cati onVer si on to 1. 2. 3 on all caches, a workaround is to set
system property j boss. cache. fgn. 123conpati bl e totrue.

75

76

Chapter 11.

Configuration

All properties of the cache are configured via setters and can be retrieved via getters. This can
be done either manually, or via the Propert yConfi gur at or and an XML file.

1. Sample XML-Based Configuration
A sample XML configuration file is shown below:

<?xm version="1.0" encodi ng="UTF-8" ?>
<server>
<cl asspat h codebase="./1ib" archives="jboss-cache.jar, jgroups.jar" />

<nmbean code="or(g. | boss. cache. TreeCache"
nane="j boss. cache: servi ce=TreeCache" >
<depends>j boss: ser vi ce=Nani ng</ depends>
<depends>j boss: servi ce=Tr ansact i onManager </ depends>

<l-- Configure the TransactionManager -->
<attribute nanme="Transacti onManager Lookupd ass" >

org. j boss. cache. DutmmyTr ansact i onManager Lookup
</attribute>

<l--

Node | ocki ng schene :

PESSI M STI C (defaul t)

OPTI M STI C

-->

<attribute nane="NodelLocki ngSchene">PESSI M STI C</ attri but e>

<l--
Node | ocki ng isolation |evel
SERI ALl ZABLE
REPEATABLE _READ (def aul t)
READ COWM TTED
READ_UNCOWM TTED
NONE

(ignored if NodelLocki ngScherme is OPTI M STI C)
S->

<attribute nane="Isol ati onLevel ">REPEATABLE READ</ attri but e>

<I-- Lock parent before doi ng node additions/renoves -->
<attribute nane="LockPar ent For Chi | dl nsert Renbve">true</attri bute>

<l-- Val i d nodes are LOCAL
REPL_ASYNC

77

Chapter 11. Configuration

REPL_SYNC

I NVALI DATI ON_ASYNC

I NVALI DATI ON_SYNC
-->
<attri bute nanme="CacheMdde" >LOCAL</ attri but e>

<I-- \Whether each interceptor should have an nbean
registered to capture and display its statistics. -->
<attribute nane="Usel nt ercept or Mbeans">true</attri bute>

<l-- Nanme of cluster. Needs to be the sane for all TreeCache nodes in a
cluster, in order to find each other -->
<attri bute name="Cl ust er Nane" >JBoss- Cache-Cl uster</attri but e>

<I-- Uncoment next three statenents to enable JG oups nulti pl exer
This configuration is dependent on the JG oups multipl exer being
regi stered in an MBean server such as JBossAS. -->

<l--

<depends>j gr oups. nmux: nane=Mul ti pl exer </ depends>
<attribute

name="Mil ti pl exer Servi ce" >j groups. mux: name=Mul ti pl exer</attri bute>
<attribute name="Milti pl exer St ack">udp</attribute>

-->
<l-- JGoups protocol stack properties. ClusterConfig isn't used if the
mul tiplexer is enabled and successfully initialized. -->
<attribute nane="d uster Config">
<confi g>
<l-- UDP: if you have a nulti homed machi ne
set the bind_addr attribute to the appropriate NIC I P
addr ess
-->
<!-- UDP: On Wndows machi nes, because of the media sense feature
bei ng broken with multicast (even after disabling nedia
sense)
set the | oopback attribute to true
Sy

<UDP ntast _addr="228.1.2.3" ntast_port="45566" ip_ttl="64"
i p_ntast="true"
ncast _send_buf _si ze="150000" ntast_recv_buf _size="80000"
ucast _send_buf _si ze="150000" ucast_recv_buf _si ze="80000"
| oopback="fal se" />
<PI NG ti meout ="2000" num.initial _nenbers="3" up_thread="fal se"
down_t hread="fal se" />
<MERGE2 mi n_i nterval ="10000" max_i nterval ="20000" />
<FD shun="true" up_thread="true" down_thread="true" />
<VERI FY_SUSPECT ti neout =" 1500" up_t hread="fal se" down_t hread="fal se"
/>
<pbcast . NAKACK gc_| ag="50" nmax_xmt_size="8192"
retransmt _tineout ="600, 1200, 2400, 4800" up_t hread="f al se"
down_t hread="fal se" />
<UNI CAST ti neout =" 600, 1200, 2400" wi ndow_si ze="100"
m n_t hreshol d="10"
down_t hread="fal se" />
<pbcast. STABLE desired_avg_gossi p="20000" up_t hread="fal se"
down_t hread="fal se" />
<FRAG frag_si ze="8192" down_t hread="f al se" up_t hread="fal se" />

78

Sample XML-Based Configuration

<pbcast. GV5 j oi n_ti neout ="5000" join_retry_tineout="2000"
shun="t r ue"
print_Il ocal _addr="true" />
<pbcast . STATE_TRANSFER up_t hread="f al se" down_t hread="f al se" />
</ confi g>
</attri bute>

<I-- The max amount of time (in mlliseconds) we wait until the
initial state (ie. the contents of the cache) are retrieved from
exi sting nenbers in a clustered environment

-->

<attribute name="Initial StateRetrieval Ti meout">5000</attri bute>

<I-- Nurmber of milliseconds to wait until all responses for a
synchronous call have been received.

-->

<attribute nanme="SyncRepl Ti neout">10000</attri but e>

<l-- Max nunber of mlliseconds to wait for a | ock acquisition -->
<attribute nane="LockAcqui sitionTi neout">15000</attri bute>

<I-- Name of the eviction policy class. -->
<attribute
name="Evi cti onPol i cyd ass">org. j boss. cache. evi cti on. LRUPol i cy</attri but e>

<I-- Specific eviction policy configurations. This is LRU -->
<attribute name="EvictionPolicyConfig">
<confi g>
<attribute nane="wakeUpl nt erval Seconds" >5</attri but e>
<l-- Cache wi de default -->

<regi on name="/_default_">
<attribute nane="maxNodes" >5000</attri bute>
<attribute nanme="ti neToLi veSeconds" >1000</attri but e>

<l-- Maximumtime an object is kept in cache regardl ess of idle
time -->
<attribute nane="nmaxAgeSeconds">120</attri but e>
</ r egi on>

<regi on nane="/org/jboss/data">
<attribute nane="maxNodes" >5000</attri bute>
<attribute nane="ti meToLi veSeconds" >1000</attri but e>
</ regi on>

<regi on nane="/org/j boss/test/data">
<attribute nane="nmaxNodes">5</attri bute>
<attribute nane="ti meTolLi veSeconds">4</attri bute>
</ regi on>
</ confi g>
</attribute>

<I-- New 1.3.x cache | oader config block -->
<attribute nane="CachelLoader Confi guration">
<confi g>
<I-- if passivation is true, only the first cache |oader is

used,;
the rest are ignored -->
<passi vat i on>f al se</ passi vati on>

79

Chapter 11. Configuration

<prel oad>/a/b, /all TenpObj ects, /sone/specific/fqn</preload>
<shar ed>f al se</ shar ed>

<I-- we can now have multiple cache | oaders, which get
chai ned -->
<cachel oader >
<cl ass>org. j boss. cache. | oader . Fi | eCachelLoader </ cl ass>
<I-- same as the old CachelLoaderConfig attribute -->
<properties>
| ocation=/tnmp/ nyFil eStore
</ properties>

<l-- whether the cache | oader wites are asynchronous
e
<async>f al se</ async>
<!-- only one cache |oader in the chain nay set
f et chPersi stent State
to true.
An exception is thrown if nore than one cache | oader
sets this to
true. -->
<f et chPer si st ent St at e>t rue</ f et chPer si st ent St at e>
<I-- determ nes whether this cache | oader ignores wites
defaults to
false. -->
<i gnor eModi f i cati ons>f al se</i gnor eMbdi fi cati ons>
<l-- if set to true, purges the contents of this cache
| oader
when the cache starts up. Defaults to false. -->
<pur geOnSt ar t up>f al se</ purgeOnSt art up>
</ cachel oader >
<cachel oader >
<cl ass>or g. j boss. cache. | oader. JDBCCacheLoader </ cl ass>
<l-- same as the old CacheLoaderConfig attribute -->
<properties>
cache. jdbc. dri ver=com nysql . jdbc. Dri ver
cache. jdbc. url =j dbc: nysql : / /1 ocal host: 3306/ j bossdb
cache. j dbc. user =r oot
cache. j dbc. passwor d=
</ properties>
<I-- whether the cache | oader wites are asynchronous
-->

<async>t r ue</ async>
<I-- only one cache |oader in the chain nay set
fetchPersistent State
to true. An exception is thrown if nore than one
cache | oader

sets this to true. -->
<f et chPer si st ent St at e>f al se</f et chPer si st ent St at e>
<l -- determ nes whether this cache | oader ignores wites
- defaults
to false. -->
<i gnor eModi f i cati ons>t rue</i gnor eModi fi cati ons>
<I-- if set to true, purges the contents of this cache
| oader when the
cache starts up. Defaults to false. -->

80

Definition of XML attributes

<pur geOnsSt ar t up>f al se</ pur geOnSt ar t up>

</ cachel oader >
</ confi g>

</attribute>

</ mhean>
</ server >

The PropertyConfigurator.configure() method needs to have as argument a filename which is
located on the classpath; it will use be used to configure JBoss Cache from the properties
defined in it. Note that this configuration file is used to configure JBoss Cache both as a
standalone cache, and as an MBean if run inside the JBoss container.!

2. Definition of XML attributes

A list of definitions of each of the XML attributes used above:

Name

BuddyReplicationConfig

CachelLoaderConfiguration

CacheMode

ClusterConfig

Description

An XML element that contains detailed buddy
replication configuration. See section above
on Buddy Replication.

An XML element that contains detailed cache
loader configuration. See section above on
Cache Loaders.

LOCAL, REPL_SYNC, REPL_ASYNC,
INVALIDATION_SYNC or
INVALIDATION_ASYNC

The configuration of the underlying JGroups
stack. Ignored if Mul ti pl exer Ser vi ce and
Mul ti pl exer St ack are used. See the various
*-service.xml files in the source distribution

et ¢/ META- | NF folder for examples. See the
JGroups documentation? or the JGroups wiki
page3 for more information.

1 we will switch to using an XMBean in a future release.
2 http://www.jgroups.org
8 http://wiki.jboss.org/wiki/Wiki.jsp?page=JGroups

81

http://www.jgroups.org
http://www.jgroups.org
http://wiki.jboss.org/wiki/Wiki.jsp?page=JGroups
http://wiki.jboss.org/wiki/Wiki.jsp?page=JGroups
http://wiki.jboss.org/wiki/Wiki.jsp?page=JGroups

Chapter 11. Configuration

ClusterName

EvictionPolicyClass

EvictionPolicyConfig

FetchInMemoryState (renamed from
FetchStateOnStartup)

InactiveOnStartup

InitialStateRetrievalTimeout

IsolationLevel

LockAcquisitionTimeout

Name of cluster. Needs to be the same for all
nodes in a cluster in order for them to
communicate with each other.

The name of a class implementing
EvictionPolicy. Deprecated; it is preferable to
configure the eviction policy class as part of
the Evi cti onPol i cyConfi g.

Configuration parameter for the specified
eviction policy. Note that the content is
provider specific.

Whether or not to acquire the initial
in-memory state from existing members.
Allows for hot/cold caches (true/false). Also
see the fetchPersistentState element in
CachelLoaderConfiguration.

Whether or not the entire tree is inactive upon
startup, only responding to replication
messages after act i vat eRegi on() is called
to activate one or more parts of the tree. If
true, property Fet chl nMenor ySt at e is
ignored. This property should only be set to
true if UseRegi onBasedMar shal | i ng is also
true.

Time in milliseconds to wait for initial state
retrieval. This should be longer than
LockAcqui si tionTi meout as the node
providing state may need to wait that long to
acquire necessary read locks on the cache.

Node locking isolation level : SERIALIZABLE,
REPEATABLE_READ (default),
READ_COMMITTED,
READ_UNCOMMITTED, and NONE. Note
that this is ignored if NodeLockingScheme is
OPTIMISTIC. Case doesn't matter. See
documentation on Transactions and
Concurrency for more details.

Time in milliseconds to wait for a lock to be
acquired. If a lock cannot be acquired an

82

Definition of XML attributes

MultiplexerService

MultiplexerStack

NodeLockingScheme

ReplicationVersion

ReplQueuelnterval

exception will be thrown.

The JMX object name of the service that
defines the JGroups multiplexer. In JBoss AS
5 this service is normally defined in the
jgroups-multiplexer.sar. If this attribute is
defined, the cache will look up the multiplexer
service in JMX and will use it to obtain a
multiplexed JGroups channel. The
configuration of the channel will be that
associated with Mul ti pl exer St ack. The

d ust er Confi g attribute will be ignored.

The name of the JGroups stack to be used
with the TreeCache cluster. Stacks are

defined in the configuration of the external

Mul ti pl exer Ser vi ce discussed above. In
JBoss AS 5 this is normally done in the
jgroups-multiplexer.sar\META-INF\multiplexer-s
file. The default stack is udp. This attribute is
used in conjunction with

Mul ti pl exer Servi ce.

May be PESSIMISTIC (default) or
OPTIMISTIC. See documentation on
Transactions and Concurrency for more
details.

Tells the cache to serialize cluster traffic in a
format consistent with that used by the given
release of JBoss Cache. Different JBoss
Cache versions use different wire formats;
setting this attribute tells a cache from a later
release to serialize data using the format from
an earlier release. This allows caches from
different releases to interoperate. For
example, a 1.2.4.SP2 cache could have this
value set to "1.2.3", allowing it to interoperate
with a 1.2.3 cache. Valid values are a
dot-separated release number, with any SP
qualifer also separated by a dot, e.g. "1.2.3"
or"1.2.4.SP2".

Time in milliseconds for elements from the
replication queue to be replicated.

83

tacks.xml

Chapter 11. Configuration

ReplQueueMaxElements

SyncCommitPhase

SyncReplTimeout

SyncRollbackPhase

TransactionManagerLookupClass

UselnterceptorMbeans

UseRegionBasedMarshalling

Max number of elements in the replication
gueue until replication kicks in.

This option is used to control the behaviour of
the commit part of a 2-phase commit protocol,
when using REPL_SYNC (does not apply to
other cache modes). By default this is set to

f al se. There is a performance penalty to
enabling this, especially when running in a
large cluster, but the upsides are greater
cluster-wide data integrity. See the chapter on
Clustered Caches for more information on
this.

For synchronous replication: time in
milliseconds to wait until replication acks have
been received from all nodes in the cluster.

This option is used to control the behaviour of
the rollback part of a 2-phase commit
protocol, when using REPL_SYNC (does not
apply to other cache modes). By default this is
setto f al se. There is a performance penalty
to enabling this, especially when running in a
large cluster, but the upsides are greater
cluster-wide data integrity. See the chapter on
Clustered Caches for more information on
this.

The fully qualified name of a class
implementing TransactionManagerLookup.
Default is JBossTransactionManagerLookup.
There is also an option of
DummyTransactionManagerLookup for
example.

Specifies whether each interceptor should
have an associated mbean registered.
Interceptor mbeans are used to capture
statistics and display them in JIMX. This
setting enables or disables all such
interceptor mbeans. Default value is true.

When unmarshalling replicated data, this
option specifies whether or not to use different

84

Overriding options

UseReplQueue

LockParentForChildInsertRemove

classloaders (for different cache regions).
This defaults to f al se if unspecified.

For asynchronous replication: whether or not
to use a replication queue (true/false).

When used with pessimistic locking and

I sol ati onLevel of REPEATABLE_READ, this
parameter specifies whether parent nodes
need to be locked for writing when adding or
removing child nodes. This prevents phantom
reads, providing
"stronger-than-repeatable-read" data integrity.
This defaults to f al se and is ignored if used
with optimistic locking or other isolation levels.

3. Overriding options

As of JBoss Cache 1.3.0, a new API has been introduced, to allow you to override certain
behaviour of the cache on a per invocation basis. This involves creating an instance of

org. j boss. cache. confi g. Opti on, setting the options you wish to override on the Opt i on
object and passing it in as a parameter to overloaded versions of get (), put () and renove().
See the javadocs on the Opt i on class for details on these options.

85

86

Chapter 12.

Management Information

JBoss Cache includes JMX MBeans to expose cache functionality and provide statistics that
can be used to analyze cache operations. JBoss Cache can also broadcast cache events as
MBean notifications for handling via JIMX monitoring tools.

1. JBoss Cache MBeans

JBoss Cache provides an MBean that allows JMX access to a cache instance. This MBean is
accessible from an MBean server through the service name specified in the cache instance's
configuration. For example, the Tomcat clustering cache instance is accessible through the
service named "jboss.cache:service=TomcatClusteringCache." This MBean can be used to
perform most cache operations via JMX.

JBoss Cache also provides MBeans for each interceptor configured in the cache's interceptor
stack. These MBeans are used to capture and expose statistics related to cache operations.
They are hierarchically associated with the cache's primary MBean and have service names
that reflect this relationship. For example, a replication interceptor MBean for the
TomcatClusteringCache instance will be accessible through the service named
"jboss.cache:service=TomcatClusteringCache,treecache-interceptor=Replicationinterceptor."

2. JBoss Cache Statistics

JBoss Cache captures statistics in its interceptors and exposes the statistics through interceptor
MBeans. Cache interceptor MBeans are enabled by default; these MBeans can be disabled for
a specific cache instance through the UselnterceptorMbeans attribute. See the Configuration
chapter for further details on configuration of this attribute.

Each interceptor's MBean provides an attribute that can be used to disable maintenance of
statistics for that interceptor. Note that the majority of the statistics are provided by the
CacheMgmtinterceptor MBean so this interceptor is the most significant in this regard. If you
want to disable all statistics for performance reasons, you should utilize the
UselnterceptorMbeans configuration setting as this will prevent the CacheMgmtinterceptor from
being included in the cache's interceptor stack when the cache is started.

Each interceptor provides the following common operations and attributes.

« dumpsStatistics - returns a Map containing the interceptor's attributes and values.
 resetStatistics - resets all statistics maintained by the interceptor.

« setStatisticsEnabled(boolean) - allows statistics to be disabled for a specific interceptor.

The following table describes the statistics currently available for JBoss Cache.

87

Chapter 12. Management Information

MBean Name

Activationinterceptor

Attribute

Activations

CachelLoaderInterceptorCachelLoaderLoads

CachelLoaderInterceptorCacheLoaderMisses

CacheMgmtinterceptor

CacheMgmtinterceptor

CacheMgmtinterceptor

CacheMgmtinterceptor

CacheMgmtinterceptor

CacheMgmtinterceptor

CacheMgmtinterceptor

CacheMgmtinterceptor

CacheMgmtinterceptor

CacheMgmtinterceptor

CacheMgmtinterceptor

CacheMgmtinterceptor

CacheStorelnterceptor

Hits

Misses

Stores

Evictions

NumberOfAttributes

NumberOfNodes

ElapsedTime

TimeSinceReset

AverageReadTime

AverageWriteTime

HitMissRatio

ReadWriteRatio

CachelLoaderStores

Type
long

long

long

long

long

long

long

int

int

long

long

long

long

double

double

long

Description

Number of passivated nodes that
have been activated.

Number of nodes loaded through
a cache loader.

Number of unsuccessful attempts
to load a node through a cache
loader.

Number of successful attribute
retrievals.

Number of unsuccessful attribute
retrievals.

Number of attribute store
operations.

Number of node evictions.

Number of attributes currently
cached.

Number of nodes currently
cached.

Number of seconds that the
cache has been running.

Number of seconds since the
cache statistics have been reset.

Average time in milliseconds to
retrieve a cache attribute,
including unsuccessful attribute
retrievals.

Average time in milliseconds to
write a cache attribute.

Ratio of hits to hits and misses. A
hit is a get attribute operation that
results in an object being returned
to the client. The retrieval may be
from a cache loader if the entry
isn't in the local cache.

Ratio of read operations to write
operations. This is the ratio of
cache hits and misses to cache
stores.

Number of nodes written to the
cache loader.

88

Receiving Cache Notifications

MBean Name Attribute Type Description

InvalidationInterceptor Invalidations long Number of cached nodes that
have been invalidated.

Passivationinterceptor Passivations long Number of cached nodes that
have been passivated.

TxInterceptor Prepares long Number of transaction prepare
operations performed by this
interceptor.

TxInterceptor Commits long Number of transaction commit
operations performed by this
interceptor.

TxInterceptor Rollbacks long Number of transaction rollbacks
operations performed by this
interceptor.

Table 12.1. JBoss Cache Management Statistics

3. Receiving Cache Notifications

JBoss Cache users can register a listener to receive cache events as described in the Eviction
Policies chapter. Users can alternatively utilize the cache's management information
infrastructure to receive these events via JMX notifications. Cache events are accessible as
notifications by registering a NotificationListener for the CacheMgmtinterceptor MBean. This
functionality is only available if cache statistics are enabled as described in the previous section.

The following table depicts the JMX notifications available for JBoss Cache as well as the cache
events to which they correspond. These are the notifications that can be received through the
CacheMgmtinterceptor MBean. Each notification represents a single event published by JBoss
Cache and provides user data corresponding to the parameters of the event.

Notification Type Notification Data TreeCachelListener Event
org.jboss.cache.CacheStarted String : cache service name cacheStarted

org.jboss.cache.CacheStopped String : cache service name cacheStopped

org.jboss.cache.NodeCreated = String : fgn NodeCreated
org.jboss.cache.NodeEvicted String : fgn NodeEvicted
org.jboss.cache.NodeLoaded | String : fgn NodeLoaded
org.jboss.cache.NodeModifed ' String : fgn NodeModifed
org.jboss.cache.NodeRemoved String : fgn NodeRemoved
org.jboss.cache.NodeVisited | String : fgn NodeVisited
org.jboss.cache.ViewChange String : view ViewChange
org.jboss.cache.NodeActivate Object[0]=String: fqn NodeActivate

89

Chapter 12. Management Information

Notification Type Notification Data TreeCachelListener Event

Object[1]=Boolean: pre
org.jboss.cache.NodeEvict Object[0]=String: fgn NodeEvict

Object[1]=Boolean: pre
org.jboss.cache.NodeModify Object[0]=String: fgn NodeModify

Object[1]=Boolean: pre

Object[2]=Boolean: isLocal
org.jboss.cache.NodePassivate Object[0]=String: fgn NodePassivate

Object[1]=Boolean: pre
org.jboss.cache.NodeRemove QOpject[0]=String: fgn NodeRemove

Object[1]=Boolean: pre

Object[2]=Boolean: isLocal

Table 12.2. JBoss Cache MBean Notifications

The following is an example of how to programmatically receive cache notifications when
running in a JBoss application server environment. In this example, the client uses a filter to
specify which events are of interest.

M/Li stener |istener = new MyLi stener();
NotificationFilterSupport filter = null;

/'l get reference to MBean server

Context ic = new Initial Context();

MBeanSer ver Connect i on server =

(MBeanSer ver Connecti on)i c. | ookup("j nx/i nvoker/RM Adapt or");

/1l get reference to CacheMynt | nterceptor MBean

String cache_service = "jboss. cache: servi ce=Tontat d ust eri ngCache";
String nmgnt _servi ce = cache_service +
",treecache-interceptor=CacheMynt | nt ercept or";

hj ect Name nmgnt _nanme = new Obj ect Name(ngmt _servi ce) ;

/1 configure a filter to only receive node created and renbved events
filter = new NotificationFilterSupport();

filter.disabl eAl |l Types();

filter.enabl eType(CacheMynt | nt er cept or . NOTI F_NODE_CREATED) ;
filter.enabl eType(CacheMynt | nt er cept or . NOTI F_NODE_REMOVED) ;

[/l register the listener with a filter
/] leave the filter null to receive all cache events

server.addNoti fi cationLi stener(mgnt _nanme, |istener, filter, null);

I

90

Accessing Cache MBeans in a Standalone

/1 on conpletion of processing, unregister the |istener
server.renmoveNotificationLi stener(nmgnt _name, listener, filter, null);

The following is the simple notification listener implementation used in the previous example.

private class M/Listener inplenents NotificationListener, Serializable {
public void handl eNotification(Notification notification, Cbject
handback) {
String message = notification.get Message();
String type = notification.getType();
hj ect userData = notification.getUserData();
Systemout.println(type + ": "+nessage);
if (userData == null) {
Systemout.println("notification data is null");
}
else if (userData instanceof String) {
Systemout.println("notification data: "+(String)userData);
}
else if (userData instanceof Object[]) {
Obj ect[] ud = (Object[])userDat a;
for (int i =0; i > ud.length; i++) {
Systemout.println("notification data: "+ud[i].toString());

}
}
el se {
Systemout.println("notification data class: " +
user Dat a. get Cl ass() . get Nane());
}

}

Note: the JBoss Cache management implementation only listens to cache events after a client
registers to receive MBean notifications. As soon as no clients are registered for notifications,
the MBean will remove itself as a cache listener.

4. Accessing Cache MBeans in a Standalone
Environment

JBoss Cache MBeans are readily accessed when running cache instances in an application
server that provides an MBean server interface such as JBoss JMX Console. Refer to server
documentation for instructions on how to access MBeans running in a server's MBean
container.

JBoss Cache MBeans are also accessible when running in a non-server environment if the JVM
is JDK 5.0 or later. When running a standalone cache in a JDK 5 environment, you can access
the cache's MBeans as follows.

91

Chapter 12. Management Information

1. Set the system property -Dcom.sun.management.jmxremote when starting the JVM where
the cache will run.

2. Once the JVM is running, start the JDK 5 jconsole utility, located in the JDK's /bin directory.

3. When the utility loads, you will be able to select your JVM and connect to it. The JBoss
Cache MBeans will be available on the MBeans panel.

Note: The jconsole utility will automatically register as a listener for cache notifications when

connected to a JVM running JBoss Cache instances.

The following figure shows cache interceptor MBeans in jconsole. Cache statistics are displayed
for the CacheMgmt interceptor:

& J25E5.0 Mnnhofing & Mnﬁagi-!me:nt Console: I-Tﬁﬁ@l.ocn.lhusl _. -—
Connection
" Summary | Memory |’ Threads | Classes I’MBeans |\m'| \
MBeans
@Tree [Attributes | Operations : Notifications |"Inl|:| |
== ..JMImpIemematmn : B I Valio
& java.lang “|AverageReadTime 0]
o= [java.util. logging AverageWwriteTime 2
¢ 3 ibosscache ElapsedTime 544
% [ClusterTreeCacha ~|Evictions 0
 CasheMamtinlereapior | FitMissRatio 0,857 1428571428571
@@ Callinterceptor "|!H?t5 6
@ PessimisticLockinterseptor | misses : 1
@ Replicationinterceptor |Numberotatiributes 6
@ Tuinterceplor ‘-|INumber.0and.es 3
'b'a Unlockinterceptor ‘IlREEIIUWIItBREIIIU 0.7
o~ [TomeatClusteringCache ||StatisticsEnabled true
“|Stores 10
TimeSinceResat 541
l Refresh

Figure 12.1. CacheMgmtinterceptor MBean

92

Chapter 13.

Running JBoss Cache within JBoss
Application Server

If JBoss Cache is run in JBoss AS then JBoss Cache can be deployed as an MBean. The steps
below illustrate how to do this. We do not deploy JBoss Cache as a Service Archive (SAR), but
as a JAR (j boss- cache. j ar in the lib directory) and an XML file defining the MBean. Of course,
JBoss Cache can also be deployed as a SAR, or even as part of a WAR, EJB or EAR.

First, the j boss- cache. j ar file has to be copied to the /lib directory and JBoss AS has to be
restarted. Then a regular JBoss Cache configuration file in XML format has to be copied to the
/deploy directory. The XML file format is the same as discussed in the Configuration chapter.

In order to be used from a client such as a servlet in the Tomcat web container inside the same
JBoss container, JMX can be used:

MBeanSer ver server =MBeanSer ver Locat or. | ocat eJBoss() ;

Tr eeCacheMBean cache

cache=(Tr eeCacheMBean) MBeanPr oxyExt . cr eat e(Tr eeCacheMBean. cl ass
"j boss. cache: servi ce=TreeCache", server);

cache. put("/al/b/c", null);

The MBeanServerLocator class is a helper to find the (only) JBoss MBean server inside the
current VM. The static create() method creates a dynamic proxy to the given interface and uses
JMX to dynamically dispatch methods invoked against the generated interface. The name used
to look up the MBean is the same as defined in the configuration file.

1. Running as an MBean

If JIBoss Cache is run inside of JBoss AS (as an MBean), we can bind it into JNDI using
JrmpProxyFactory, just like any other MBean. Below is an example of how to do this:

<mbean
code="org.j boss.invocation.jrnp.server. JRWProxyFact ory"
nane="nydonmai n: servi ce=pr oxyFactory, type=jrnp, t arget =f act ory" >
<attribute
name="1 nvoker Nane" >j boss: ser vi ce=i nvoker, t ype=j rnp</attri but e>
<attribute
name="Tar get Nane" >j boss. cache: servi ce=Tr eeCache</attri but e>
<attribute nane="Jndi Nane" >M/Cache</attri bute> <attribute
name="I| nvokeTar get Met hod">true</attri bute> <attribute
name="Export edl nt erf ace" >or g. j boss. cache. Tr eeCacheMBean</ attri but e>
<attribute name="Clientlnterceptors"> <iterceptors>
<i nt er cept or >or g. j boss. proxy. d i ent Met hodl nt er cept or </ i nt er cept or >
<i nt er cept or >or g. j boss. proxy. Securityl nterceptor</interceptor>
<i nt er cept or >or g. j boss. i nvocati on. | nvoker | nt er cept or </ i nt er cept or >
</iterceptors> </attribute>
<depends>j boss: servi ce=i nvoker, t ype=j r np</ depends>
<depends>j boss. cache: servi ce=Tr eeCache</ depends>

93

Chapter 13. Running JBoss Cache within JBoss Application Server

</ nbean>

The I nvoker Nane attribute needs to point to a valid JBoss invoker MBean. Tar get Nane is the
JMX name of the MBean that needs to be bound into JNDI. Jndi Nane is the name under which
the MBean will be bound, and Export edl nt er f ace is the interface name of the MBean.

94

Index

95

96

	JBoss Cache Tree Cache 1.4.1
	Table of Contents
	Preface
	Chapter 1. Introduction
	1. What is a TreeCache?
	2. TreeCache Basics

	Chapter 2. Architecture
	Chapter 3. Basic API
	Chapter 4. Clustered Caches
	1. Local Cache
	2. Clustered Cache - Using Replication
	2.1. Replicated Caches and Transactions
	2.1.1. One Phase Commits
	2.1.2. Two Phase Commits

	2.2. Buddy Replication
	2.2.1. Selecting Buddies
	2.2.2. BuddyPools
	2.2.3. Failover
	2.2.4. Implementation
	2.2.5. Configuration

	3. Clustered Cache - Using Invalidation

	Chapter 5. Transactions and Concurrency
	1. Concurrent Access
	1.1. Locks
	1.2. Pessimistic locking
	1.2.1. Isolation levels
	1.2.2. Insertion and Removal of Nodes

	1.3. Optimistic locking
	1.3.1. Architecture
	1.3.2. Configuration

	2. Transactional Support
	2.1. Example

	Chapter 6. Eviction Policies
	1. Eviction Policy Plugin
	2. TreeCache Eviction Policy Configuration
	3. TreeCache LRU eviction policy implementation
	4. TreeCache FIFO eviction policy implementation
	5. TreeCache MRU eviction policy implementation
	6. TreeCache LFU eviction policy implementation

	Chapter 7. Cache Loaders
	1. The CacheLoader Interface
	2. Configuration via XML
	3. Cache passivation
	4. CacheLoader use cases
	4.1. Local cache with store
	4.2. Replicated caches with all nodes sharing the same store
	4.3. Replicated caches with only one node having a store
	4.4. Replicated caches with each node having its own store
	4.5. Hierarchical caches
	4.6. TcpDelegatingCacheLoader
	4.7. RmiDelegatingCacheLoader

	5. JDBC-based CacheLoader
	5.1. JDBCCacheLoader configuration
	5.1.1. Table configuration
	5.1.2. DataSource
	5.1.3. JDBC driver
	5.1.4. Configuration example

	Chapter 8. TreeCacheMarshaller
	1. Basic Usage
	2. Region Activation/Inactivation
	2.1. Example usage of Region Activation/Inactivation

	3. Region Activation/Inactivation with a CacheLoader
	4. Performance over Java serialization
	5. Backward compatibility

	Chapter 9. State Transfer
	1. Types of State Transfer
	2. When State Transfer Occurs

	Chapter 10. Version Compatibility and Interoperability
	Chapter 11. Configuration
	1. Sample XML-Based Configuration
	2. Definition of XML attributes
	3. Overriding options

	Chapter 12. Management Information
	1. JBoss Cache MBeans
	2. JBoss Cache Statistics
	3. Receiving Cache Notifications
	4. Accessing Cache MBeans in a Standalone Environment

	Chapter 13. Running JBoss Cache within JBoss Application Server
	1. Running as an MBean

	Index

